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Abstract

Given a set of integers A and an integer k, write A+k ·A for the set {a+kb : a ∈ A, b ∈ A}.
Hanson and Petridis [5] showed that if |A+A| ≤ K|A| then |A+ 2 ·A| ≤ K2.95|A| and also that
|A + 2 · A| ≤ (K|A|)4/3. We present a new construction, the Hypercube+Interval construction,
which lies close to these upper bounds, and which shows in particular that, for all ε > 0, there
exist A and K with |A+A| ≤ K|A| but with |A+ 2 ·A| ≥ K2−ε|A|.

Further, we analyse a method of Ruzsa [12], and generalise it to give fractional analogues
of the sizes of sumsets, difference sets and dilates. We apply this method to a construction
of Hennecart, Robert and Yudin [2] to prove that, for all ε > 0, there exists a set A with
|A−A| ≥ |A|2−ε but with |A+A| < |A|1.7354+ε.

The second author would like to thank E. Papavassilopoulos for useful discussions about how
to improve the efficiency of his computer searches.

1 Introduction and Definitions

The study of the size of the sumset |A+A| and difference set |A−A| (sometimes denoted DA) in
terms of |A| is a central theme in additive combinatorics. For instance, Freiman’s theorem states
that if |A+A| ≤ K|A|, then A must be a large fraction of a generalized arithmetic progression, and
the Balog-Szemerédi-Gowers theorem states that if A has large additive energy, then A must contain
a large subset A′ such that |A′ + A′|/|A′| is small. For the precise definitions and statements, we
refer the reader to [13].

For a finite set A ⊂ Z, with |A| = n, we have that

|A+A| ≤ n(n+ 1)

2
and |A−A| ≤ n2 − n+ 1,

with equality in both cases precisely when A is a Sidon set, that is, a set containing no nontrivial
additive quadruple (a, b, c, d) ∈ A4 with a+b = c+d (and consequently no nontrivial (a, b, c, d) with
a− b = c− d). In other words, if |A+ A| is as large as it can possibly be, then so is |A− A|, and
conversely. In 1992, Ruzsa [12] showed, using an ingenious probabilistic construction, that |A+A|
can be small, while |A − A| can be almost as large as possible, and vice-versa. In particular, he
showed the following.

Theorem 1 (Ruzsa, 1992). For every large enough n, there is a set A such that |A| = n with

|A+A| ≤ n2−c and |A−A| ≥ n2 − n2−c,

where c is a positive absolute constant. Also, there is a set B with |B| = n,

|B −B| ≤ n2−c and |B +B| ≥ n2

2
− n2−c.
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A few years later, Hennecart, Robert and Yudin [2] constructed a set A of size n with |A+A| ∼
n1.4519 but |A − A| ∼ n1.8462. Their construction was inspired by convex geometry, specifically
the difference body inequality of Rogers and Shephard [10]. In the other direction, the study and
classification of MSTD sets (sets with more sums than differences) began with Conway in 1967,
and has now attracted a large literature (see [6] for a recent survey).

Note that Hennecart, Robert and Rudin in fact constructed a set A ⊂ Zd. But any such
construction in Zd can be easily translated to a construction in Z using an appropriately chosen
Freiman homomorphism, i.e., a map φ of the form

φ(x1, . . . , xd) = λ1x1 + · · ·+ λdxd,

for an appropriate choice of integers λi.
Another line of investigation was opened by Bukh [1] in 2008. Given a set of integers A and an

integer k, define the dilate set A+ k ·A by

A+ k ·A = {a1 + ka2 : a1, a2 ∈ A}.

For k = 1, this is just the sumset, A+A, and for k = −1 it is the difference set, A−A. Note that,
for example, the dilate set A+ 2 ·A is generally not the same set as A+A+A, where each of the
three summands can be distinct.

Bukh proved many results on general sums of dilates λ1 ·A+ · · ·+ λk ·A (for arbitrary integers
λ1, . . . , λk), including lower and upper bounds on their sizes. Some of these results were phrased in
terms of sets with small doubling, namely, sets A ⊂ Z with |A+A| ≤ K|A|, for some fixed constant
K (known as the doubling constant). For such a set A, Plünnecke’s inequality [9] (see also [7]) shows
that

|A+ 2 ·A| ≤ |A+A+A| ≤ K3|A|,

and Bukh asked if the exponent 3 could be improved. This question was answered affirmatively in
2021 by Hanson and Petridis [5], who proved the following.

Theorem 2 (Hanson-Petridis, 2021). If A ⊂ Z and |A+A| ≤ K|A|, then

|A+ 2 ·A| ≤ K2.95|A|.

They were also able to prove a result that improves Theorem 2 when K is large.

Theorem 3 (Hanson-Petridis, 2021). If A ⊂ Z and |A+A| ≤ K|A|, then

|A+ 2 ·A| ≤ (K|A|)4/3.

Our contributions in this paper are best understood in the context of feasible regions of the plane,
and so we make the following definition.

Definition. For fixed integers k and l, we define the feasible region Fk,l to be the closure of the
set Ek,l of attainable points

Ek,l =

{(
log |A+ k ·A|

log |A|
,
log |A+ l ·A|

log |A|

)}
,

as A ranges over finite sets of integers.
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Note that for any k and l, we have that Ek,l ⊂ [1, 2]2, which follows from the fact that |A| ≤
|A+k ·A| ≤ |A|2 for all A. For every k and l, each A produces a point in Ek,l. With A fixed, we can
generate a sequence of sets, indexed by the dimension d, by taking a Cartesian product Ad ⊂ Zd,
and then we will have |Ad+k ·Ad| = |A+k ·A|d. The advantage of the logarithmic measure we are
using is that all examples in this sequence, generated from the same set A, correspond to the same
point (x, y) ∈ Ek,l. Another useful fact is that the set Fk,l is convex. We prove this in Section 2.

The first series of results in this paper concerns the size of the dilate set A+ 2 ·A. We present
a construction, the Hypercube+Interval construction, which improves all previous bounds, and is
close to the above upper bounds of Hanson and Petridis. Specifically, this construction shows that
the graph of the piecewise-linear function

y = min (2x− 1, (log3 4)x) =

{
2x− 1 1 ≤ x ≤ log 9

4
3 = 1.3548 . . .

(log3 4)x log 9
4

3 ≤ x ≤ 2

is entirely contained in F1,2. This will allow us to prove a partial converse to Theorem 2, namely
that for any ε > 0, there exists a positive constant K and a set A with |A + A| ≤ K|A| but
|A+ 2 ·A| ≥ K2−ε|A|. Thus the true bound here is between 2 and 2.95. We also give some negative
results, showing that neither Sidon Sets, nor subsets of {0, 1}d ⊂ Zd, can give rise to feasible points
outside the regions already proved feasible. Finally, we give a lower bound for the region F1,2,
which is an easy consequence of Plünnecke’s inequality. All these bounds and constructions are
illustrated in Figure 2.

Our next series of results concerns the relationship between the sizes of A+A and A−A, and
thus relates to the feasible region F1,−1. This is one of the oldest topics in additive combinatorics,
with results going back to Freiman and Pigarev [8] and Ruzsa [11] in the 1970s (and indeed Conway
in the 1960s).

Our starting point is a 1992 paper of Ruzsa [12]. Ruzsa constructed sets A ⊂ Zd for which
A − A is very large, but A + A is very small, in the following way. Start with a finite set S ⊂ Z
with |S + S| < |S − S|. Then, for a fixed probability 0 < q < 1, select a random subset A ⊂ Zd by
taking each element of Sd independently with probability qd. For an appropriate choice of q, this
“boosts” the discrepancy between |S +S| and |S−S| enough to prove the first part of Theorem 1.
The second part is proved in a similar way.

In Section 4, we analyse and generalise Ruzsa’s method from [12], leading to the following
concept, which can be seen as a continuous analogue of the size of a sumset and that of a dilate.

Definition. A fractional dilate γ is a map γ : Z → R+ ∪ {0} with finite support supp(γ). We
define the size of a fractional dilate to be

‖γ‖ = inf
0≤p≤1

∑
n∈supp(γ)

γ(n)p.

A fractional set is a fractional dilate α for which α(n) ≤ 1 for all n ∈ Z.

Note that, if α is a fractional set, then ‖α‖ =
∑

n∈Z α(n), i.e., the above infimum is attained at
p = 1. On the other hand, if γ is a dilate for which γ(n) ≥ 1 for all n ∈ Z, then ‖γ‖ = |supp(γ)|,
and the infimum is attained at p = 0. In general, we describe a fractional dilate as being opulent,
spartan or p-comfortable if the above infimum is attained at p = 0, p = 1 or 0 < p < 1 respectively.

