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An Introduction to Exhaustible
Resource Pricing

1. The distinction between nonrenewable and renewable

resources can become blurred.
2. Renewable resources can be nonrenewable
3. Nonrenewable resources can, in a sense, be renewed
through
- the discovery of new deposits
- technical advances that make it economically
feasible to recover a resource from low-grade
materials.
4. We will follow the convention of classifying resources as
nonrenewable or renewable depending on the significance of
their rates of regeneration in an economic time scale. Thus,
e.g., oil is nonrenewable and timber is renewable
5. Are our nonrenewable resources being depleted
rapidly/slowly?
6. What is the optimal use of exhaustible resources?
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Figure 3.1. Classification of Mineral Resources. Data from U.S. Geological Survey
and U.S. Bureau of Mines, Principles of the Mineral Resource Classification System
of the U.S. Bureau of Mines and the U.S. Geological Survey, Geological Survey
Balletin 1450-A (Washington, D.C.: U.S. Government Printing Office, 1976).




Beyond the use of mineral classification to determine
whether a resource is renewable or exhaustible, we also can
view the question of time in terms of the earth’s energy flows,
as shown below.
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With this perspective in mind, what steps are involved in
analyzing the optimal pricing of exhaustible resources?

A standard approach in such an inquiry is to

1. derive conditions characterizing socially efficient
resource use,

2. then establish whether a competitive equilibrium realizes
these conditions.

3. Examine the results in terms of whether market pricing
achieves an optimal solution, and where market failure
arises, devise suitable policy alternatives consistent with
an given social welfare function.

Do theorems of welfare economics hold in the context of
nonrenewable resources? Imperfections can lead to an
inefficient allocation.

Thus, even if a competitive equilibrium is efficient, we must
consider the effects of relevant imperfections and market
failures;
- Monopoly
- Environmental disruption in extracting, converting,
and use
- Uncertainty surrounding discovery and the long-lasting
effects of current decisions about their use.




The theory of optimal exhaustible resources contains two key
results:

A) price = MC + opportunity cost. Why should opportunity cost
be included? Nonrenewable resources are limited in
quantity and are not reproducible. Thus,
consumption today has a future opportunity cost that
should be taken into consideration.

Accounting for the opportunity cost bears critically on
how to allocate exhaustible resources over time, and
it recalls the various positions regarding sustainability
already discussed. One implication is that when
opportunity cost is included, there will be less
extraction of a resource today than if it were
reproducible.

Marginal cost

Demand
p=(y)

quantity

The relationship between Price and Marginal
Cost for an exhaustible resource




Given the demand p = p(y), only y* will be extracted by a
planner or resource manager seeking to allocate production
efficiently over time, l.e. there will be a positive difference
between price and marginal cost.

The difference between price and the marginal extraction cost
(MEC) is known variously as the user cost, royalty, rent, net
price, or marginal profit. We will use rent, consistent with the
taxonomy of factor pricing.

B. The present value (PV) of the rent for an exhaustible
resource must be the same in all periods. Equivalently,
undiscounted rent must increase at the prevailing rate of
interest, or discount.

The net social benefit from extracting a unit of an
exhaustible resource is the difference between the market
price (or the willingness of consumers to pay) and the
marginal extraction cost).

Efficiency Conditions under Pure Depletion
for a Competitive Industry

Following Hotelling (1931), under pure depletion,
if R(t) represents remaining reserves, and q(t)
represents production, then:

R(t)=-q() EQ(1)
The price of the exhaustible resource, p(t) can be
represented as a function whose form is:

p(t)= p(O)" EQ(2)




Efficiency Conditions under Pure
Depletion for a Competitive Industry - 1

Under competitive conditions, the rate of extraction at time t is
determined by the following demand function:

q(t)=D(p(t)) EQ(3)

Assuming no extraction costs, initial reserves will be exhausted
via the following function:

[ al) =R EQ(4)

At t=T, q(T)=0, we then have:

¢(T)=D(p(O)" )0 EQ(5)

Equation 3-5 determines p(0), T, and the entire time-path of
extraction. As an example, assume that the demand function
D(A) is linear:

qlt)=D(p(t))=a - bplt) EQ(6)

