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I. Why Demand Functions?
Demand functions, as they are, defined in economic analysis, are rather queer creatures,
somewhat abstract, containing generous elements of the hypothetical, and, in general, marked
by an aura of unreality. The peculiarity of the concept is well illustrated by the fact that only
one point on a demand curvy can ever be observed directly with any degree of confidence
because by the time we can obtain the data with which to plot a second point, the entire curve
may well have shifted without our knowing it. A more fundamental but related source of our
discomfort with the idea is the fact that the demand relationship is defined as the answer to the
set of hypothetical questions which begin, "What would consumers do if price (or advertising
outlay, or some other type of marketing effort) were different than it is in fact?" We are, then,
dealing with information about potential consumer behavior in situations, which consumers
may never have experienced. And, since we have very little confidence in the constancy of
consumer tastes and desires, all of these data are taken to refer to possible events at just one
moment of time-e.g., consumer reactions to alternative possible prices if any of them were to
occur tomorrow at 2:47 P.m.

In view of all this, there should be little wonder that people with an orientation toward applied
economics occasionally become somewhat impatient with the economic theorist's demand
function. Yet no matter how ingenious the circumlocutions, which may have been employed,
they have been unable to find an acceptable substitute for the concept. For the demand
function must ultimately play a critical role in any probing marketing decision process, and
there is really no way to get away from it.

For example, to decide on the number of salesmen which will best serve the interests of the
firm, it is first necessary to know what difference in consumer purchases would result from
alternative sales force sizes. But this is precisely the sort of odd and hypothetical information,
which goes to make up the demand relationship. It is for exactly the same reason that many
large and reputable firms in diverse fields of industry are conducting ambitious research
programs whose aim is the determination of their advertising-demand curves, that is, the
relationship between their advertising outlays and their sales. So far, these efforts have met with
varying degrees of success, and it must be admitted that many of them have not come up with
very meaningful results. For the empirical determination of demand relationships is no simple
matter and there are many booby traps for the amateur investigator and the unwary. It is no
trick at all, on looking over a small sample of the published demand studies, to come up with
horrible examples of just about every available type of misstep.

This chapter is designed primarily to point out some of the pitfalls, which threaten the
investigator of demand relationships. Its aim is to warn the reader to proceed with extreme
caution in any such enterprise. No cut-and-dried solutions are offered to the problems, which
are discussed. This is true for two reasons. First, because many of the methods for dealing with
these difficulties are highly technical matters of specialized econometric analysis and so are
completely outside the scope of this volume. Second, and more important, solutions are not
listed mechanically because there simply are no panaceas; the problems must be dealt with case
by case as they arise, and the effectiveness with which they can be handled is still highly
dependent on the skill, experience, and judgment of the specialist investigator.

If after reading the chapter the reader is left somewhat worried and uncomfortable, it will have
accomplished its purpose. However, it should be emphasized that the problems which are raised,
serious and difficult though they be, are not totally intractable and beyond the power of our
statistical techniques.
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II. Interview Approaches to Demand Determination
Before turning to statistical methods for the finding of demand functions, it is appropriate to
say a few words about a more direct method for dealing with the problem-the consumer
interview approach. In its most blatant and naive form, consumers are simply collared by the
interviewer and asked how much they would be willing to purchase of a given product at a
number of alternative product price levels.

It should be obvious enough that this is a dangerous and unreliable procedure. People just have
not thought out in advance what they would do in these hypothetical situations, and their snap
judgments thrown up at the request of the interviewer cannot inspire a great deal of confidence.
Even if they attempt to offer honest answers, even if they had thought about their decisions in
advance, consumers might well find that when confronted with the harsh realities of the
concrete situation, they behave in a manner, which belies their own expectations. When we get
to the effects of advertising on demand, the problems of such a direct interview approach
become even more apparent. What is the consumer to be asked - how much more of the
company's product he would buy if it were to institute a 1 per cent increase in its spot
announcements to its television budget?