We can identify an actual subset S of Z with the fractional set 1S , which is both spartan and
opulent. For any such sets S and T , 1S + k · 1T will be opulent, so that

‖1S + k · 1T ‖ = |S + k · T |.
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Given a fractional set α, let us say that a random set Sn ⊆ Zn is drawn from αn if each element of
Zn is chosen independently, and the probability that (i1, i2, . . . , in) is selected is α(i1)α(i2) . . . α(in).
Moreover, for fractional sets α, β and an integer k, let α+ k · β denote the fractional dilate defined
by the formula

(α+ k · β)(n) =
∑
(i,j)

i+kj=n

α(i)β(j).

The point of these definitions is the following pair of theorems, which we prove in Section 4.

Theorem 4. Let α be a fractional set with ‖α‖ ≥ 1, and suppose Sn ⊆ Zn is drawn from αn. Then

E|Sn| = ‖α‖n Var|Sn| ≤ ‖α‖n

and
lim
n→∞

(E|Sn + k · Sn|)1/n → ‖α+ k · α‖.

Theorem 5. Let α be a fractional set with ‖α‖ ≥ 1, and suppose Sn ⊆ Zn is drawn from αn. If
α+ k · α is spartan, so that

‖α+ k · α‖ = ‖α‖2

then, with probability tending to 1,

|Sn + k · Sn| ≥ 1
2 |Sn|

2 if k 6= 1

|Sn + k · Sn| ≥ 1
4 |Sn|

2 if k = 1.

From now on, the phrase “with high probability”, abbreviated to whp, means “with probability
tending to 1 as the dimension (usually denoted by n) tends to infinity”.

In Section 6, we apply these theorems to a construction of Hennecart, Robert and Yudin [2], to
construct a fractional set α for which α− α is spartan, but α+ α is not.

Theorem 6. There exists a fractional set α for which ‖α‖ > 1, α−α is spartan (so that ‖α−α‖ =
‖α‖2), and ‖α+ α‖ ≤ ‖α‖1.7354.

This will allow us to prove that (1.7354, 2) is feasible for F1,−1.

Corollary 7. For all ε > 0, there exists a finite subset A ⊆ Z such that |A− A| ≥ |A|2−ε > 1 but
|A+A| ≤ |A|1.7354+ε.

Proof. Let α be the fractional set with properties as in Theorem 6, and let Sn be drawn from αn.
First, from Theorem 4 and Chebyshev’s inequality

P(||Sn| − ‖α‖n| > 0.1‖α‖n) ≤ 100Var|Sn|/‖α‖2n ≤ 100/‖α‖n → 0,

so that with high probability
||Sn| − ‖α‖n| ≤ 0.1‖α‖n. (1)

Second, since α− α is spartan, Theorem 5 shows that with high probability

|Sn − Sn| ≥ 1
2 |Sn|

2. (2)

Finally, Theorem 4 shows that

lim
n→∞

E|Sn + Sn|1/n → ‖α+ α‖ = ‖α‖1.7354.
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Consequently, for all ε > 0, we will have

E|Sn + Sn| ≤ ‖α‖(1.7354+ε)n

for all sufficiently large n, and for such n

P(|Sn + Sn| > ‖α‖(1.7354+2ε)n)→ 0

by Markov’s inequality. Invoking (1), we have that for sufficiently large n

P(|Sn + Sn| > |Sn|1.7354+3ε)→ 0,

so that with high probability
|Sn + Sn| ≤ |Sn|1.7354+3ε. (3)

The conclusion of the corollary follows from (1), (2) and (3).

In the other direction, it follows from results of Freiman and Pigarev [8] and Ruzsa [11] that
(x, 2) is not attainable for any x < 3/2. All these results are illustrated in Figure 1.

Figure 1: The feasible region F1,−1

Finally, in Section 5, we discuss many open questions about F1,−1 and F1,2, and about feasible
regions in general.
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2 Feasible Regions

We remind the reader of the definition of a feasible region. For fixed integers k and l, the feasible
region Fk,l is defined as the closure of the set Ek,l of attainable points

Ek,l =

{(
log |A+ k ·A|

log |A|
,
log |A+ l ·A|

log |A|

)}
⊂ [1, 2]2,

as A ranges over finite sets of integers. Note once again that the inclusion follows from the fact
that |A| ≤ |A + k · A| ≤ |A|2 for all such A. Since Ek,l ⊂ [1, 2]2, we have also Fk,l ⊂ [1, 2]2. As
mentioned in the introduction, we now prove that Fk,l is convex.

Theorem 8. For all nonzero k, l, the feasible region Fk,l is convex, and contains the diagonal
D = {(x, x) : 1 ≤ x ≤ 2}.

Proof. First we prove the convexity. To do this, we first consider points (x, y), (x′, y′) ∈ Ek,l, and
take t ∈ [0, 1]. We will show that (tx + (1 − t)x′, ty + (1 − t)y′) ∈ Fk,l. Since (x, y) ∈ Ek,l, there
exists a set A ⊂ Z with

|A+ k ·A| = |A|x and |A+ l ·A| = |A|y.

Likewise, since (x′, y′) ∈ Ek,l, there exists a set B ⊂ Z with

|B + k ·B| = |B|x′ and |B + l ·B| = |B|y′ .

Setting β = log |B|/ log |A|, choose a sequence q1, q2, . . . of rational numbers such that

lim
i→∞

qi =
tβ

1− t+ tβ
.

For each such qi = r/s, we consider a set Ai ⊂ Zs, defined as

Ai = A×A× · · · ×A︸ ︷︷ ︸
r

×B ×B × · · · ×B︸ ︷︷ ︸
s−r

,

in which there are r factors of A and s− r factors of B. We have

|Ai| = |A|r|B|s−r,

|Ai + k ·Ai| = |A|rx|B|(s−r)x
′
, and

|Ai + l ·Ai| = |A|ry|B|(s−r)y
′
.

Therefore,

log |Ai + k ·Ai|
log |Ai|

=
rx log |A|+ (s− r)x′ log |B|
r log |A|+ (s− r) log |B|

=
qix+ (1− qi)x′β
qi + (1− qi)β

,

which tends to tx+ (1− t)x′ as i→∞. Similarly,

log |Ai + l ·Ai|
log |Ai|

→ ty + (1− t)y′,

as i→∞. Consequently, (tx+ (1− t)x′, ty + (1− t)y′) ∈ Fk,l.
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Now, given points (x, y), (x′, y′) ∈ Fk,l, we may take sequences of points (xj , yj) and (x′j , y
′
j)

from Ek,l tending to (x, y) and (x′, y′) respectively. For each j, the above argument shows that

(txj + (1− t)x′j , tyj + (1− t)y′j) ∈ Fk,l.

Consequently, letting j →∞, we have that

(tx+ (1− t)x′, ty + (1− t)y′) ∈ Fk,l,

and the convexity is proved.
To show that (1, 1) ∈ Fk,l, we consider the set A := AN = {1, 2, . . . , N} for N � max(k, l). We

have
|A+ k ·A| = (k + 1)(N − 1) + 1 and |A+ l ·A| = (l + 1)(N − 1) + 1,

so that, as N →∞, (
log |A+ k ·A|

log |A|
,
log |A+ l ·A|

log |A|

)
→ (1, 1).

To show that (2, 2) ∈ Fk,l, let b > max(|k|, |l|) + 1, and consider the set B = {1, b, b2, . . . , bN}. We
have

|B + k ·B| ≥ 1
2 |B|

2 and |B + l ·B| ≥ 1
2 |B|

2,

so that, as N →∞, (
log |B + k ·B|

log |B|
,
log |B + l ·B|

log |B|

)
→ (2, 2).

It now follows by convexity that D = {(x, x) : 1 ≤ x ≤ 2} ⊂ Fk,l.

This result easily generalises to higher dimensions.

3 Construction for F1,2

In this section, we present various results about the feasible region F1,2. As stated in the introduc-
tion, we will in particular give a partial converse to a result of Hanson and Petridis (Theorem 2).

If set A is the union of sets A1, . . . , An, then it is clear that
max1≤i≤n |Ai| ≤ |A| ≤

∑
1≤i≤n |Ai|

max1≤i≤j≤n |Ai +Aj | ≤ |A+A| ≤
∑

1≤i≤j≤n |Ai +Aj |, and

max1≤i,j≤n |Ai + 2 ·Aj | ≤ |A+ 2 ·A| ≤
∑

1≤i,j≤n |Ai + 2 ·Aj |.
Now, we are ready to describe the hypercube + interval construction. To this end, let

Hn =

{
n−1∑
i=0

ai4
i : ∀i, ai ∈ {0, 1}

}
and Ik =

[
0,

4k − 1

3

)
∩ Z.