T O=amtpl0k EQ(7)

Under the last equation, with t=T and q(T)=0, we have

p(0)= ae™" /b
Thus:

g(t)=al - ")) EQ(8)




Efficiency Conditions under Pure
Depletion for a Competitive Industry - 2

Exhaustion of initial reserves implies:

[Ta(t-e)dr =R EQ(9)

0

Integration yields:

aT-Q-e-‘ST)%a =R EQ(10)

Pure Depletion under Monopoly

Let us now examine the behavior of a monopolist owner of an
exhaustible resource. As in the competitive initial case, we
assume zero marginal extraction costs. The monopolist’s
objective function can be expressed as:

max Jt =ﬁ)Tm p(q (t))q (t)e™dt EQ(11)

Subject to:

R=-q(t) RO)=R EQ(12)

Where p(q(t)) = the inverse of D(p(t)). The monopolist’s
problem can be formulated as an optimal control problem. The
monopolist’s current value Hamiltonian may be written as:

H = plgk(0)- u(t)(t) EQ(13)

The first-order necessary conditions are:

m —p+ q(t)g%g —u()=0=>MR()=S.P(t) EQ(14)




Pure Depletion under Monopoly - 1

i = Oule)= _;R—[zf 0 EQ(15)

R=£—Fé)=-q(f> EQ(16)

Equation 15 implies that y/u(t)= 0 i.e, the current value
shadow price (CV SP) rises at the rate of interest.

However, by equation 14, the CV SP is equated to marginal
revenue (MR) at each instant t. Thus the monopolist extracts
the resource so that the MR rather than the competitive rent
rises at the rate of interest, i.e.:

% =5 EQ(17)

If we assume a linear demand function, the inverse can be
expressed as:

p(t)=a/b-q(t)b EQ(18)
and the monopolist’'s MR function thus is defined as:
MR=alb- 2q(t) /b EQ(19)

In terms of our Hamiltonian, we have: H (7}, )=0

i.,e.,, g(Tm )=0 Evaluation equation 14 att=T_ our inverse
demand function implies:

u(l )=alb-q(T, )Vb—ul, )=a/b  EQ(20)




Pure Depletion under Monopoly - 2

But u(t)= u(0)* and u(7, )= u(0)"™ Thus from equation 20,
w(0)=ae® /p Which yields:
u()=ae® /b EQ(21)

Equating equation 19 with equation 21 and solving for q(t)
yields:

1= 4-) EQ(22)

As before, the condition on total reserves gives:

Q — e )25 =R EQ(23)

Now we compare the exploitation profiles of the competitive
and monopolistic industries. If Tc denotes the competitive
exhaustion date, we obtain from equation 10 and equation 23:

m

T.-(1-¢™)/6=R/a and  T,-(1-¢")/6=2R/a

Since these conditions are an increasing function of T, it follows
that:

T.<T, Eq(24)

Equation 22 and 8 show that q.(0)>q,,(0): Thus, competitive
industries exploit the resource at a higher rate initially and
exhaust it more rapidly than a monopolist.




An Example of Alternative Extraction
Paths under Competition and Monopoly

Leta =100, b =10, and R = 1,000 tons.

The resulting values of T are: Tc = 18.41 years and Tm =
29.48 years. The production rates q.(t) and q,,(t) are shown
in the following figure:

qc(t), |
qm(t)

gc(t) = a(1 — 4+-T))

gm(t) = §(1 — 5+ Tw))

10 t* ~ 20 30
13.1

the corresponding price paths are:

Pc(t) =a- ch(t)
Pm(t) =a- qu(t)-

P, (t) starts out higher than p(t); they intersect att. 13.1
years and is below p.(t) until it reaches a choke-off price a/b
=10 at T,, = 29.48.

Under these conditions, the monopolist appears as the
conservationist’s friend (Solow, 1974). Initially, the monopolist
restricts production and stretches it out over a longer time
horizon.




The monopolist’s motivation doesn’t derive from concern for
future generations, but simply increases the PV by restricting
production early on.