Much more subtle and effective approaches to consumer interviewing are indeed possible.
Indirect, but far more revealing questions can be asked. Consumers may, for example, be asked
about the difference in price between two competing products, and if it turns out that they
simply do not know the facts of the matter, one may be led to infer that a lower product price
may have a relatively limited influence on consumer behavior just because few consumers are
likely to be aware of its existence. A clever interview designer may in this way build up a
strategy of indirect questions, which gradually isolates the required facts.

Alternatively, consumers may be placed in simulated market situations, so-called consumer
clinics, in which changes in their behavior can be observed as the circumstances of the
experiment are varied. An obvious approach to this matter is to get groups of housewives
together, give them small amounts of money with which they are offered the opportunity to
purchase one of, say, several brands of dishwasher soap which are put on display at the clinic,
and observe what happens as the posted prices on the displays are varied from group to group.
Here again, much more subtle variants in experimental design are clearly possible.

But even the best of these procedures has its limitations for our purpose, which is the
determination of the precise form of a demand relationship. Artificial consumer clinic
experiments inevitably introduce some degree of distortion because subjects cannot be kept
from realizing that they are in an experimental situation. In any event, such clinics are rather
expensive and so the samples involved are usually extremely small-too small for confidence in
any inferences, which are drawn about the magnitudes of the parameters of the demand
relationships for the body of consumers as a whole. And large sample interviews, which
approach the determination of consumer demand patterns by subtle and indirect questions are
often highly revealing, but they rarely can supply the quantitative information required for the
estimation of a demand equation.

III. Direct Market Experiments
A second alternative approach, which is sometimes considered as a means for finding demand
relationship information is the direct market experiment. A company engages in a deliberate
program of price or advertising level variation. Suppose it increases its newspaper advertising
outlay in one city by 5 per cent, in another city it increases this outlay by 10 per cent, and in
still a third metropolis a 10 per cent reduction is undertaken.

In some ways such a direct experimental approach must always be the most revealing. It gives
real answers to our formerly hypothetical questions and does so without subjecting the
consumer to the artificial atmosphere of the interview situation or the consumer clinic.
However, direct experimentation has its serious limitations as well.
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1. It can be very expensive or extremely risky for the firm. Customers lost by an
experimental price increase may never be regained from competitive products, which they
might otherwise never have tried, and a 10 per cent increase in advertising outlay for any
protracted period may be no trivial matter.

2. Market experiments are almost never controlled experiments, so that the
observations, which they yield are likely to be colored by all sorts of fortuitous
occurrences-coincidental changes in consumer incomes or in competitive advertising programs,
peculiarities of the weather during the period of the experiment, etc.

3. Because of the high cost of the experiments and because it is often simply
physically impossible to try out a large number of variations, the number of observations is
likely to be unsatisfactorily small. If, for example, it is desired to determine the effects of varied
advertising outlay in a  national periodical, the company cannot increase the size of its ads,
which are seen by Nashville readers and simultaneously reduce those, which are seen in
Lexington, Kentucky. This difficulty has been eased to some extent by the fact that a number
of national magazines now put out several regional editions, but by and large the problem
remains: market experiments usually supply information only about a very limited number of
alternatives.

4. For similar reasons, market experiments are often of only relatively brief duration.
Companies cannot afford to permit them to run long enough to display much more than
impact effects. And yet the distinction between impact effects and long-run effects of a change
are often extremely significant, as was so clearly demonstrated by the sharp but very temporary
drop in cigarette sales when the first announcement was made about the association between
smoking and the incidence of cancer. How often has a rise in the price of a product caused a
major reduction in purchases for a few weeks, with customers then gradually but steadily
drifting back?

Market experiments do have a role to play in demand relationship determination. They can be
important as a check on the results of a statistical study. Or they can provide some critical
information about a few points on the demand curve in which past experience is entirely
lacking. In some special circumstances experimentation is particularly convenient and has been
used in the past, apparently with a considerable degree of success. For example, some
mail-order houses have employed systematic programs in which a few special experimental
pages were bound inconspicuously into the catalogues distributed to customers within restricted
geographic regions, thus permitting observation of the effects of price, product, or even
catalogue display variations. However, it should also be clear that market experiments cannot
by themselves be relied upon universally to provide the demand information needed by
management. Economics is just not a subject which lends itself readily to experimentation,
largely because there are always too many elements beyond the control of the investigator and
because economic experimentation is often inherently too expensive, risky, and difficult.