So, Hn denotes the set of all natural numbers with a base 4 representation being of length at
most n and containing only 0s and 1s, making up the hypercube portion of our construction. Of
course, Ik is simply an interval of integers. We begin by giving bounds on the sizes of various
sumsets related to Hn and Ik.
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Theorem 9. For n ≥ k > n+1
2 , the sizes of various sets, sumsets, and dilates are as follows:

|Ik| =
4k − 1

3
≥ |Hn| = 2n

|Hn +Hn| = 3n

|Hn + Ik| = 2
4k − 1

3
2n−k ≥ |Ik + Ik|

|Hn + 2 ·Hn| = 4n ≥ |Hn + 2 · Ik|, |Ik + 2 ·Hn|, |Ik + 2 · Ik|.

Proof. We leave to the interested reader the job of calculating the sizes of |Ik + Ik|, |Hn + 2 · Ik|,
|Ik + 2 ·Hn|, and |Ik + 2 · Ik|. 1

Since there are two choices for each ai where 0 ≤ i ≤ n − 1, we have that |Hn| = 2n. Also,
since (4k − 1)/3 is an integer, we know that |Ik| = (4k − 1)/3. Further, since k ≥ n+2

2 , we have
4k ≥ 2n+2 > 1 + 3× 2n and so (4k − 1)/3 > 2n.

Note that Hn+Hn =
{∑n−1

i=0 ai4
i : ∀i, ai ∈ {0, 1, 2}

}
. In other words, elements of Hn+Hn are

natural numbers whose base 4 representation is of length at most n and contains only 0s, 1s, and 2s.
Thus, |Hn +Hn| = 3n. Similarly Hn + 2 ·Hn are natural numbers whose base 4 representation is of
length at most n and contains only 0s, 1s, 2s and 3s, which is [0, 4n). Further, since the maximum
element of Hn is at least as large as the maximum element of Ik it is clear that all of Hn + 2 · Ik,
Ik + 2 ·Hn and Ik + 2 · Ik are subsets of [0, 4n) and therefore of size at most 4n.

For Hn + Ik, note that Hn is the sum of the sets {0, 1}, {0, 4}, {0, 42}, . . . , {0, 4n−1}. Now if
p ≥ q are positive integers, then the sum of the integer interval [0, p) with the set {0, q} is the
integer interval [0, p+ q). Thus,

Hn + Ik = Ik + {0, 1}+ {0, 4}+ · · ·+ {0, 4k−1}

= [0,
4k − 1

3
) + {0, 1}+ {0, 4}+ · · ·+ {0, 4k−1}

= [0,
4k − 1

3
+ 1) + {0, 4}+ · · ·+ {0, 4k−1}

...

= [0, 2
4k − 1

3
) ⊇ Ik + Ik.

Further the set {0, 4k} + · · · + {0, 4n−1} consists of multiples of 4k, which are all further than

2
(

4k−1
3

)
apart, so Hn + Ik consists of 2n−k intervals of length 2

(
4k−1

3

)
and contains Ik + Ik.

Let An,k = Hn ∪ Ik. Then, using Theorem 9, we can show the following.

Corollary 10. Let α be any real number in the open region (1
2 , 1). Then as n→∞,

log |An,bαnc|
n

→ α log 4,

log |An,bαnc +An,bαnc|
n

→ max

{
log 3,

1 + α

2
log 4

}
, and

log |An,bαnc + 2 ·An,bαnc|
n

→ log 4.

1They are 2 4k−1
3

− 1, 2n+1−k(2× 4k−1 − 1) twice, and 4k − 3 respectively.
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Proof. Note that if k is a fixed constant and an,i for 1 ≤ i ≤ k and 1 ≤ n are positive integers and
ci for 1 ≤ i ≤ k are real numbers such that limn→∞ log an,i/n = ci for all i, and integers bn satisfy
that maxi an,k ≤ bn ≤

∑
i an,k, then

lim
n→∞

log bn
n
→ max{c1, . . . , cn}.

Let us write k = bαnc. For the first part of the Corollary, we note that by Theorem 9, we have

lim
n→∞

log |Hn|
n

= log 2 < lim
n→∞

log |Ik|
n

= α log 4.

Since we know that Ik ⊆ An,k and |An,k| ≤ |Hn|+ |Ik|, it follows that limn→∞ log |An,k|/n = α log 4.
For the sumsets, we note that (again using Theorem 9)

lim
n→∞

log |Hn +Hn|
n

= log 3,

and

lim
n→∞

log |Hn + Ik|
n

= (1− α) log 2 + α log 4

=
1 + α

2
log 4 > lim

n→∞

log |Ik + Ik|
n

.

Since we know that Hn +Hn and Hn + Ik are both subsets of An,k +An,k and that |An,k +An,k| ≤
|Hn +Hn|+ |Hn + Ik|+ |Ik + Ik|, it follows that limn→∞ log |An,k +An,k|/n = max(log 3, 1+α

2 log 4).
Finally, for the dilates, we have

lim
n→∞

log |Hn + 2 ·Hn|
n

= log 4

> max

{
lim
n→∞

log |Hn + 2 · Ik|
n

, lim
n→∞

log |Ik + 2 ·Hn|
n

, lim
n→∞

log |Ik + 2 · Ik|
n

.

}
Thus log |An,k + 2 ·An,k|/n→ log 4.

The upper limit in the second interval above is log 3 when α is below 2 log 3
log 4 − 1, and 1+α

2 log 4
above it. As mentioned above, this gives a partial converse to Theorem 2.

Corollary 11. For all ε > 0, there exist sets S and numbers K > 1 with |S + S| ≤ K|S| but with
|S + 2 · S| > K2−ε|S|.

Proof. Let 1
2 ≤ α ≤ 2 log 3

log 4 − 1. Then Corollary 10 shows that

log |An,bαnc + 2 ·An,bαnc| − log |An,bαnc|
log |An,bαnc +An,bαnc| − log |An,bαnc|

→ log 4− α log 4
1+α

2 log 4− α log 4
=

1− α
1−α

2

= 2.

We now use Corollary 10 to show that we have feasible points in F1,2. Let the function f :
[1, 2]→ [1, 2] be defined by

f(x) =

{
1
2(β + 1) if 1 ≤ x ≤ log 4

log(9/4) ,

(log4 3)x if log 4
log(9/4) ≤ x ≤ 2.
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Corollary 12. For all 1 < β < 2, (f(β), β) ∈ F1,2.

Proof. Let α = 1/β, then

α log 4f(β) = α log 4 max

{
1

2
(β + 1), (log4 3)β

}
= α log 4 max

{
1 + α

2α
,

log 3

α log 4

}
= max

{
1 + α

2
log 4, log 3

}
.

Thus Corollary 10 gives the existence of sets where

log |An,bαnc|/n→ α log 4,

log |An,bαnc +An,bαnc|/n→ α log 4f(β), and

log |An,bαnc + 2 ·An,bαnc|/n→ log 4 = α log 4β.

So

log |An,bαnc +An,bαnc|/ log |An,bαnc| → f(β) and

log |An,bαnc + 2 ·An,bαnc|/ log |An,bαnc| → β.

Let us quickly discuss a lower bound on the feasible region.

Theorem 13. For all sets A, |A||A+A| ≤ |A+ 2 ·A|2.

Proof. Corollary 7.3.6 of [13], which is an easy conseqeunce of Plünnecke’s inequality, states that
for any three sets A,B,C,

|A||B + C| ≤ |A+B||A+ C|.
Setting B = C = 2 ·A gives

|A||A+A| = |A||2 ·A+ 2 ·A| ≤ |A+ 2 ·A|2.

So, we know that if log |A + 2 · A|/ log |A| ≤ t, then log |A + A|/ log |A| ≤ 2t − 1. This means
that anything below the line y = 1 + x/2 is not in the feasible region F1,2.

Also, note that the two results of Hanson and Petridis (Theorems 2 and 3) give two upper
bounds on F1,2, namely the lines y = 2.95x − 1.95 and y = 4t/3. The first follows from the fact
that if |A + A| = |A|t, then by Theorem 2, we have |A + 2 · A| ≤ |A|2.95t−1.95. The second follows
similarly. We put all of these results together into Figure 2.

Corollary 12 shows that lines OD and DC are feasible, while Theorem 8 shows that the line
OE is feasible and hence that the entire quadrilateral ODCE is feasible.

For infeasibility, the two results of Hanson and Petridis (Theorems 2 and 3) show that nothing
can be feasible to the left of the line OA and above the line AB respectively. Specifically, if
|A + A| = |A|t, Theorem 2 implies that |A + 2 · A| ≤ |A|2.95t−1.95 and Theorem 3 implies that
|A+ 2 ·A| ≤ |A|4t/3.