The competitive extraction path is socially optimal, and the
monopolistic path is dynamically inefficient in the sense that the
current generation could more than compensate future
generations for an increase in the near term extraction and a
reduction in future extraction.

To see how this result is obtained, assume that the social
welfare from production q(t) is given by the area under the
inverse demand curve given by:

Ulg0)=["pEh:  EQ(s)

so that the “social” manager would like to :

max = jg Ulg(e)eat

subjectto R = —q(t)
R(0)=R given EQ(26)

If we construct the current value Hamiltonian, get the first-order
conditions and solve, we observe that:

U'(q(t)= plg(t))= pt)= ult)

from equation 28, and

il ult)=p/p(t)=0

From equation 29.

The the welfare maximizing and competitive extraction paths
are identical.




How reasonable is the assumption that the competitive price
grows at the prevailing rate of interest? For this to be so
requires that the owner of the exhaustible resource:

-estimate the date of depletion and choke-off price accurately
- must use the same discount rate

This seems to be an unreasonable assumption for extractive
industries in that it requires perfect foresight. It thus ignores:

- price volatility and other forms of uncertainty

- exploration, discovery, and technological change, which
suggest the possibility of alternative price paths. Smooth
exponentially increasing price paths have not in fact been
observed in extractive industries such as mining.

In light of these considerations, let us now consider a few
modifications to the basic Hotelling model:

Positive Extraction Costs for a Single Exhaustible Resource
Suppose the cost of mining depends only on the rate of
extraction,k ie. C(t) = C(q(t)) Eq. 31

Assume further that p(t) is exogenous and known in advance.
The owner of the resource then would:

max = /[P~ Clale e

subjectto R = —q(t)
R(0)=R given R()=0 EQ(32)

The current value Hamiltonian can now be defined as:

H = p(e))-Clal)-ull)  EQE33)

with first-order necessary conditions that imply:

plt)-C'g(t)- u)=0 EQ(34) & i =06ult) EQ(35)

Convexity in C(.) implies that the first-order conditions also are
sufficient. We thus assume C’(.)>0, and C”(.)>0.




It now can be shown that:
4 (P)-C@) _,
0-cG) 0 Y

which implies that the price net of marginal cost increases at
the prevailing rate of interest.

The corresponding condition for the monopolist’s price is

{RO-CO)_,
RO-cp 0 EQW)

Equations 36 and 37 tell us about differences in extractive
resource owner problems such as how the time path of
extraction q(t) is determined.

Geometrically, assume a U-shaped cost curve. The resource
owner will never produce at a rate q with )<g<qg*. Atg*, MC
equals AVC.

C'lq)

AC =Clq)/q

q
0 q*

Figure 8.2 Marginal and average cost curves of extraction ¢q.

Unless the extraction shuts down temporarily, we have:

q* < q(t) forO<t<T EQ(38)




At time t = T, the extraction operation stops permanently and q
drops to zero. The transversality condition for a free-terminal
time problem implies:

H=0 att=T EQ(39)

From equation 33, we obtain:

M(T)=p<T>-%§T)» EQ(40)

While equation 34 implies that: H(T)= P(T)— C'(Q(T))

ence: c(r)-<4T) pofan)
q(T)
so that: q(T)=q* EQ (42)

For a known T horizon, the problem is solved. As equation 40
determines p(T) and by equation 35 we have:

ult)=eIu(T) 0<t<T EQ(43)
By equation 34 we have: C'(q(t))= p(t)— u(t)
from which q(t) is determined for O <t < T.

T is determined from the condition that R(T) = 0 (Assuming
that p(t)>C(q”)/q* for all t, which implies that the stock of the
resource will be exhausted eventually.

As an example, suppose price p(t) = p (constant), and assume
that C(q) = a + bg?. Then g*=+/a/b and equations 34-43
imply the conditions:

u()=p-Clg*)=p-2ab u()=e"u(T) ost<T

CaO)=20a0)=p-u@) 4= fp- D -24ap)

pT p—2@1—e‘5T
= - =R
Jy 4@ )= - PR




The last equation has a unique solution T>0, so that the problem
is solved.