IV. Standard Statistical Approaches
The third, and generally most attractive, approach to demand function determination attempts
to squeeze its information out of sources such as the accumulated records of the past (a
time-series analysis), or a comparative evaluation of the performance of different sectors of the
market (a cross-sectional analysis). The available statistics on sales, prices, advertising outlays of
the most relevant varieties, and other marketing data are gathered together and then analyzed
with the aid of 'the standard statistical techniques.

The basic procedure is simple enough; in fact, as we shall see presently, it is often far too
simple. Suppose, for example, that the following data on company sales and advertising outlays
have been accumulated:

TABLE I.

Year 1950    1951     1952     1953   1954        1955      1956      1957

Sales .....................................67 73 54 62       70           75 79 83

(millions of dollars)
Advertising ...................................12 15 13 14       18 17 19 15

(millions of dollars)
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Once the figures have been plotted, the pattern formed by the dots can be used in an obvious
manner to fit a straight line (see Figure 1) or a curve to them. This line is then taken as the
desired advertising-demand curve. Its slope can be used as a measure of advertising
effectiveness, that is, it measures the marginal sales productivity of an advertising dollar, 0 sales/
advertising outlay. This line can be determined impressionistically simply by drawing in a line
that appears to fit the dots fairly well, or any one of a variety of more systematic methods can
be used.

The most widely employed and best known of these techniques is the method of least squares,'
in which the object is to find that line which makes the sum of the (squared) vertical deviations
between our dots and the fitted line as small as possible, where the deviations are defined as the
vertical distances such as AB or CD in Figure 1. The idea is inherently attractive. We wish to
minimize deviations because a line, which involves very substantial deviations from the dots
representing our data surely does not represent the information in a very satisfactory way. But
if, in our addition process, a large negative deviation such as AB (that is, a case where the line
underestimates the vertical coordinate of our dot) happens to be largely cancelled out by a
positive deviation, CD, the sum of the deviations can turn out to be small. This is surely not
what we want in looking for a line, which does not deviate much from the dots. One can avoid
ending up with a line, which fits the facts rather badly but in which the positive and negative
deviations add up to a rather small number, by squaring all the deviation figures before adding
them together. Since the square of a negative real number as well as that of a positive real
number is always positive, large, squared negative deviations cannot offset large, squared
positive deviations, and the sum of squares deviations will never add up to a small number
unless our line happens to fit the dots closely.2

There exist still more sophisticated techniques for fitting our advertising demand curve from
the data. Although it is often too complex and expensive to employ in practice, professional
statisticians usually consider the method of maximum likelihood as their ideal. This method
requires some information about the probability distribution of the random elements, which
influence sales. From this probability distribution the statistician determines a likelihood
function

L=f (xt, ,y t, , a, b)

where xt and yt represent, respectively, advertising expenditures and sales in year t, and a and b
are
2 Other devices (such as the absolute value or the fourth power of the deviation) might accomplish the objective
discussed. The reason one chooses to minimize the sum of the squares is that under very simple assumptions such
estimates have several extremely desirable technical properties, among them, that these estimated parameter values
are "best" in the sense that they minimize variance of the estimate and are unbiased.
To find the straight-line equation which satisfies our least squares requirement we employ the symbol xt to represent
sales in year t and yt to represent advertising outlay in that year and let the equation of the line to be fitted be written
yct = a + bxt   where the subscript c in yct is there to remind us that in our equation the y is a figure calculated from
the formula rather than observation. Now we proceed as follows:

Step 1. Define a deviation from our line as

yt - yct = yt - (a + bxt ) = y t - a - bxt.

Step 2. Define a squared deviation as

(yt - y ct )
2 = y2

t + a2 + b2x2
t - 2ayt - 2bxtyt + 2abxt.

Step 3. Add the squared deviations

Σ(y t - yct)
2 = Σy2

t + na2 + b2 Σx2
t - 2a Σ yt - 2b Σxtyt + 2ab Σxt

where, since a is a constant,  a2 = a2 + a2 + a2 . . . ( n equal terms) = na2.

