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       An Introduction to Exhaustible
               Resource Pricing
1. The distinction between nonrenewable and renewable
     resources can become blurred.
2. Renewable resources can be nonrenewable
3. Nonrenewable resources can, in a sense, be renewed
    through

- the discovery of new deposits
- technical advances that make it economically 
  feasible to recover a resource from low-grade

                  materials.
4. We will follow the convention of classifying resources as
nonrenewable or renewable depending on the significance of
their rates of regeneration in an economic time scale. Thus,
e.g., oil is nonrenewable and timber is renewable
5. Are our nonrenewable resources being depleted
rapidly/slowly?
6. What is the optimal use of exhaustible resources?



Beyond the use of mineral classification to determine
whether a resource is renewable or exhaustible, we also can
view the question of time in terms of the earth’s energy flows,
as shown below.



With this perspective in mind, what steps are involved in
analyzing the optimal pricing of exhaustible resources?

A standard approach in such an inquiry is to
      1. derive conditions characterizing socially efficient
          resource use,
      2. then establish whether a competitive equilibrium realizes
          these conditions.
      3. Examine the results in terms of whether market pricing
          achieves an optimal solution, and where market failure
          arises, devise suitable policy alternatives consistent with
          an given social welfare function.

Do theorems of welfare economics hold in the context of
nonrenewable resources? Imperfections can lead to an
inefficient allocation.

Thus,  even if a competitive equilibrium is efficient, we must
consider the effects of relevant imperfections and market
failures;
        - Monopoly
        - Environmental disruption in extracting, converting,
          and use
        - Uncertainty surrounding discovery and the long-lasting
          effects of current decisions about their use.



The theory of optimal exhaustible resources contains two key
results:

A) price = MC + opportunity cost. Why should opportunity cost
                be included?  Nonrenewable resources are limited in
                quantity and are not reproducible.  Thus,
                consumption today has a future opportunity cost that
                should be taken into consideration.

                Accounting for the opportunity cost bears critically on
                how to allocate exhaustible resources over time, and
                it recalls the various positions regarding sustainability
                already discussed.  One implication is that when
                opportunity cost is included, there will be less
                extraction of a resource today than if it were
                reproducible.

The relationship between Price and Marginal
Cost for an exhaustible resource



Given the demand p = p(y), only y* will be extracted by a
planner or resource manager seeking to allocate production
efficiently over time, I.e. there will be a positive difference
between price and marginal cost.

The difference between price and the marginal extraction cost
(MEC) is known variously as the user cost, royalty, rent, net
price, or marginal profit.  We will use rent, consistent with the
taxonomy of factor pricing.

B.  The present value (PV) of the rent for an exhaustible
resource must be the same in all periods. Equivalently,
undiscounted rent must increase at the prevailing rate of
interest, or discount.

     The net social benefit from extracting a unit of an
     exhaustible resource is the difference between the market
     price (or the willingness of consumers to pay) and the
     marginal extraction cost).

Efficiency Conditions under Pure Depletion
for a Competitive Industry

Following Hotelling (1931), under pure depletion,
if R(t) represents remaining reserves, and q(t)
represents production, then:

The price of the exhaustible resource, p(t) can be
represented as a function whose form is:
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      Efficiency Conditions under Pure
  Depletion for a Competitive Industry - 1
Under competitive conditions, the rate of extraction at time t is
determined by the following demand function:

Assuming no extraction costs, initial reserves will be exhausted
via the following function:

At t=T, q(T)=0, we then have:

Equation 3-5 determines p(0), T, and the entire time-path of
extraction.  As an example, assume that the demand function
D(A) is linear:

thus:

Under the last equation, with t=T and q(T)=0, we have

Thus:
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      Efficiency Conditions under Pure
  Depletion for a Competitive Industry - 2
Exhaustion of initial reserves implies:

Integration yields:

              Pure Depletion under Monopoly
Let us now examine the behavior of a monopolist owner of an
exhaustible resource.  As in the competitive initial case, we
assume zero marginal extraction costs.  The monopolist’s
objective function can be expressed as:

Subject to:

Where p(q(t)) = the inverse of D(p(t)).  The monopolist’s
problem can be formulated as an optimal control problem.  The
monopolist’s current value Hamiltonian may be written as:

The first-order necessary conditions are:
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 Pure Depletion under Monopoly - 1

Equation 15 implies that                      i.e., the current value
shadow price (CV SP) rises at the rate of interest.