Now consider a discrete-time version of the exhaustible

resource owner problem. We can state the problem as:
7-1

maxy = ;pt[l—qt/Rt]zt

subjecttoR,,, — R, = —q,
R, =1000 EQ(44)

For6=0.10and T =10, v,, = 580.2956. Since T assumes
integer values, there is no derivative condition for discrete-time
problems.

To determine whether it is optimal to lengthen or shorten the
extraction horizon one needs to:
- increase or decrease the horizon,
- solve the optimal production schedule (qt),
- calculate the present value of net revenues, Vt, and
compare the results.

10 20 30 40 50
580.2956 |590.0675 | 590.3349 | 590.3423 | 590.3425

Another look at the Competitive Extractive Industry
Let an extractive industry be comprised of N-price-taking
owners. Let:
-Ci (qi(t)) (I=1,2,...N(N)>1) = the cost of extraction for the ith
firm
- Ri, (I=1,2,...N (N)>1) = initial reserves, T
- p(t) = the price, which is determined by aggregate
production according to:

p(f)=p(§:lq,.<f>) EQ(45)




Each firm attempts to maximize its profits given by:
T, 5

7= [P0 ()-Cla()]e™dr  EQ(46)

subject to the reserves constraint:
R=-q(1) R(0)=R R(T)=0 EQ(47)

From this we need to determine the price path, p = p(t): In the
static theory of the firm, we can proceed on the basis of the
assumption of competitive markets alone. In a dynamic setting,
we must assume that the firm can correctly predict the entire

price profile p(t) over time. This assumption is known as rational
expectations.

The ith firm’s PV (not CV) Hamiltonian can be defined as:

Hi=[p(t)ai(t)-Ci(ai(t)le™ -A(t)ai(t)  EQ (48)
with necessary conditions that imply:

p()-C(g,(0)=2( )" EQ(49)

and: . oH .
A =— L =0 EQ(50
TR0 Q(>0)
Thus A ()= A a constant. The transversality condition Hi(T)=0
implies:

2(1)=[p@)-Cla. @) g, @b EQEI)

But, evaluating EQ(49) att = T also implies:

A = [p(Tz )_ o (qi (Tz )) ol EQ(SZ)

and thus, g, (T,- )= g, is the level of production where:
C,(q(T))=Clq.(T)) 4,(T;) EQ(53)

that is, where the AVC of the ith resource operation is minimized.




Substituting EQ(53) into EQ(49) implies:

C'(0.0)=- p@)-[p@)-Ci@@NF  EQ(4)
At this stage we have 2N+1 unknowns, T,,...,T,,, g4(t),... qy(t), and
p(t) [Aq,...,Ay Can be determined from EQ(51)] and 2n+1 equations
consisting of EQ(54) with q,(T1)=q," plus EQ(45) and

jjiql.(t)dt=Ri

The Social Optimum with N Firms

With No externalities, no stock “common pool” externalities, the
perfectly competitive industry would be socially optimal in the

sense of maximizing its discounted social welfare (DSW). This can
be verified more formally, as defined below:

The social welfare function can be defined as:

max - [/ (U( ﬁ;q (t)) _ ﬁc G (t)))e"&dt

subject to R, = —¢;(t)

R(0)=R R()=0 EQ(55)
The corresponding Hamiltonian is given by:

- (u( Sa0))- ﬁf;c,(qi(t»)e-& OXOTORECY
Each A (t)= A;, a constant (since dH/dR;=0) and we now have
2 =U©@)-C, (@, @)™ EQ(57)

where: 0()=",4:() thus yU/ag, =aU /00 00/ g,

and, U'(0())= p(0())=p(t)

If all N firms have identical reserves and costs, T,= Tand H(T) =0

which implies: A, =A =[p(T)- @) ¢T)E*"  EQ(58)




and: ¢(T')=¢; =¢’
If the N firms are not identical, it can be shown that:

A =p(@)-Clq, @)y 4@ )" EQ(59)

The same system of equations is obtained as in the competitive
model under the rational expectations assumption. Both lead to
the same solution.

Scarcity Defined in Economic Terms
Economics does not consider scarcity as a physical concept but
as a value concept.