Step 4. Find the values of a and b (the parameters of our equation) which minimize the sum of the squared deviations.
Vie do this with the aid of the usual calculus procedure by taking partial derivatives with respect to a and b and
setting them equal to zero, thus:
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              ∂ Σ (yt – yct)
2            

                                                     =  2an – 2 Σ yt + 2b Σ x t = 0
                          ∂ a

and

             ∂ Σ (yt – ytc)
2

                                                      =  2b Σ x2
t - 2 Σ x tyt + 2a Σ xt = 0

                        ∂ a

These last two equations contain, in addition to a and b, only known statistical figures xt and
yt. The equations can therefore be solved simultaneously to obtain the desired parameter
values, a and b, i.e., they determine for us the least squares line yct = a +bxt. These two
equations are usually referred to as the normal equations of the least squares method in this
most elementary (two-variable straight line) case. The procedure employed in fitting many
variable equations or curvilinear equations is a simple and obvious extension of that which
has just been described. the constants in our advertising demand equation yt = a + bxt.. This
likelihood function is defined as an answer to the following type of question: "Given any
specific values of the parameters in our equation, say a = 5 and b = 63, how likely is it that
the demand situation would have generated the statistics x1950 = 12, y1950 = 67, etc.?"

(Note that these values of sales and advertising are in fact our observed statistical figures
taken from Table I.) Considering all possible values of a and b, we can then employ the
differential calculus to find the a and b combination, which  maximizes the value of the
likelihood, L. We will then have found the a and b which provide, in this sense, the best
possible explanation of the observed facts, i.e., we will have found that equation yt = a + bxt
whose parameters a and b are most likely to be the correct values of the true but unknown
parameters, given the facts which were actually observed by the data collector.

It is of interest to note that in some special cases the least squares method turns out to be
identical with maximum likelihood. That is, in these fortunate circumstances the least squares
calculation becomes equivalent to the maximum likelihood procedure. We shall presently
discuss one of the things which may go wrong if the least squares method is employed in
situations where it does not yield the same results as the maximum likelihood calculation.

Having described now in highly general and impressionistic terms the methods which are
most commonly employed by the statistician to determine relationships, let us now see some of
the problems to which they give rise.

V. Omission of Important Variables
Clearly, sales are affected by other variables in addition to the company's advertising
expenditure. Prices, competitive advertising, consumer income variations, and other variables
also play an important role in any demand relationship. If, therefore, we try to extract from
our statistics a simple equation relating sales to advertising outlay alone, and in the process we
ignore all other variables, our results are likely to be very badly distorted. We may ascribe to
the company's advertising outlays sales trends, which are really the result of the behavior of
other economic changes. The behavior of other variables can thus conceal and even offset the
effects of advertising. To show how serious the results can be, consider the illustrative
demand equation

(1)                                     S = 50 + 4A + 0.02Y
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where S represents sales, A advertising expenditure, and Y consumer income. The values
given in Table II can easily be seen to satisfy the equation precisely, and any standard
estimation procedure based on such information can be expected to yield the correct equation.

TABLE II.

Date 1956 1957 1958

Y 3,000 4,000  3,500
A 2 3 2.5
S 118 142 130

But the standard calculation shows that a two-variable, straight, least squares line which gives
us a (perfect!) correlation between S and A alone (ignoring Y) and which is based on these
same values will yield the equation

(2) S - 24A + 70.

This equation asserts that each added dollar of advertising expenditure brings in $24 in sales,
instead of the true $4 return shown by equation (1). in addition, because of the perfect
correlation there is, in this case, no residual unexplained variation in S which is left to be
accounted for by a subsequent correlation between S and Y, i.e., this incorrect procedure
appears to show that consumer income has absolutely no influence on demand! This
advertising coefficient has been inflated by usurping to itself the influence of Y on sales.
Incidentally, if, instead of proceeding as we just did, we had started off by finding a least
squares equation relating sales to consumer income alone, we would have obtained from the
same statistics the equation

S - 0.024Y + 46

which this time overvalues the influence of income on sales and ascribes absolutely no
effectiveness to advertising.