We leave as open questions whether any of the sides of the quadrilateral ODCE (other than
CE, for which we have a proof but there is not enough space to give it here) are actually hard
bounds on feasibility. Specifically, we ask the following:

10



Figure 2: The feasible region F1,2

Question 14. Is it true that nothing to the left of the line ODB is in F1,2. In other words,
if |A + A| = |A|t, is |A + 2 · A| ≤ |A|1+2t? In yet more other words, is it true that for all A,
|A||A+ 2 ·A| ≤ |A+A||A+A|.
Question 15. Is it true that nothing above the line DC is in F1,2. In other words, is it true that
log |A+2·A|
log |A+A| ≤

log 4
log 3 for all sets A? In yet more other words, is it true for all n that if |A+ A| ≤ 3n,

then |A+ 2 ·A| ≤ 4n?

Question 16. Is it true that nothing below the line OE is in F1,2. In other words, are there no
sets A with |A+A| > |A+ 2 ·A|?

We coin the term MST2D sets (or more sums than 2-dilates sets) for counterexamples to Ques-
tion 16. One of the first places you might think to find such a set is a Sidon set (that is, a set for
which |A + A| is as large as it can be). However, one can easily show that a Sidon Set cannot be
an MST2D set.

Lemma 17. If A is a Sidon set with at least two elements, then |A+ 2 ·A| > |A+A|.
Proof. Adding and multiplying non-zero constants to A does not change |A + A| or |A + 2 · A|.
Thus we can assume that 0 ∈ A and gcd(A) = 1.

Let n = |A|. If X1, X2 are i.i.d. drawn from any distribution on a finite set S, then Pr(X1 =
X2) ≥ 1/|S|. Thus if A1, A2, A3, A4 are i.i.d. drawn from the uniform (or indeed any) distribution
on A, then |A+ 2 ·A| ≥ 1/Pr(A1 + 2 ·A2 = A3 + 2 ·A4). Now since A is a Sidon set,

Pr(A4 −A2 = k) = Pr(A1 −A3 = k) =


1/n, if k = 0

0, if k /∈ A−A
1/n2, otherwise.

11



Thus Pr(A1 + 2 · A2 = A3 + 2 · A4) = Pr(A1 − A3 = 2(A4 − A2)) = 1/n2 + K/n4, where K is
the number of non-zero elements of A − A which are double some other element of A − A. Now
there are n2 − n non-zero elements of A − A, but A contains elements of both parities (as 0 ∈ A
and gcd(A) = 1), so A−A contains at least 2(n− 1) odd elements, so K ≤ n2 − 3n+ 2.

Thus

|A+ 2 ·A| ≥ 1/(1/n2 + (n2 − 3n+ 2)/n4)

= n2/(2− 3/n+ 2/n2)

= (n2/2)/(1− 3/(2n) + 1/n2)

≥ (n2/2)(1 + 3/(2n)− 1/n2)

= n2/2 + 3n/4− 1/2 ≥ (n2 + n)/2 = |A+A|.

Similarly, one of the first things you might think to look for a counterexample to Question 15 is
a “2-Sidon” set (i.e., one where |A+ 2 ·A| is as large as it can be). An easy way to construct such
sets is a subset of the hypercube {0, 1}n. But it follows from Theorem 2.3 of [4] that such sets in
fact satisfy the condition of Question 15.

Lemma 18. [4] Suppose A and B are subsets of the hypercube {0, 1}n. Then

|A+ 2 ·B| = |A||B| ≤ |A+B|
log 4
log 3 .

This lemma has an interesting history, going back to the 1970s. Details are in Appendix B of [4].

4 Fractional Dilates

4.1 General results on norms

We remind the reader of the following definitions. A fractional dilate γ is a map γ : Z→ R+ ∪ {0}
with finite support supp(γ). We define the size of a fractional dilate to be

‖γ‖ = inf
0≤p≤1

∑
n∈supp(γ)

γ(n)p.

A fractional set is a fractional dilate α for which α(n) ≤ 1 for all n ∈ Z. Finally, we describe
a fractional dilate as being opulent, spartan or p-comfortable if the above infimum is attained at
p = 0, p = 1 or 0 < p < 1 respectively, so that, for instance, all fractional sets are spartan.

First, we give a simple characterisation of fractional dilates, which enables us to easily decide
whether a fractional dilate is opulent, spartan or p-comfortable.

Theorem 19. A fractional dilate γ with support S = supp(γ) is
spartan, if

∑
n∈S γ(n) log γ(n) ≤ 0

opulent, if
∑

n∈S log γ(n) ≥ 0

p-comfortable, if
∑

n∈S γ(n)p log γ(n) = 0.

12



Proof. For a fixed γ with support S, define a function f : [0, 1]→ R by

f(p) =
∑
n∈S

γ(n)p,

so that ‖γ‖ = inf0≤p≤1 f(p). f is twice-differentiable, and also strictly convex, since

f ′′(p) =
∑
n∈S

(log γ(n))2γ(n)p > 0.

Suppose first that

f ′(1) =
∑
n∈S

γ(n) log γ(n) ≤ 0.

Then we must have f ′(p) ≤ 0 for all 0 < p < 1, and hence ‖γ‖ = f(1), i.e., γ is spartan.

Suppose next that

f ′(0) =
∑
n∈S

log γ(n) ≥ 0.

Then we must have f ′(p) ≥ 0 for all 0 < p < 1, and hence ‖γ‖ = f(0), i.e., γ is opulent.

Otherwise, f ′(0) < 0 < f ′(1), and hence there is a unique p ∈ (0, 1) for which

f ′(p) =
∑
n∈S

γ(n)p log γ(n) = 0.

It follows that ‖γ‖ = f(p), i.e., γ is p-comfortable.

Next we give yet another characterisation of ‖γ‖. Recall that, for positive numbers y1, . . . , yn
summing to 1, the entropy function H(y1, . . . , yn) is defined to be

H(y1, . . . , yn) = −
n∑
i=1

yi log2 yi.

Gibbs’ inequality (see for instance [3]) states that

H(y1, . . . , yn) ≤ −
∑

yi log2 zi

for any sequence of positive zi summing to 1, with equality if and only if yi = zi for all i.

Lemma 20. Suppose γ is a fractional dilate with support S = {s1, . . . , sn}. Then

‖γ‖ = max
y1+···+yn=1

2H(y1,...,yn) min

{
1,

n∏
i=1

γ(si)
yi

}
.

Proof. First we observe that, for real x and 0 ≤ p ≤ 1, we have min {0, x} ≤ px, with equality
exactly when either

1. p = 0 and x ≥ 0,

2. p = 1 and x ≤ 0, or

3. 0 < p < 1 and x = 0.

13



Next, fix 0 ≤ p ≤ 1, and let

zi =
γ(si)

p∑
i γ(si)p

.

Clearly
∑
zi = 1. Then, for all positive yi summing to 1, we have

H(y1, . . . , yn) + min

{
0,
∑
i

yi log2 γ(si)

}
≤ H(y1, . . . , yn) +

∑
i

pyi log2 γ(si)

= H(y1, . . . , yn) +
∑
i

yi log2 γ(si)
p

= H(y1, . . . , yn) +
∑
i

yi

(
log2 zi + log2

∑
i

γ(si)
p

)
= H(y1, . . . , yn) +

∑
i

yi log2 zi + log2

∑
i

γ(si)
p

≤ log2

∑
i

γ(si)
p,

with the last inequality being Gibbs’ inequality.
Raising 2 to both sides shows that, for all positive y1, . . . , yn summing to 1, and all 0 ≤ p ≤ 1,

2H(y1,...,yn) min

{
1,
∏
i

γ(si)
yi

}
≤
∑
i

γ(si)
p. (1)

To prove the theorem, we only need show that we can choose the yi and p to achieve equality in (1).
For this, revisiting the derivation of (1), we require that yi = zi for all i and also that

min

{
0,
∑
i

yi log2 γ(si)

}
=
∑
i

pyi log2 γ(si).

From the definition of zi, this means we require exactly that

p
∑
i

γ(si)
p log γ(si) = min

{
0,
∑
i

γ(si)
p log γ(si)

}
.

As discussed at the start of this proof, this holds exactly when

1. p = 0 and
∑

i log γ(si) ≥ 0, i.e., when γ is opulent

2. p = 1 and
∑

i γ(si) log γ(si) ≤ 0, i.e., when γ is spartan

3. 0 < p < 1 and
∑

i γ(si)
p log γ(si) = 0, i.e., when γ is p-comfortable;

here, we have also used Theorem 19. Consequently, we can indeed achieve equality in (1), so the
theorem is proved.
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4.2 Results for two sets

We recall some more definitions from the introduction. Given a fractional set α, we say that a
random set Sn ⊆ Zn is drawn from αn if each element of Zn is chosen independently, and the
probability that (i1, i2, . . . , in) is selected is α(i1)α(i2) . . . α(in). Moreover, for fractional sets α, β
and an integer k, let α+ k · β denote the fractional dilate defined by the formula

(α+ k · β)(n) =
∑
(i,j)

i+kj=n

α(i)β(j).