However, by equation 14, the CV SP is equated to marginal
revenue (MR) at each instant t.  Thus the monopolist extracts
the resource so that the MR rather than the competitive rent
rises at the rate of interest, i.e.:

If we assume a linear demand function, the inverse can be
expressed as:

and the monopolist’s MR function thus is defined as:

In terms of our Hamiltonian, we have:

i.e., q(Tm )=0    Evaluation equation 14 at t = Tm our inverse
demand function implies:
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      Pure Depletion under Monopoly - 2

But                         and                          Thus from equation 20,
                                which yields:

Equating equation 19 with equation 21 and solving for q(t)
yields:

As before, the condition on total reserves gives:

Now we compare the exploitation profiles of the competitive
and monopolistic industries.  If Tc denotes the competitive
exhaustion date, we obtain from equation 10 and equation 23:

                                       and

Since these conditions are an increasing function of T, it follows
that:
                                                        Tc < Tm   Eq (24)

Equation 22 and 8 show that qc(0)>qm(0):  Thus, competitive
industries exploit the resource at a higher rate initially and
exhaust it more rapidly than a monopolist.
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    An Example of Alternative Extraction
   Paths under Competition and Monopoly
Let a = 100, b = 10, and R = 1,000 tons.
The resulting values of T are:  Tc = 18.41 years and Tm =
29.48 years.  The production rates qc(t) and qm(t) are shown
in the following figure:

the corresponding price paths are:

Pc(t) = a - bqc(t)
Pm(t) = a - bqm(t).

Pm(t) starts out higher than pc(t); they intersect at t.  13.1
years and is below pc(t) until it reaches a choke-off price a/b
=10 at Tm = 29.48.

Under these conditions, the monopolist appears as the
conservationist’s friend (Solow, 1974). Initially, the monopolist
restricts production and stretches it out over a longer time
horizon.



The monopolist’s motivation doesn’t derive from concern for
future generations, but simply increases the PV by restricting
production early on.

The competitive extraction path is socially optimal, and the
monopolistic path is dynamically inefficient in the sense that the
current generation could more than compensate future
generations for an increase in the near term extraction and a
reduction in future extraction.

To see how this result is obtained, assume that the social
welfare from production q(t) is given by the area under the
inverse demand curve given by:

so that the “social” manager would like to :

If we construct the current value Hamiltonian, get the first-order
conditions and solve, we observe that:

from equation 28, and

From equation 29.

The the welfare maximizing and competitive extraction paths
are identical.
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How reasonable is the assumption that the competitive price
grows at the prevailing rate of interest?  For this to be so
requires that the owner of the exhaustible resource:

     -estimate the date of depletion and choke-off price accurately
     - must use the same discount rate

This seems to be an unreasonable assumption for extractive
industries in that it requires perfect foresight.  It thus ignores:

     - price volatility and other forms of uncertainty
     - exploration, discovery, and technological change, which
suggest the possibility of alternative price paths.  Smooth
exponentially increasing price paths have not in fact been
observed in extractive industries such as mining.

In light of these considerations, let us now consider a few
modifications to the basic Hotelling model:

Positive Extraction Costs for a Single Exhaustible Resource
Suppose the cost of mining depends only on the rate of
extraction,k ie. C(t) = C(q(t))     Eq. 31
Assume further that p(t) is exogenous and known in advance.
The owner of the resource then would:

The current value Hamiltonian can now be defined as:

with first-order necessary conditions that imply:

Convexity in C(.) implies that the first-order conditions also are
sufficient.  We thus assume C’(.)>0, and C”(.)>0.
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It now can be shown that:

which implies that the price net of marginal cost increases at
the prevailing rate of interest.

The corresponding condition for the monopolist’s price is

Equations 36 and 37 tell us about differences in extractive
resource owner problems such as how the time path of
extraction q(t) is determined.

Geometrically, assume a U-shaped cost curve.  The resource
owner will never produce at a rate q with )<q<q*.  At q*, MC
equals AVC.

Unless the extraction shuts down temporarily, we have:
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At time t = T, the extraction operation stops permanently and q
drops to zero.  The transversality condition for a free-terminal
time problem implies:

From equation 33, we obtain:

While equation 34 implies that:

Hence:

so that:                  q(T) = q*                       EQ (42)

For a known T horizon, the problem is solved.  As equation 40
determines p(T) and by equation 35 we have:

By equation 34 we have:
from which q(t) is determined for O < t < T.

T is determined from the condition that R(T) = 0 (Assuming
that p(t)>C(q”)/q* for all t, which implies that the stock of the
resource will be exhausted eventually.

As an example, suppose price p(t) = p (constant), and assume
that C(q) = a + bq2.  Then                    and equations 34-43
imply the conditions:
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The last equation has a unique solution T>0, so that the problem
is solved.

Now consider a discrete-time version of the exhaustible
resource owner problem.  We can state the problem as:

For δ = 0.10 and T = 10, v10 = 580.2956.  Since T assumes
integer values, there is no derivative condition for discrete-time
problems.

To determine whether it is optimal to lengthen or shorten the
extraction horizon one needs to:
     - increase or decrease the horizon,
     - solve the optimal production schedule (qt),
     - calculate the present value of net revenues, Vt, and
       compare the results.

     Another look at the Competitive Extractive Industry
Let an extractive industry be comprised of N-price-taking
owners.  Let:
    -Ci (qi(t)) (I=1,2,…N(N)>1) = the cost of extraction for the ith
                                                 firm
    - Ri, (I=1,2,…N (N)>1) = initial reserves, T
    - p(t) = the price, which is determined by aggregate
                production according to:
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Each firm attempts to maximize its profits given by:

subject to the reserves constraint:

From this we need to determine the price path, p = p(t):  In the
static theory of the firm, we can proceed on the basis of the
assumption of competitive markets alone.  In a dynamic setting,
we must assume that the firm can correctly predict the entire
price profile p(t) over time.  This assumption is known as rational
expectations.