It is clear, then, that more than two variables must usually be taken into account in the
statistical estimation of a demand relationship. And, in fact, this is ordinarily done, the
estimation usually employing what is called a least squares multiple regression technique.
However, it should be remembered that even if we include five variables in our analysis but
omit a sixth rather important variable, precisely the same difficulties will be encountered. That
is, the omission of any important variable, however defined, from the statistical procedure can
lead to serious distortions in its results.

This might appear to constitute an argument for the inclusion in the analysis of every variable,
which comes to the statistician's mind as a factor of possible importance, just as a matter of
insurance. Unfortunately, however, we are not at liberty to go on adding variables willy-nilly.
The more variables whose influence we want to take into account the more data we require as
a basis for the estimation. If we only have statistical information pertaining to three points in
time, it is ridiculous to try to disentangle the influence of fifteen variables. In fact, the
statistician requires many pieces of information for every variable he includes in his analysis,
if he is to estimate his relationship with a clear conscience.

However, large masses of marketing data are not easily come by. Records are often woefully
incomplete; additional data can sometimes be acquired only at considerable expense, and in
any event, statistics, which go too far back in time, are apt to be obsolete and irrelevant for the
company's current circumstances. We must; therefore, very frequently be contented with
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skimpy figures, which force us to be extremely niggardly in the number of variables which we
take into account, despite the very great dangers involved.

VI. Inclusion  of Mutually Correlated Variables
Another difficulty which, to some extent, can help to make life easier as far as the problem of
the preceding section is concerned arises when a number of the relevant variables are
themselves closely interrelated. For example, one encounters advertising effectiveness
studies in which income and years of education per inhabitant are both included as variables.
Now, education is itself very closely related to income level both because higher-income
families can afford to provide more education and larger inheritances to their children and
because a more educated person is often in a position to earn a higher income.

It may nevertheless be true that education and income do have different consequences for
advertising effectiveness. For example, an increase in income without any change in
educational level could increase the person's willingness to purchase more in response to an
ad, whereas more education not backed up by larger purchasing power might have the reverse
effect. But, in general, there, is no statistical method whereby these two consequences can be
separated, because, for the bulk of the population, whenever one of these variables increases in
value, so does the other. Hence, the statistics which can merely exhibit directions of variation
might show that, other things remaining equal, whenever sales increased, income also
increased, and so (as a consequence?) did education.

In such circumstances if we include both the income and the educational level variables in the
statistical demand-fitting procedure, the chances are that the mechanics of the procedure will
provide a perfectly arbitrary ascription of the sales changes to our two causal variables. And
sometimes the results may turn out completely nonsensical because the standard
computational procedure has no way to apply common sense in imputing the total sales
change to the separate influences of education and income changes. Therefore, if in a demand
relationship there occur several variables, which are themselves highly correlated, it is usually
wise to omit all but one of any such set of variables in a statistical study. If this is not done,
another powerful source of nonsense results is introduced.

VII. Simultaneous Relationship Problems
The difficulties, which have so far been discussed, while they can be extremely important and
are often overlooked in practice (with rather sad consequences) may, by and large, be
considered rather routine and in retrospect, fairly obvious matters.

We come now to a far more subtle and perhaps a far more serious problem, which was only
brought to our attention in 1927 by E. J. Working and which has only received serious and
systematic attention quite recently, largely as a result of the work of the Cowles Foundation.
The problem in question, in a sense, follows from the difficulty, which was discussed in the
previous section. If there is a close correlation between two variables, it is likely to mean that
they are not independent of one another and that there is at least one other relevant equation in
the system, which expresses the relationship between them. For example, in our illustrative
case there f might be an equation indicating how income level is ordinarily increased by a
person's education. We then end up having to deal with not just a single demand equation, but
with a system of several equations in which a number of the variables interact mutually and
are determined simultaneously.

Economics is characterized by such simultaneous relationships. The standard example is the
price determination process in which a supply equation is involved as well as our demand
relationship. Similarly, simultaneous relationships constitute the core of national income
analysis. National income depends on the demand for consumers' goods which helps
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determine the level of profitable production. But the consumption demand equation, in turn,
involves national income (as a measure of the public's purchasing power) as a variable. To
mention another simultaneous relationship example, the coal mining industry is a customer
for steel whose volume of demand depends on coal sales, but the demand for coal itself
depends heavily on the amount of coal to be used in producing steel.  It is possible to expand
the list of simultaneous relationships in economics indefinitely.