First we prove two simple lemmas that we will use repeatedly.

Lemma 21. Suppose α and β are fractional sets, and γ = α+ β is spartan. Then

‖γ‖ = ‖α‖‖β‖.

Proof. If γ is spartan with support S, then

‖γ‖ =
∑
n∈S

γ(n) =
∑
n∈S

∑
(i,j)
i+j=n

α(i)β(j) =
∑
i∈Z

α(i)
∑
j∈Z

β(j) = ‖α‖‖β‖.

Lemma 22. Let α be a fractional set, and suppose that Sn ⊆ Zn is drawn from αn. Then

E|Sn| = ‖α‖n.

Proof. Writing v = (v1, . . . , vn) ∈ Zn, we have

E|Sn| =
∑
v∈Zn

P(v ∈ Sn) =
∑
v∈Zn

α(v1) · · ·α(vn) =
n∏
i=1

∑
vi∈Z

α(vi) = ‖α‖n.

Our aim is to prove Theorems 4 and 5, which concern just one fractional set α and a single
random set Sn ⊆ Zn drawn from αn. However, it is easier to start with two fractional sets α and
β, and let Sn, Tn ⊆ Zn be drawn independently from αn and βn respectively. In this section, we
consider two such sets, and prove the following “two-set” versions of Theorems 4 and 5.

Theorem 23. Let α and β be fractional sets, and suppose Sn, Tn ⊆ Zn are drawn from αn and βn

respectively. Then
lim
n→∞

(E|Sn + k · Tn|)1/n → ‖α+ k · β‖.

Theorem 24. Let α and β be fractional sets, and suppose Sn, Tn ⊆ Zn are drawn from αn and βn

respectively. If γ = α+ k · β is strictly spartan, in the sense that∑
n∈supp(γ)

γ(n) log γ(n) < 0,

then with high probability
|Sn + k · Tn| ≥ 1

2 |Sn||Tn|.
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Let us first prove the upper bound in Theorem 23. For this, we require a definition. For two
sets A,B ⊆ Zn, the multiplicity MultA+k·B(x) of x in A+ k ·B is defined by the formula

MultA+k·B(x) = |A ∩ (x− k ·B)| = |{(a, b) : a ∈ A, b ∈ B, a+ kb = x}|.

In other words, MultA+k·B(x) is the number of ways of writing x = a+ kb with a ∈ A and b ∈ B.
By replacing k · β by β in Theorem 23, it is enough to prove the theorem for k = 1. In the rest

of this subsection, we will make this simplification.

Theorem 25. Let α and β be fractional sets, suppose Sn, Tn ⊆ Zn are drawn from αn and βn

respectively, and let γ = α+ β. Then

E|Sn + Tn| ≤ ‖γ‖n.

Proof. Let X be the support of γ. Then the possible elements of Sn + Tn are the elements of Xn.
Given a particular element x ∈ Xn, we have, for all 0 ≤ p ≤ 1,

P(x ∈ Sn + Tn) = P(MultSn+Tn(x) > 0)

≤ min(1,E(MultSn+Tn(x)))

≤ (E(MultSn+Tn(x)))p.

Now for x = (x1, . . . , xn) ∈ Xn, we have

E(MultSn+Tn(x)) =
∑

z1+y1=x1
...

zn+yn=xn

α(z1) · · ·α(zn)β(y1) · · ·β(yn)

=

( ∑
z1+y1=x1

α(z1)β(y1)

)
· · ·

( ∑
zn+yn=xn

α(zn)β(yn)

)
= γ(x1)γ(x2) · · · γ(xn).

It follows that

E|Sn + Tn| =
∑
x∈Xn

P(x ∈ Sn + Tn)

≤
∑
x∈Xn

(E(MultSn+Tn(x)))p

=
∑

(x1,...,xn)∈Xn

γ(x1)pγ(x2)p · · · γ(xn)p

=

(∑
x∈X

γ(x)p

)n
for all 0 ≤ p ≤ 1. Since ‖γ‖ = inf0≤p≤1

∑
x γ(x)p, the result follows.

Next we prove that ‖γ‖ is a lower bound for the limit. We will require a series of lemmas.

Lemma 26. Suppose that X =
∑N

i=1 Zi, where the Zi are independent Bernoulli random variables.
Then

P(X > 0) ≥ E(X)− 1
2E(X)2.
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Proof. We have

E(X)2 =

N∑
i=1

N∑
j=1

E(Zi)E(Zj) =

N∑
i=1

N∑
j=1

E(ZiZj) ≥ 2
∑
i<j

E(ZiZj) = 2E
(
X

2

)
,

so that, since n−
(
n
2

)
≤ 1n>0 for all n ≥ 0,

E(X)− 1
2E(X)2 ≤ E

(
X −

(
X

2

))
≤ E(1X>0) = P(X > 0).

Lemma 27. Suppose that (Xn)∞n=1 is a collection of random variables, each of which can be written
as the sum of a finite number of independent Bernoulli random variables. If

lim
n→∞

E(Xn)1/n = t

then
lim
n→∞

P(Xn > 0)1/n = min(1, t).

Proof. Suppose first that t < 1. Lemma 26 implies that

lim sup
n→∞

(E(Xn)− P(Xn > 0))1/n ≤ lim
n→∞

(
1
2E(Xn)2

)1/n
= t2.

Consequently, for all ε > 0, if n ≥ n0(ε), we have both

(t− ε)n ≤ E(Xn) ≤ (t+ ε)n

and
E(Xn)− P(Xn > 0) ≤ (t2 + ε)n

so that also
(t− 2ε)n ≤ P(Xn > 0) ≤ (t+ ε)n

which proves that P(Xn > 0)1/n → t.
Next suppose that t ≥ 1. Given any 0 < u < 1, write Yn = XnWn, where the Wi are new

independent Bernoulli random variables with P(Wn = 1) = (u/t)n. Then

lim
n→∞

E(Yn)1/n = lim
n→∞

(E(Xn)E(Wn))1/n = u,

and so by the above argument

u = lim
n→∞

P(Yn > 0)1/n ≤ lim inf
n→∞

P(Xn > 0)1/n ≤ 1.

Since this is true for all u < 1, we must have P(Xn > 0)1/n → 1.

We can use Lemma 27 to calculate the asymptotic behaviour of the probability that a randomly
chosen vector lies in Sn + Tn.

17



Corollary 28. Let α and β be fractional sets, suppose Sn, Tn ⊆ Zn are drawn from αn and βn

respectively, and let γ = α+ β. Fix N > 0, and suppose that

• x1, . . . , xN ∈ Z
• y1, . . . , yN ≥ 0 with

∑
yi = 1

• for each n, z1,n, . . . , zN,n ∈ Z≥0 with
∑

i zi,n = n and zi,n/n→ yi for each i

• for each n, vn ∈ Zn is such that zi,n coordinates of vn are equal to xi.

Then, if
t = γ(x1)y1 . . . γ(xN )yN

we have
lim
n→∞

P(vn ∈ Sn + Tn)1/n = min {1, t} .

Proof. For a fixed sequence vn, let

Xn = MultSn+Tn(vn) =
∑
z∈Zn

1z∈Sn,vn−z∈Tn ,

so that each Xn is a sum of a finite number of independent Bernoulli random variables. As in the
proof of Theorem 25,

E(Xn) = γ(x1)z1,nγ(x2)z2,n . . . γ(xN )zN,n ,

so E(Xn)1/n → t. Applying Lemma 27, we get that

P(vn ∈ Sn + Tn)1/n = P(Xn > 0)→ min {1, t} .

The next corollary proves the lower bound on (E|Sn + Tn|)1/n which, together with Theorem 25,
completes the proof of Theorem 23.

Corollary 29. Let α and β be fractional sets, suppose Sn, Tn ⊆ Zn are drawn from αn and βn

respectively, and let γ = α+ β. Then

lim inf
n→∞

(E|Sn + Tn|)1/n ≥ ‖γ‖.

Proof. Since α and β have finite support, so does γ. Let S = supp(γ) = {s1, . . . , sN}. By Lemma 20,
there exist non-negative numbers y1, . . . , yN summing to 1 with

‖γ‖ = 2H(y1,...,yN ) min

{
1,

N∏
i=1

γ(si)
yi

}
.

For each n, choose integers z1,n . . . , zN,n summing to n, and with zi/n→ yi for each 1 ≤ i ≤ N .
Let Vn ∈ Zn be the set of vectors with exactly zi,n coordinates equal to si, for each 1 ≤ i ≤ N .
Then, for each v ∈ Vn, Corollary 28 shows that

lim
n→∞

P(v ∈ Sn + Tn)1/n = min

{
1,

N∏
i=1

γ(si)
yi

}
.