The rent for a non-renewable resource is given by the co-state
variable:

ult)=p(t)- MC(e) Vi EQ(60)

This reflects the difference between the price and the marginal
extraction cost at instant t. In a competitive market, this is the
difference between what society would be willing to pay for an
additional unit of R(t) and the cost incurred in its extraction. If this
difference:

- is positive and large, then the resource is scarce.

- increases over time (u>0)i.e., the resource is becoming
more scarce

- decreases over time (2<0) j.e., the resource is becoming less
scarce.




Exploration
Exploration and discovery increase reserves, which may lower
extraction costs (e.g., C(q,R,)<c(q, R,); R4<Rj). Thus, there are
economic incentives to add to known reserves.

Following Pindyck (1978), we state the question of exploration as:
R=f(w)x())-4q()  EQ(61)
X = f(e) x (@) EQ(62)

and:

where f(.) is a discovery rate as a function of:

-w(t), the exploratory effort, and

-X(t), the level of cumulative discoveries.
Assuming that q(t) is a linear cost function, the total extraction
cost per unit of time can be defined as:

C,(R(1))a(r) EQ(63)

C1(.) is a unit extraction cost function that is dependent on

remaining reserves.
Exploration costs are assumed to be a convex function given as

Co(w(t))
Thus, net revenue at instant t, given p(t), is the per unit price of
the exhaustible resource:

ph()-GROKE)-C,00)  EQ(64)

Now assume a competitive extractive industry: a large and
identical number of firms. The individual firm takes p(t) as
exogenous, and under rational expectations, attempts to
maximize the following function:

max [ (p(t)q(r) - C,(R(r))q(t) - C,(w(1))fe™dr EQ(65)
subject to R = f(w( )X(t)) —q(1)

X = f(w(1). (1))
R(0),X(0) given




The problem has:
- two state variables, R, X, and
- two control variables q, w=>, and is more difficult than
earlier problems

The current-value Hamiltonian is:

H = p(t)q(t) = C/(R)q(1) = Co(w) + i [£ (1) = ()] + w. £ (1)  EQ(66)
The first-order conditions includ_e:

e p(1)-G )~ (1) =0 EQ(67)

dg(1)
()£, =0 EQ(68)
()a(t) EQ(69)

o, — o, = - (')X( ) = _(Au’l(t) + Mz(t))fx EQ(70)

fx and fw are partials of f() with respect to X(te and w(t). Taking the

time derivative of 67 implies & ()= p()-C' ()R
Substituting this expression into EQ(69) yields:

p(r)=d(p(r)-C())+C,()F()  EQ(7Y)
Equation 68 may be solved for u,(t) to get:
w()=C, () £, - p0)+ G, ()

Taking the time derive of this expression yields:
by =C (Wl f, = (Lo + L X)CL f2-p+C\R EQ(T2)

Substituting the expression for u,(t) into 70 La2 =0u, — (ul (t)+ U, (t))fo
and noting from 68 that (u, (1)+ u,())=C", ()/ 1,
We obtain:

i =6(C,()/ £, = pl(1) + C.()) = CL ()1 £, EQ(73)




Equating 72 and 73 and solving for the rate of change in w yields:

- CY s (Ch() NP A 12
w—{fw,XXfwz+p C1R+5—fw Sp(t)+5C,() cz()fw} RSN EQ(74)

By substituting 3.70 for the rate of change in p and simplifying:
[(fox L 1)F()+0=£]CH+C (Jal0)f,
(€ ()= £uuCH /1)
Equations 61, 62, 71, and 74 are a four-equation dynamical system

for the five unknown functions R(t), X(t), w(t), p(t), and q(t). The latter
function may be eliminated by the demand equation:

q(t) = D(p(t))

The terminal conditions for the rates of change in p and w depend on
C,/f, ast =>T.

This expression defines the ratio of the marginal cost of exploration

to the marginal product of exploratory effort, and is referred to as the
“marginal discovery cost”.

If C2'(O)/fw(0,X)=0, then w(T+ q(T) = 0 simultaneously att=T. It

will also be the case that : i, (7)=0 and w,(7)= p(T)-C,(R(T"))=0

This means that no additional profit can be obtained from further
extraction.

if C,0)f,0.X)=¢>0 then exploratory effort will become 0 before
extraction, l.e., there will exist an interval T1<t<T where w(t) = 0, but
q(t) >0.