The empirical data, which are generated by such a set of equations, are the information source
on which the statistician must base his estimates of the relationships. But since these data are
the result of a number of such relationships, the difficult problem arises of separating out the
relationships from the observed statistics.

Unless steps are taken to make sure that the influences of the several simultaneous
relationships on the data can be and have been separated, there is not the slightest justification
for the use of any estimation procedure, such as that depicted in Figure I, to compute a
statistical relationship. Yet it will readily be recognized how frequently this completely falla-
cious procedure is employed in practice in the form of simple or multiple correlations
computed without any attempt to cope with the simultaneous relationship problem. Let us see
now how serious are the distortions, which can be expected to result.

VIII. The Identification Problem
In rather general terms our basic problem can conveniently be divided into two parts:

1. In some circumstances the simultaneous relationships (equations) will be
so similar in character that it will be impossible to unscramble them (or at
least some of them) from the statistics. Such relationships are said to be
unidentifiable. Presently it will be shown how such an unhappy situation
can arise, and it will be indicated that it is unfortunately not unheard of in
marketing problems. Clearly, in such a case, we are wasting our time in a
statistical investigation of the equation in question. There do exist some
mathematical tests, which show whether or not an equation is identified (i.e.,
whether or not it is in principle possible to separate it from the other
relationships in the system). These tests should always be applied before
embarking on the type of statistical investigation under discussion. It must
be emphasized that if an equation happens not to be identified, it is
impossible even to approximate the true equation from statistical data alone.
Market experiments or other substitute approaches must be employed to
obtain this information.

2. Even if an equation turns out to be identified, precautions must be taken to
insure that a statistically estimated equation is not distorted by the presence
of the simultaneous relationships. We will see in the next section that an
ordinary least-squares procedure is likely to lead to precisely this sort of
distortion.

In this section we deal with the first of these, the identification problem-the circumstances
under which it is, at least in principle, possible to unscramble our simultaneous relationships
statistically. To illustrate, let us consider what is involved in finding statistically an
advertising-demand curve such as the one, which Figure I attempted to construct in a rather
primitive fashion. Now while sales are doubtless affected by advertising, as the
advertising-demand function assumes, this function is often accompanied by a second
relationship in which what we might call the direction of causation is reversed. It is well
known that a firm's advertising budget is frequently affected by its sales volume. In fact, many
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businesses operate on a rule of thumb, which allocates to advertising expenditure a fixed
proportion of their total revenues. For such a business, then, we will have two advertising
expenditure demand relationships: (1) the demand function which shows how quantity
demanded, Q, is affected by a firm's advertising budget, A : Q = f (A) and (2) the budgeting
equation which shows how the firm's advertising decisions are affected by the demand for its
product: A = g (Q).

Both of these relationships may actually be of interest to the businessman. The first, as
already stated, is directly relevant to his own optimal expenditure decision. The second, if
obtained from industry records, will give him vital information about the behavior patterns of
his competitors.

The firm's actual sales and its actual advertising expenditure will, of course, depend on both
its advertising budgeting practices (the budgeting equation) and on the demand-advertising
relationships. In Figure 2 the graphs of two such hypothetical relationships are depicted.

In Figure 2A we show the two curves which the statistician is seeking. We make ourselves, as
it were, momentarily omniscient and thus have no difficulty envisioning the true relationships.
However, the information available to the statistician is much more restricted, as we shall now
see. In our situation the actual advertising expenditure, A, and the volume of sales, Q, are
determined, as for any simultaneous equation, by the point of intersection, P, of the two
curves.

We now can describe two cases of non-identification:

Case 1. Neither curve identified. If the two curves were to retain their shape from year to
year, that is, i f neither o f them ever shifted, all the intersection points P would coincide or at
least lie very close together (Figure 2B). There would only be a single observed point, as in
the figure, or the tightly clustered points would form no discernible pattern, and so the shape
of neither curve could even approximately be found from the data. We see then, though it may
be a bit surprising, that curves, which never shift are from this point of view the worst of all
possibilities.