It is well known that, abbreviating zi,n to zi,

lim
n→∞

|Vn|1/n = lim
n→∞

(
n

z1, z2, . . . , zN

)1/n

= 2H(y1,...,yN ).
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Consequently,

lim inf
n→∞

(E|Sn + Tn|)1/n ≥ lim inf
n→∞

(E|(Sn + Tn) ∩ Vn|)1/n

= lim inf
n→∞

(|Vn| · P(v ∈ Sn + Tn|v ∈ Vn))1/n

= lim
n→∞

|Vn|1/n · lim
n→∞

P(v ∈ Sn + Tn|v ∈ Vn)1/n

= 2H(y1,y2,...,yN ) min

{
1,

N∏
i=1

γ(si)
yi

}
= ‖γ‖.

With Theorem 23 proved, we turn to Theorem 24.

Lemma 30. Let α and β be fractional sets, suppose Sn, Tn ⊆ Zn are drawn from αn and βn

respectively, and let γ = α+ β. Suppose that γ is strictly spartan, in the sense that∑
n∈supp(γ)

γ(n) log γ(n) < 0.

Then
E(|Sn||Tn|) = E|Sn| · E|Tn| = ‖α‖n‖β‖n = ‖γ‖n

and
E(|Sn||Tn| − |Sn + Tn|) = o(‖γ‖n).

Proof. The first part of the conclusion follows from Lemmas 21 and 22. For the second part, for
v = (v1, . . . , vn) ∈ Zn, write

Xv = E(MultSn+Tn(v)).

Xv is a sum of independent Bernoulli random variables, so Lemma 26 shows that

E(Xv)− P(Xv > 0) ≤ E(Xv)
2.

Since the left hand side is also at most E(Xv), it follows that

E(Xv)− P(Xv > 0) ≤ E(Xv)
p for all 1 ≤ p ≤ 2.

Therefore, for all 1 ≤ p ≤ 2,

E(|Sn||Tn| − |Sn + Tn|) =
∑
v

(E(Xv)− P(Xv > 0)) ≤
∑
v

E(Xv)
p

=
∑

v1,v2,...,vn

γ(v1)p . . . γ(vn)p =

(∑
v

γ(v)p

)n
.

Now γ is strictly spartan, so the function f(p) =
∑

v γ(v)p is strictly decreasing on the interval
[0, 1 + ε], for some ε > 0. Consequently, for that ε, we have

∑
v γ(v)1+ε < ‖γ‖. Thus E(|Sn||Tn| −

|Sn + Tn|) = o(‖γ‖n) as n→∞.

Theorem 24 follows from Lemma 30 and Markov’s inequality.
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4.3 The rainbow connection

Let α be a fractional set and let p be a non-zero integer. Let γ := α + p · α denote the fractional
dilate defined by γ(n) =

∑
i+pj=n α(i)α(j). In this section we will show that if Sn is a random set

drawn from αn then limn→∞(E|Sn + p · Sn|)1/n is max(‖α‖, ‖γ‖).
First let us deal with the easy case.

Lemma 31. If ‖α‖ ≤ 1 then limn→∞(E|Sn + p · Sn|)1/n = ‖α‖. On the other hand, if ‖α‖ > 1,
then ‖γ‖ ≥ ‖α‖.

Proof. Clearly E|Sn + p · Sn| ≥ E|Sn| = ‖α‖n. Further,

E|Sn + p · Sn| ≤ E|Sn|2 = (E|Sn|)2 + Var|Sn| ≤ (E|Sn|)2 + E|Sn| = ‖α‖2n + ‖α‖n.

Thus if ‖α‖ ≤ 1 then limn→∞(E|Sn + p · Sn|)1/n = ‖α‖.
If ‖α‖ > 1, let Sn be drawn from αn. Then |Sn| can be written as the sum of independent

Bernoulli random variables and limn→∞(E|Sn|)1/n = ‖α‖ > 1. Thus by Lemma 27, we have
limn→∞ Pr(|Sn| > 0)1/n = 1. Let Tn be independently drawn from αn. By Corollary 29, ‖γ‖ =
limn→∞(E|Sn + p · Tn|)1/n, but |Sn + p · Tn| ≥ |Tn| whenever Sn is non-empty, so |Sn + p · Tn| ≥
|Tn|1|Sn|>0. Since |Sn| and |Tn| are independent, it follows that E|Sn + p ·Tn| ≥ E|Tn|Pr(|Sn| > 0),
whence

‖γ‖ = lim
n→∞

(E|Sn + Tn|)1/n ≥ lim
n→∞

(E|Tn|Pr(|Sn| > 0)1/n = ‖α‖.

In the ‖α‖ > 1 case we will prove that limn→∞(E|Sn + p · Sn|)1/n = ‖γ‖ by comparing the size
of Sn + p · Sn with Sn + p · Tn where Tn is a random set drawn from αn independently from Sn.
Let us say that a vector v ∈ Zn is rainbow if it has at least one copy of each coefficient from the
support {x1, . . . , xk} of γ, and let Rn denote the set of rainbow vectors in Zn.

Theorem 32. If p 6= 1 and v is a rainbow vector, then Pr(v ∈ Sn + p · Sn) = Pr(v ∈ Sn + p · Tn).
Hence E|(Sn + p · Sn) ∩Rn| = E|(Sn + p · Tn) ∩Rn|.

Proof. There are a finite number of x such that Pr(x ∈ Sn, v − px ∈ Sn) > 0. Let us denote the
set of all such x by S.

We claim that there exist distinct a, b in the support of α such that a+ pb cannot be expressed
in any other way as a′ + pb′ where a′ and b′ are in the support of α. Indeed if p < 0, let a and b be
the largest and smallest elements, respectively, of the support of α. If a′ and b′ are any elements of
the support of α, then a ≥ a′ and b ≤ b′, so a+ pb ≥ a′+ pb′ with equality only if a = a′ and b = b′.
Similarly, if p > 1, we can take a and b to be the second-largest and largest elements, respectively,
of the support of α. If a′ and b′ are any elements of the support of α with a′ + pb′ = a + pb but
with a′ 6= a and b′ 6= b, it must follow that b′ < b (as b is the largest element), whence b′ ≤ a and
hence a′ + pb′ ≤ b+ pa < b+ pa+ (p− 1)(b− a) = a+ kb, forming a contradiction.

Now since v is a rainbow vector, it contains a coordinate equal to a+ kb, say vi = a+ kb. Then
it follows that for all x ∈ S, xi = a and (v − px)i = b, and therefore for all x ∈ S, v − px /∈ S (as
a 6= b). In particular, for each x ∈ S, it is the case that x 6= v − px and so the events x ∈ Sn and
v − px ∈ Sn are independent, and hence Pr(x ∈ Sn, v − px ∈ Sn) = Pr(x ∈ Sn) Pr(v − px ∈ Sn).
Furthermore, since the sets {x, v − px} for all x ∈ S are disjoint, these events are all independent,
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so

Pr(v ∈ Sn + Sn) = 1−
∏
x∈S

(1− Pr(x ∈ Sn, v − px ∈ Sn))

= 1−
∏
x∈S

(1− Pr(x ∈ Sn) Pr(v − px ∈ Sn))

= 1−
∏
x∈S

(1− Pr(x ∈ Sn) Pr(v − px ∈ Tn))

= 1−
∏
x∈S

(1− Pr(x ∈ Sn, v − px ∈ Tn))

= Pr(v ∈ Sn + Tn).

Since E|(Sn + p · Sn) ∩Rn| is the sum of Pr(v ∈ Sn + p · Sn) over all rainbow v, the equality of
expectations follows.

This gives us a good bound on the size of E|Sn + p ·Sn| because it usually happens that all but
exponentially few of the elements of Sn + p · Tn are rainbow.

Theorem 33. There exists an ε > 0 such that E|(Sn + p · Tn) \Rn| = o((‖γ‖ − ε)n).

Proof. Let p ∈ [0, 1] be such that ‖γ‖ =
∑

z:γ(z)6=0 γ(z)p, and let α = min{γ(z) : γ(z) 6= 0}.
Let z be any value with γ(z) 6= 0. By a similar argument to Theorem 25, for all 0 ≤ q ≤ 1, the

expected number of elements of Sn+p ·Tn with no coefficient equal to z is at most (
∑

w 6=z γ(w)q)n.
In particular, taking q = p, it is at most (‖γ‖ − αp)n.

If there are N elements of the support of γ, we have E|(Sn+p ·Tn)\Rn| is at most N(‖γ‖−αp)n,
which is o((‖γ‖ − ε)n for any ε < αp.

Corollary 34. If ‖α‖ > 1 and p 6= 1, then limn→∞ E|Sn + p · Sn|1/n = ‖α + p · α‖. Furthermore,
if α+ p · α is spartan, E|Sn|2 − |Sn + p · Sn| = o(E|Sn|2).