The ith firm’s PV (not CV) Hamiltonian can be defined as:

                                   Hi=[p(t)qi(t)-Ci(qi(t))]e-δt –λi(t)qi(t)     EQ (48)

with necessary conditions that imply:

and:

Thus                a constant.  The transversality condition Hi(T)=0
implies:

But, evaluating EQ(49) at t = T also implies:

and thus,                  is the level of production where:

that is, where the AVC of the ith resource operation is minimized.
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Substituting EQ(53) into EQ(49) implies:

At this stage we have 2N+1 unknowns, T1,…,Tn, q1(t),… qN(t), and
p(t) [λ1,…,λN can be determined from EQ(51)] and 2n+1 equations
consisting of EQ(54) with q1(T1)=qi* plus EQ(45) and

                  The Social Optimum with N Firms

With No externalities, no stock “common pool” externalities, the
perfectly competitive industry would be socially optimal in the
sense of maximizing its discounted social welfare (DSW). This can
be verified more formally, as defined below:

The social welfare function can be defined as:

The corresponding Hamiltonian is given by:

Each                , a constant (since δH/δRi=0) and we now have

where:                        thus

and,

If all N firms have identical reserves and costs, Ti = T and H(T) = 0

which implies:
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and:
If the N firms are not identical, it can be shown that:

The same system of equations is obtained as in the competitive
model under the rational expectations assumption.  Both lead to
the same solution.

               Scarcity Defined in Economic Terms
Economics does not consider scarcity as a physical concept but
as a value concept.

The rent for a non-renewable resource is given by the co-state
variable:

This reflects the difference between the price and the marginal
extraction cost at instant t.  In a competitive market, this is the
difference between what society would be willing to pay for an
additional unit of R(t) and the cost incurred in its extraction.  If this
difference:

     - is positive and large, then the resource is scarce.
     - increases over time           i.e., the resource is becoming
        more scarce
     - decreases over time          i.e., the resource is becoming less
       scarce.
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                                         Exploration
Exploration and discovery increase reserves, which may lower
extraction costs (e.g., C(q,R2)<c(q, R1); R1<R2).  Thus, there are
economic incentives to add to known reserves.

Following Pindyck (1978), we state the question of exploration as:

and:

where f(.) is a discovery rate as a function of:
      -w(t), the exploratory effort, and
      -X(t), the level of cumulative discoveries.
Assuming that q(t) is a linear cost function, the total extraction
cost per unit of time can be defined as:

C1(.) is a unit extraction cost function that is dependent on
remaining reserves.
Exploration costs are assumed to be a convex function given as
C2(w(t))
Thus, net revenue at instant t, given p(t), is the per unit price of
the exhaustible resource:

Now assume a competitive extractive industry:  a large and
identical number of firms.  The individual firm takes p(t) as
exogenous, and under rational expectations, attempts to
maximize the following function:
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The problem has:
     - two state variables, R, X, and
     - two control variables q, w=>, and is more difficult than
        earlier problems

The current-value Hamiltonian is:

The first-order conditions include:

fx and fw are partials of f() with respect to X(t) and w(t).  Taking the
time derivative of 67 implies
Substituting this expression into EQ(69) yields:

Equation 68 may be solved for µ2(t) to get:

Taking the time derive of this expression yields:

Substituting the expression for µ2(t) into 70
and noting from 68 that
We obtain:
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Equating 72 and 73 and solving for the rate of change in w yields:

By substituting 3.70 for the rate of change in p and simplifying:

Equations 61, 62, 71, and 74 are a four-equation dynamical system
for the five unknown functions R(t), X(t), w(t), p(t), and q(t). The latter
function may be eliminated by the demand equation:

q(t) = D(p(t))

The terminal conditions for the rates of change in p and w depend on

This expression defines the ratio of the marginal cost of exploration
to the marginal product of exploratory effort, and is referred to as the
“marginal discovery cost”.
If C2’(O)/fw(0,X)=0, then w(T+ q(T) = 0 simultaneously at t = T.  It
will also be the case that :               and
This means that no additional profit can be obtained from further
extraction.
If                                   then exploratory effort will become 0 before
extraction, I.e., there will exist an interval T1<t<T where w(t) = 0, but
q(t) >0.
At t = T,                  and with w(t) = 0,              Then for all t in T,

This implies              and that                              at t approaches T.
thus for all t in T, both p(t) - C1() and c’1(.)q(t) remain constant,
implying p(t), C1(), and c1’() rise as q(t) falls.
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The last unit of reserves should be discovered when its MC of
discovery equals the sum of the net revenue obtained upon
extraction, and sale, and the value of cost savings after discovery,
but before extraction.  This sum is the PV of net revenue of the
marginal discovery.

The system                           leads to several dynamic possibilities.

In graphical terms, we may portray the dynamic effects in terms of
the following graphs shown below:
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