Case 2. One of the curves not identified (but the other curve identifiable). This is a case
frequently encountered in practice when the demand curve of one firm is investigated. The
data form a neat and simple pattern, but what they describe is the firm's inflexible advertising
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budgeting practices rather than the nature of the demand for its product. In such circum-
stances what happens is that the budget curve never shifts but the demand curve does. There
will then be a number of different intersection points, such as P, P, and P", but they will
always describe only the shape of the advertising budget line (Figure 3) . The reader can well
imagine how often statistical attempts to find the advertising demand curve have produced
neat linear relationships (and spectacularly high correlation coefficients), though what the
triumphant investigator has located (without his knowing it) is a totally different curve from
the one he was seeking. The situation, which we have just examined, is really ideal from the
point of view of the statistician, provided the relationship, which is not shifting happens to be
the one he is seeking. But the question remains: how is he to know when one relationship is
standing still, and even if he somehow knows this, how does he determine which one it is?
We will see that in the answers to these questions lies the key to the solution of the
identification problem.

It will be shown presently that only where both curves shift over time or from firm to firm or
from geographical territory to territory can they ordinarily both be identified. However, in this
case the difficult task of unscrambling the two relationships becomes particularly acute.
Figure 4 illustrates how three points, A, B, and C, in a diagram similar to Figure 1 might have
been generated by three different (shifted) pairs of our curves. It is, noteworthy that the
negatively sloping (!) "advertising curve" FP estimated statistically from these points bears
not  the  slightest  resemblance  to  any of the true curves. Nor, since it is merely a recording
of points
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of intersection, is there any reason why it should. The shape of FF' is not even any sort of
"compromise" between those o f the budget and advertising demand curves! We conclude
that where simultaneous relationships are present the standard curve-fitting techniques
described in Section 4 and Figure 1 may well break down completely. Their results are likely
to bear absolutely no resemblance to the equations, which are being sought! Such a naive
approach may therefore well be worse than no investigation because misleading information
is usually worse than no information at all.

Let us now see how one can, in principle, test whether the relationship we are seeking is
identified (potentially discoverable by statistical means). First we note that, as the model has
so far been described, there is no way of accounting for any shifts in either relationship,
which as we have observed, are crucial for our problem. The reason is that only two variables,
A and Q, have been considered in the relationships Q = f (A) (the demand relationship) and A
= g (Q ) ( the advertising budget equation).

There must, in fact, be some other influences (other variables), which disturb the relationships
between Q and A and produce the shifts in their graphs. These additional variables must be
taken explicitly into account. As we know, the demand relationship is likely to involve many
variables in addition to A. For example, consumer's disposable income is a variable which
affects the volume of sales resulting from a given level of advertising expenditure though,
very likely, it does not enter the firm's budget calculation explicitly but only indirectly via the
effects of income on the sales of the company's product. Similarly, the firm's budget policy
may be affected by its past dividend payments, which determine how much it can currently
spare for advertising expenditure, but this dividend policy will have little or no effect on the
demand curve for its products. Suppose, for the sake of simplicity, that the four variables Q,
A, Y (the disposable income), and D (the total dividend payments in the preceding year) are
the only ones that are relevant to the problem. Our two relationships then become:

(3) the advertising demand function Q = f ( A, Y )
                and
(4) the advertising budget equation A = g(Q, D).

Here changes in the value of Y are what produce the shifts in the graph of the demand
equation, which have been discussed. Similarly, changes in D produce shifts in the
advertising budget curve.

Now that we have examined how shifts in the two curves are produced we can return to the
question of identification. Let us see, intuitively, how the presence of the shift variables in
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equations ( 3) and (4) makes it possible, in principle, to separate the relationships from the
statistics (i.e., how the shift variables identify the equations). It will be shown now that Y and
D permit the statistician, at least conceptually, to divide up the statistical information in such a
way that he is left with situations like that depicted in Figure 3. Such a situation gives him the
information that permits him to infer which of the relationships is shifting and which is stand-
ing still. That is, he can determine when one graph is not moving while the other shifts
around, so that the resulting dots trace out the graph of the equation which is not shifting, the
equation he is trying to estimate. The reader should first be warned, however, that the
procedure, which is about to be described is not usually a practical estimation (curve finding)
procedure and that other, more sophisticated measures are normally employed fox the
purpose.