Proof. By Theorem 25, E|Sn + p · Sn| ≤ ‖α+ p · α‖n. Further, by Theorem 32,

E|Sn + p · Sn| ≥ E|(Sn + p · Sn) ∩Rn|
= E|(Sn + p · Tn) ∩Rn|
= E|Sn + p · Tn| − E|(Sn + p · Tn) \Rn|.

By Corollary 29, we have limn→∞ E|Sn+p·Tn|1/n → ‖α+p·α‖. By Theorem 33, there is an ε > 0
such that E|(Sn+p·Tn)\Rn| = o((‖α+p·α‖−ε)n). So, it follows that lim infn→∞ E|Sn+p·Sn|1/n ≥
‖α+ p · α‖ and hence limn→∞ E|Sn + p · Sn|1/n = ‖α+ p · α‖.

If α+ p · α is spartan, then E|Sn|2 − |Sn + p · Sn| can be expressed as:

E|Sn|2 − |Sn + p · Sn| = E|Sn|2 − (E|Sn|)2 (2)

+ (E|Sn|)2 − E|Sn||Tn| (3)

+ E|Sn||Tn| − |Sn + p · Tn| (4)

+ E|(Sn + p · Tn) \Rn| (5)

+ E|(Sn + p · Tn) ∩Rn| − E|(Sn + p · Sn) ∩Rn| (6)

− E|(Sn + p · Sn) \Rn|. (7)

The first line is Var|Sn| which (since Sn is the sum of independent Bernoulli variables) is at
most E|Sn| = o(E|Sn|2). The second is clearly 0. The third is o(E|Sn|2) by Corollary ??, the fourth
and sixth by Theorem 33 and the fifth is zero by Theorem 32.
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For sets A and B of integers, we define A+< B = {x+ y : x ∈ A, y ∈ B, x < y}.

Theorem 35. If v is a rainbow vector, the probabilities that v ∈ Sn +Sn and v ∈ Sn +< Tn are the
same and hence E|(Sn + Sn) ∩Rn| = E|(Sn +< Tn) ∩Rn|.

Proof. Similar to Theorem 32, the expectation follows directly from the probability. Also, since
v is rainbow, v/2 is not in the support of α. There are a finite number of x such that Pr(x ∈
Sn, v − x ∈ Sn) > 0. Let us denote the set of all such x by S.

Thus

Pr(v ∈ Sn + Sn) = Pr(∃x : x ∈ S, x ∈ Sn, v − x ∈ Sn)

= Pr(∃x : x ∈ S, x ∈ Sn, v − x ∈ Sn, x < (v − x))

= 1−
∏

x:x∈S,x<(v−x)

(1− Pr(x ∈ Sn) Pr(v − x ∈ Sn))

= 1−
∏

x:x∈S,x<(v−x)

(1− Pr(x ∈ Sn) Pr(v − x ∈ Tn))

= Pr(v ∈ Sn +< Tn).

Corollary 36. If ‖α‖ > 1, then limn→∞ E|Sn+Sn|1/n = ‖α+α‖. Furthermore, if α+α is spartan,

E
(
|Sn|2

2 − |Sn + Sn|
)

= o(E|Sn|2)

Proof. By Theorem 25, E|Sn + Sn| ≤ ‖α+ α‖n. Further, by Theorem 35,

E|Sn + Sn| ≥ E|(Sn + Sn) ∩Rn|
= E|(Sn +< Tn) ∩Rn|
= E|Sn +< Tn| − E|(Sn +< Tn) \Rn|.

Now Sn + Tn = (Sn +< Tn) ∪ (Tn +< Sn) and these two sets have the same distribution, so
E|Sn+<Tn| ≥ 1

2E|Sn+Tn|. Thus by Corollary 29 and Theorem 33, limn→∞ E|Sn+Sn|1/n = ‖α+α‖.
Furthermore, if α+ α is spartan, then

E|Sn + Sn| = E|(Sn + Sn) ∪Rn|+ E|(Sn + Sn) \Rn|
= E|(Sn +< Tn) ∪Rn|+ o(‖α‖2n)

= E|(Sn +< Tn)|+ o(‖α‖2n)

≥ 1

2
E|Sn + Tn|+ o(‖α‖2n)

=
1

2
E|Sn|E|Tn|+ o(‖α‖2n)

=
1

2
E|Sn|E|Sn|+ o(‖α‖2n)

=
1

2
E|Sn|2 +

1

2
Var|Sn|+ o(‖α‖2n) =

1

2
E|Sn|2 + o(‖α‖2n).

Since clearly |Sn +Sn| ≤ 1
2(|Sn|2 + |Sn|) it follows that E|Sn +Sn| ≤ 1

2E|Sn|
2 + o(‖α‖2n), so we

are done.
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4.4 Ruzsa’s Method and Hennecart, Robert and Yudin’s Construction

In [12], Ruzsa constructs sets by taking a fixed probability 0 < q < 1 and a finite set S and selecting
subsets of Zn by taking each element of Sn independently with probability qn. In our terminology,
this is the same as drawing from αn where α is the fractional dilate equal to q1S .

Let us suppose that there are M elements of S and N elements of S + k · S. Let us label the
elements of S + k · S as {x1, . . . , xN}. For 1 ≤ i ≤ N , let us write λi for the number of ways of
writing xi as s1 + ks2 where s1, s2 ∈ S. We say λi is the multiplicity of xi and say the unordered
set {λ1, λ2, . . . , λN} is the multiplicity spectrum of S + k · S. Note that

∑N
i=1 λi = M2. It is clear

that

(α+ k · α)(x) =

{
0 if x /∈ S + k · S,
q2λi if x = xi.

Then we can rewrite the results of Theorem 19 as

‖α+ k · α‖ =


(qM)2 if q2 < 1/ (

∏
i λi)

Λ ,

N if q2 > 1/
∏
i λ

1/N
i ,

q2p
∑

i λ
p
i if q2 = 1/ (

∏
i λi)

Λ ,

where Λ =
λpi∑
j λ

p
j
.

Before proceeding into the Hennecart, Robert, and Yudin construction, we first give an easier
example of the addition and subtraction of the set {0, 1, 3}.

Claim 37. For all ε > 0, there exists a set S with |S − S| > |S|2−ε and |S + S| < |S|1.9364+ε.

Proof. Let S = {0, 1, 3} and let 1
3 < q < 1 be some fixed probability, and let Sn be a random subset

of Sn chosen by choosing each element of S with probability qn.
Then S + S = {0, 2, 6, 1, 3, 4} with corresponding multiplicities {1, 1, 1, 2, 2, 2}. As such, the

limit of E|Sn + Sn|1/n as n→∞ is

‖α+ α‖ =


(3q)2 if q < 1

2

1
3 ,

6 if q > 1
2

1
4 ,

3q2p(1 + 2p) if q = 1
2

2p

2(1+2p) .

On the other hand, we have that S−S = {−3,−2,−1, 0, 1, 2, 3} with corresponding multiplicities
{1, 1, 1, 3, 1, 1, 1}, and so the limit of E|Sn − Sn|1/n as n→∞ is

‖α− α‖ =


(3q)2 if q < 1

3

1
6 ,

7 if q > 1
3

1
14 ,

q2p(6 + 3p) if q = 1
3

3p

2(6+3p) .

Now 34 = 81 > 64 = 26 so it follows that 1
2

1
4 > 1

3

1
6 . Thus if we take q just below 1

2

1
4 , it will

follow that ‖α + α‖ = 6 and ‖α − α‖ = (3q)2. Furthermore, since α − α will be spartan, it will
actually follow that E|Sn|2 − |Sn − Sn| = o((3q)2n). So, we get a set Sn for which |Sn| is very close
to (3q)n, the difference set |Sn − Sn| is very close to (3q)2n, and |Sn + Sn| is at most 6n. Thus, for

any ε > 0, we find a set S with |S − S| > |S|2−ε and |S + S| < |S|
log 6
log 3q

+ε
, where q can be chosen

arbitrarily close to 1
2

1
4 , so log 6

log 3q can be less than 1.93647.
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Hennecart, Robert and Yudin [2] gave a construction of sets Ak,d ∈ Zd for which |Ak,d − Ak,d|
was a lot bigger than |Ak,d +Ak,d|. Their construction was

Ak,d = {(x1, . . . , xd+1) : 0 ≤ x1, . . . , xd+1, x1 + . . .+ xd+1 = k}.

A standard textbook argument gives that |Ak,d| =
(
k+d
d

)
. It turns out that the multiplicity spectrum

for subtraction on Ak,d is particularly easy to describe.