Att=T, u,(T)=0 and with w(t) =0, t, =0 Then foralltin T,

pl)-C0)=w =9

This implies &, =0 and that _ C', (y(@)o—¢ attapproachesT.
thus for all tin T, both p(t) - C,() and c¢’4(.)q(t) remain constant,
implying p(t), C4(), and c,’() rise as q(t) falls.

EQ(75)




The last unit of reserves should be discovered when its MC of
discovery equals the sum of the net revenue obtained upon
extraction, and sale, and the value of cost savings after discovery,
but before extraction. This sum is the PV of net revenue of the
marginal discovery.

The system R,X,p, and w leads to several dynamic possibilities.

In graphical terms, we may portray the dynamic effects in terms of
the following graphs shown below:

Exhaustion
points

Cumulative
discoveries

The Life Cycle of an Exhaustible Resource with Increased Supply

Cumulative
discoveries

Cumulative
production

The Life Cycle of an Exhaustible Resource with Demand Restraint




Using Discrete-Time Models to Solve
for the Optimal Rate of Extraction of an
Exhaustible Resource

3 me 5 O au e Hosourcos a me
© 2008, 2007, 2003, 1990

The efficient use of an exhaustble resource is based on a mul-period framework in which $he user cost, or
rent, increases at the pravailrg rate of interez. While there are many formulations that make use of this
fundamental principle, we will ifustrate here the use of a discrete-time period model for a competitive resource
For a given quantity of fie exhaustible resource, the solution to an n-period model can be derived in terms of
a constrained opfmization model, the matrix framework for which is outlined in the following applications.
As with any investment, the higher is the discount rate, the higher will be e mie of extraction in e present
relative 1o the future. 1 he conservation of a rescurce 15 thus conmstont with a low rate of discourt.
[ Simulation 1abloau 1

Simulation Values

NPV-Two Period Model|  $914.63
NPY-Throe Period Model| $1,070.58
our 1,131.06|51,131.06)
A.{Two-Period Model:
Extraction Cost Assumption:  $0.00 Discount m:

Demand:|” Po= 10.00 -0.0500 G0
Pi= 70.00 -0.0500 Q1
GO+ QT = TE0.00

AB=C, then (A*-1)C =B
Solution Matrix:
A:
00 al Lambda
0.0500 0.0000
0.0000 0.0475
1.0000 1.0000

ArY
(*}] Lambda
0 10,2459 10,2409 04578
O1 102459 10,2459 052 . ¥ 5.00% Hate of Increase|
[~ Camboa U.2878 o122 U.U243

\

Two-Period Extrection Path of an Exheustible Two-Pericd Price Path for the Exaraction of an
Resource Exhaustitie Rescurce




Using Discrete-Time Models to Solve
for the Optimal Rate of Extraction of an
Exhaustible Resource - 1

Ngs equal, an increase in the number of time pariods will reduce the consumpSon in any given period.
hnddimn vwbasopundpnmwilboomnq)a-dnn¢yhghu than where a reduced number of time pericds is used.

Extraction Cost Assumption:  $0.00 Discount Rate: m

Demand: o= 10.00
s 10.00

= 10.00

- TEO.00

for: AB=C, e

Q0

Three-Period Extraction Path of an Exheustible Three-Period Price Path for the Extraction of an
Resource Exhaustibie Resource

.

FENEERRY




Using Discrete-Time Models to Solve
for the Optimal Rate of Extraction of an
Exhaustible Resource - 2

C.|Four-Period Model: |

Demand: PO =

-0.0500 Q0

Pl=

10.00

-0.0500 Q1

P2s

-0.0500 Q2

[ Pas

-0.0500 O3

then

(AA-1)C =B

Solution Matrix:

Discount Rate:

Demand Growth Rate:

Extraction Cost Assumption:
Q0+Q1+Q2+Q3=

A

o Q2

0.0000 0.0000

0.0475 0.0000

0.0000

U.000U U000

1.0000 1.0000

F 00% rate of increaso

0 ralo
0 raln

Rescurce

Four-Pertod Extraction Path of an Exhaustidie

Four-Pericd Price Path for the Extraction of an
Exhaustidie Rescurce

Implications of multi-period exhaustible resocurce models:
1. The longer is the tima horizon for the consumption of an exhaustible resource, the higher will be the initial price and initial user cost.