In Figure 5 we replot the data of Figure 1. Let us, in addition, determine the level of income
for each point, Y, for that particular year. Suppose this information is as shown in Table III.

TABLE III.

Advertising Demand point 1950 1951 1952 1953 1954 1955 1956 1957
Disposable Income Y          360  297   295   307   428   381   420   300

( $ billions)

We note that the income values for the points representing 1951, 1952, 1953, and 1957 are
fairly close together. Hence, if we are convinced that Y is the only variable which makes for
sizable shifts in the advertising demand curve, it is reasonable to assume that all four points
lie on ( or close to) the same curve, that is, among these points there has occurred little or no
shift in the curve. We may therefore use these four points (ignoring the others) to locate a
demand curve UU' (for income level approximately $300 billion) as shown. Similarly, we can
use points for years

1954 and 1956 alone to find the shape of the advertising demand curve W', which pertains to
income level approximately $420 billion, etc. In other words, the additional information on
the value of Y for each point has permitted us, in principle, to ignore all points which contain
information irrelevant to a given advertising demand curve.

We see, then, that if variable Y is present in one equation but not in the other, it permits us, in
principle, to discover statistical points over which the budget line has shifted but through
which the demand curve remains unchanged. In this same way we were able to trace out a
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budget line in Figure 3. But it will be remembered that in the situation shown in Figure 3, the
demand curve is unidentifiable because the budget curve never shifts. There is no variable
such as D in the budget relationship, which will move the budget line about and yet permit the
demand curve to stay still. This gives us the following result: one of a pair of simultaneous
relationships will be identified if it lacks a variable, which is present in the other
relationship.

The relevance of the shift variables Y and D for identification can also be seen in another way.
Suppose we use some correlation procedure to find a statistical relationship among variables
Q, A, Y, and D. The system is identified if it is possible in principle for this statistical
relationship to be an approximation to either equation (3) (the demand function) or to (4) (the
budget function) and if it is possible to find out whether the statistical curve represents (3),
(4), or neither. There are three possibilities:

1. The statistical relationship turns out to take the form Q = F(A, Y, D) in which all four
variables are present (their coefficients are significantly different from zero). In that case
we know that the statistics have given us a mongrel function, which resembles neither of
the relationships, which we are seeking, for neither of the relationships contains both
variables, Y and D.

2.   Suppose now that the statistical relationship turns out to have an equation of   the  form F
(A. Y) = Q; i.e., D plays no role in the equation. Then the statistical equation cannot
involve any advertising budget function component, for if it did, any change in D would
have influenced the relationship via its effect on the budget equation. In this case the sta-
tistical equation must be an estimate of the demand relationship (3) alone.

3. Similarly, if the form of the statistical equation is F (A, D) = Q, it must represent the
budget relationship (4) alone.

Thus the two variables Y and D, each of which appears in one and only one of the two
relationships, have permitted us to identify both equations. For example, the presence of the
variable D, which occurs only in the budget equation, acts as a warning signal, which notifies
us at once when the budget equation has somehow gotten itself mixed in with our demand
information. We conclude, again, that two simultaneous equations are normally identified
(they can, at least in principle, be unscrambled from the statistics) if each equation contains at
least one variable, which is absent from the other.

Of course, some more powerful identification criteria exist. For example, an obvious
extension of the preceding result is the theorem that in a system of n simultaneous
equations, a necessary condition for identification of any one of the equations, say the ith,
is that every other equation in the system contain at least one variable which is missing
from equation i.

This is hardly the place for a systematic discussion of the identification problem, and most of
what has been said on the subject has been intended to be intuitive rather than rigorous.
However, the reader should have gathered that it is an extremely serious problem and that
inadequate attention on the part of the analyst to this problem can easily invalidate his
statistical results in their, entirety.