:dm':uxo tachnological change can produce an

a, or UC{o)

augmentation in the level of proven reserves, there is no guarantee that this will

problem of an efficient allocation of resources over time, mmmwhdngnuboonmugummmdyon
tha grounds of preservation for future generations. This is the argument put forth in classical economic models in which the steady-state
was viewed as an uncertain time horizon that caled for increased conservation. In response, neoclassical models are based on the
principle of resource substitution, as in the introducton of backstop technologies.

Beyond thase considerations is the fact that if one knew what the terminal time pericd were, one also would know somathing
about the end of $10 economic world as we know it The reality is that we do not, which is why so much emphasis in neoclassical
models is placed on resource substitition. Indead, this was one basis of critiques of William Stanley Jevons' 1865 study,

The Coal Question, and the 1570 Club of Rome Report, The Limits fo Growth.

One additional question is fat none of thess models takes up drectly e negative externality queston of what is the optimal

consumption

which leads o discussions of sustainability in which cimate change is explicfy taken into consideration.

path for an exhaustible resource when emironmantal emissions are present. Other models do take up this question,




Using Discrete-Time Models to Solve
for the Optimal Rate of Extraction of an
Exhaustible Resource - 3

U : nsing & the prevaiing rate of discount. R also is
hmomummeswpfnm»wuodmouwcommﬁwmmmmhamm Using the two-period example, we
compare hare the optimal solution with altemative proportional allocations of the fxed stock of the resource to illustrate the efects
on the presant value (PVUCH) of the resource aver the two time periods.

Extraction Cost Assumption:[ $0.00 | Discount Rm:

Demand: P.= 10.00 -0.0500 QO
P = 10.00 -0.0500 Q1
Q+Q = 150.00
C, Q, PVUC.,. Original Optimal Solution |
150.00 0.00 . . $375.00 Q, uc, | PVUC,
142.50 7.50 . : s47844| Q, 78.08| $6.10|$475.91

135.00 15.00 . . s$570.88| Q, 71.96| $6.40|5438.73
127.50 250 . : 18| SE5237 150.00 $914.63)
T20.00 3000 : : Q1% Optimal Proportion
250 3750 } 3 : 3 El
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Procent Values of User Costs as a Function of Different Proportional
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Using Discrete-Time Models to Solve for the Optimal Rate of
Extraction of an Exhaustible Resource - 4

Variations on the Stive Model Exhaustible Hesources r|
© 2007 mulm%ﬁmm,ﬁ pmﬂuﬁEﬁm%EﬁSmmlﬁ!uoﬂ!ﬁow ) LoBel

Corsidar tha two-pariod model bolow.  For each ime pariod, an invase demand function of tha form Pl = a - bOl is ghvan.
I wo subtract from aach parod's iInvamse demand function, tha comesponding marginal axtmction cost (MEC), we cbtain
the user cost for aach trma panod. Tha problern & 1o allocate production across the two timo parods such Bat the usar cost
Incmnmsmmn:wwtmhdlm‘mlmdzmmm).%mmckdtMommwm‘
{a - D Ql) - - UC,
B,= 60.00 00500 Q, 0.0000 o =h
P, = 60.00 00500 Q, 0.0000 Q, =5
Qv Q= 150.00] » the stock of an exhaustible resource
Ulscourt Aato:] 10.00%| Wo first stato equation 1 in tarms of the givan Lser cost:
ucC, = 60.00 00500 Q, =A In e second tme pariod, the wsaer cost function must be dscourntod
ty tha prervaiing g I . which Is used to dariva a presert worth coofficlant (FWC)
that can than ba m lod iy each tarm on tha keft-hand side In aquation 2. Given tha rata of discount, cur PWC
oquals: 0.9091 | which whan applied 10 aquation 2 yialds:
uc, = 5455 00455 Q, =A |Nan. sinoo equations 5 and 6 equal lambda, A, set tham agualk
60.00 00500 Qs = 5455 0.0455 Q, | Rearranging and simpittying wa obtain:
545 +00355 Q, = +0.0500 Q, Simpifying, we cbialn:

106.06 +O900 Q= 1.0000 Qg By substitution of the kft-hand equation o equation 3, wo obtain:
0. 106.09 L0901 Q, + 1.0000 Q, = 150.00 Substituting Q's into tha LUC's ghves:
1.| 19081 Q,» wm| 12 Q= 2143 UC, =| $58.83] 10.00% « mto of ncrease in usor cost |
By substituting into aquation 3, we obtain: 13 Q,= 12857 UC, =| $53.57|, which satsfes the efcloncy crionon
Consider now the effect of a different discount rate of: 5.00% [Whikch gives a PWG of 0. 9524] which ghws:
14, uc, = 5714 00476 Q, =\ which we than usa 10 repaat the stops starting in eguaton 7
15 60.00 00500 Qy = 5714 00476 Qy | Sempitying, we cbtain:
16 286 400476 Q= +0.0500 Qg Simpltying we cbtain:
17. 57.14 409524 Qy = +1.0000 Qg which through subsiution ylolds:
18 57.14 409524 Que  (1.00)04 = 150.00 Substituting O's into the UC's ghes:
19.| 19524 Q. was| 20 Oy= 4755 UC, = $57.62| 5.00% » mto of ncroase in usor cost |

which whon substituted into equation 3: 21, Q= 10242 UC, = $54.88| which satsfies the efclancy crienon
Consider now the effect of an increase in domand by: [~ B.0UR]Equanon 2 now bocomes

Pym 63.00 0.0500 O 0.0000 Q, =k | Using the oniginal discount rate,
UGy = 5727 00255 Q, =2 [werich wewan st aqual 10 aquatcn & ylaiss
60.00 00500 Q= 5727 0045 Q, | Sempitying, we cbeain:

273 40045 Q,= +0.0500 Q,
54.55 409091 Q, = 1.0000 Qg
; 5455 409091 Oy e 1.0000 Q= 150.00|

| 19081 Q,» R Q- 5000 UC, = $60.50 10.00% = rate of Incroase In usar cost |
30. Q,» 100.00 UC,= $55.00
Consider now technical change o Incroase reserves at: 3.00% |Whio P romains the same, tnchnological change produoas the Tollowing:

1. UCi= (6000  -0.0500 Q, 00000 Q)x 108 | = 61.80 0.0515 Q,
uc, = 61.80 00515 Q, + 1.1000 - 5618 L0458 Q,
Q,+Q, = 150.00 + 0.08 Q,
60.00 00500 Q= 56.18 00458 Q, |, weich by mrminging and simp#ying we obtain:
382 400468 Q. = 0.0500 Qg Simpitying, we cbtai:
7636 +09364 Q= 1.0000 Qg Substitting to aquation 32, we obtain:
76.36 409364 Q, + 10000 Q, = 15000 228832 Q, | Simpitying,
L91 Q- 7364 Thas:
3s. Q- 38.63] UC, = ;59_311 10.00% = mte of ncrease in usar cost |

SihcoQimasa  300%  change over the base, we can obtain Oy by agjusting equation 44 1o cbtain Oy

[ Q= 15000 {09700} 3863 Jo. 0. Q= 11253 UC, = $54.37|

Q. +Q, = 151.16 |, ™o now augmeniod guartty of reserves
Finally, consider a backstop technology priced at: [ SEZ5 | and which bocomas avillable in period 1. Our problam now  bacomas:

41 By= ue, =| 60.00 0.0500 Q, - {$6.25) + 1.90 - )
By substiusion, wa sohve first for O, to obtain: 42, Q,= 1,086.36 UCs=  $5.88|And by substitution nto Equation 3,

43, Q, = 835636 UC:= $6.25| 10.00% = rate of ncroase In usar cost I

As long as the hacksiop tnchnology prica & below what the exhacstioie model wouild have genemind, production wil be shifiod from the It
10 the peasant o capture the economic value of the mdaustbio rescuron.