Theorem 38. The multiplicity spectrum for subtraction on Ak,d consists of one copy of
(
k+d
d

)
and∑min(t,d)

i=1

(
d+1
i

)(
t−1
i−1

)(
t+d−i
d−i

)
copies of

(
k+d−t
d

)
for 1 ≤ t ≤ k.

Proof. Let w = (w1, . . . , wd+1) be an element of Ak,d −Ak,d. Then w can be written as w = x− y
where x = (x1, . . . , xd+1) and y = (y1, . . . , yd+1) are non-negative vectors summing to k. It follows
that

∑
iwi = 0.

Now write w+ as the vector containing only the positive coordinates of w, so

w+ = (max {w1, 0} , . . . ,max {wd+1, 0})

and write w− for the corresponding vector for the negative coordinates. Then for all i, we have
max {wi, 0} ≤ xi, so

∑
i(w

+)i ≤ k. If w is any integer vector with
∑

iwi = 0 it is clear for
nonnegative vectors x, y that w = x − y if and only if there is a non-negative vector z such that
x = w+ + z and y = z − w−. Thus the number of ways that w can be written as an element of
Ak,d − Ak,d is the number of nonnegative (d + 1)-dimensional vectors summing to k −

∑
i(w

+)i

which is
(k−∑i(w

+)i+d
d

)
.

To calculate the number of (d + 1)-length integer vectors summing to 0 such that the positive
elements sum to k > 0, we split according to the number i of positive elements (which must be in
the range 1 ≤ i ≤ min {k, d}). The number of choices of the locations of those i positive elements
is
(
d+1
i

)
, the number of i positive numbers adding to k is

(
k−1
i−1

)
, and the number of d + 1 − i

nonnegative numbers adding to k is
(
k+d−i
d−i

)
.

This allows us to prove Theorem 6, namely that there exists a fractional set α for which ‖α‖ > 1,
α− α is spartan, and with ‖α+ α‖ ≤ ‖α‖1.7354.

Proof of Theorem 6. Our α will be q1Ak,d , where 0 < q < 1 is a probability that we will specify

later. For 0 ≤ t ≤ k, let λt =
(
k+d−t
d

)
and let µ0 = 1. For t > 0, let

µt =
t∑
i=1

(
d+ 1

i

)(
t− 1

i− 1

)(
t+ d− i
d− i

)
.

Then from Theorem 38, we know that the non-zero values of α− α consist of µt copies of q2λt
for each 0 ≤ t ≤ k. Then α− α is spartan, by definition, when

0 >
∑

x∈Zd+1

(α−α)(x) 6=0

(α− α)(x) log2(α− α)(x),

or

0 >
k∑
t=0

µtq
2λt log2(q2λt),
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which is equivalent to

−
k∑
t=0

µtλt log2(λt) >

k∑
t=0

µtλt log2(q2),

or

−
∑k

t=0 µtλt log2(λt)

2
∑k

t=0 µtλt
> log2(q),

which gives

2
−

∑k
t=0 µtλt log2(λt)

2
∑k
t=0 µtλt > q.

So, let p = 2
−

∑k
t=0 µtλt log2(λt)

2
∑k
t=0 µtλt and we have that α− α is spartan for all p > q.

Now ‖α + α‖ ≤ |Ak,d + Ak,d| =
(

2k+d
d

)
. Note that we believe α + α is opulent, so we have

equality here, but we do not need that for this proof. If we let β = log(
(

2k+d
d

)
)/ log(p|S|), it follows

that ‖α + α‖ ≤ ‖α‖β. If we think of β as a function of d and k, then it seems to have a global
minimum of β = 1.735383 . . . at d = 14929 and k = 987.

This was in the introduction, and still needs to be incorporated into this section:
Let α be the fractional set with properties as in Theorem 4, and let Sn be drawn from αn.
Pick ε′ in the range (0, ε). We will show that the probabilities of the events |Sn| < 0.5‖α‖n,

|Sn| > 1.5‖α‖n, |Sn−Sn| < 0.15‖α‖2n and |Sn +Sn| > 0.5‖α‖(1.7354+ε′)n all vanish as n→∞ from
which we will show that Sn satisfies the required conditions for A with probability tending to 1.
|Sn| is the sum of independent Bernoulli variables (Xi : i ∈ S). Let each variable Xi have

probability pi of being 1. Then

Var|Sn| =
∑
i∈S

VarXi =
∑
i∈S

pi − p2
i ≤

∑
i∈S

pi = E|Sn|.

We know that E|Sn| is precisely ‖α‖n, so the variance is at most ‖α‖n, so by Cauchy’s Inequality:

Pr(||Sn| − ‖α‖n| > 0.5‖α‖n) = Pr(||Sn| − E|Sn||2 > 0.25‖α‖2n)

≤ Var|Sn|/0.25‖α‖2n

≤ 4/‖α‖n.

Thus both the events |Sn| < 0.5‖α‖n and |Sn| > 1.5‖α‖n have probabilities that vanish.
Since α−α is spartan, Theorem 4 states that E|Sn|2− |Sn−Sn| is o(‖α‖2n). Since |Sn−Sn| is

always at most as large as |Sn|2, it follows that the probability that |Sn|2 − |Sn − Sn| > 0.1‖α‖2n
tends to 0. Further, since |Sn| > 0.5‖α‖n with probability tending to 1, it follows that |Sn − Sn| >
|Sn|2 − 0.1‖α‖2n > 0.15‖α‖2n with probability tending to 1.

Choose ε′′ in the range (0, ε′). Theorem 4 states that limn→∞(E|Sn + Sn|)1/n → ‖α + α‖ ≤
‖α‖1.7354, so for all sufficiently large n, E|Sn +Sn| < ‖α‖(1.7354+ε′′)n, so by Cauchy’s inequality, the
probability that |Sn + Sn| > α(1.7534+ε′)n is at most ‖α‖(ε′′−ε′)n which vanishes.

So, for all sufficiently large n, with probability at least a half, 0.5‖α‖n < |Sn| < 1.5‖α‖n,
0.15‖α‖2n < |Sn − Sn| and |Sn + Sn| < 0.5‖α‖(1.7354+ε′)n. Since, for all sufficiently large n,
0.15‖α‖2n ≥ (1.5‖α‖n)2−ε and ‖α‖(1.7354+ε′)n ≤ (0.5‖α‖n)1.7354+ε, it follows that for all sufficiently
large n, with probability at least a half, Sn satisfies the conditions of this corollary.
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5 Open Questions

We introduced the concept of a fractional dilate as a more general version of Ruzsa’s method from
[12], Ruzsa’s method being the specialisation where a fractional dilate has all non-0 values being
equal. However, we in fact only used this same specialisation to prove Theorem 6. We believe that
using a more general fractional dilate defined on the Hennecart, Robert and Yudin sets Ak,d could
give a better bound than 1.7354. In particular, the best bound you can get from a Ruzsa-style

dilate on A2,d is that for d = 23, which with a value of q = 1
5

1
300 1

2

46
625 1

12

1129
15000 gives a bound of 1.7897,

whereas if you take a fractional dilate on A2,22 with a value of approximately 0.9951 on the elements
of the form 2ei and approximately 0.7617 on the elements of the form ei + ej you can instead get
a bound of 1.7889.

Our proof of Theorem 6 relies on the fact that if Sn is drawn from αn and α − α is spartan,
then the size of Sn − Sn is quite clumped around the expected value. We believe this will be true
without the requirement of spartaneity.

Conjecture 39. If α is a fractional dilate with ‖α‖ > 1 and k is a positive integer and An is drawn
from αn then

lim
n→∞

log |An + k ·An|
n

= log‖α+ k · α‖.

This would directly imply that various results for sizes of sums and differences of sets also hold
for fractional dilates - for example Ruzsa’s Triangle Inequality would imply that ‖α‖‖β − γ‖ ≤
‖α− β‖‖α− γ‖ for fractional dilates α, β, γ.

A weaker conjecture we make is that the feasible regions for dilates are the same as the feasible
regions for fractional dilates.

Conjecture 40. For any fractional dilate α, any positive integer N and any ε > 0, there exists a
finite subset S of the integers such that for all |k| ≤ N ,∣∣∣∣ log‖α+ k · α‖

log‖α‖
− log |S + k · S|

log |S|

∣∣∣∣ < ε.

We also ask whether the fractional dilate versions of the open questions from Section 3 are true.
Since we know that many readers just jump straight to the open questions section to see if there
will be anything interesting for them to work on, we write out these questions in full, noting that
Theorem 19 gives a useful way of computing ‖α+ α‖ and ‖α+ 2 · α‖.

Question 41. Suppose that α : Z→ [0, 1] is a function with finite sum. We write

‖α‖ =
∑
i

α(i)

‖α+ α‖ = inf
0<p<1

∑
i

(
∑
j+k=i

α(j)α(k))p

‖α+ 2 · α‖ = inf
0<p<1

∑
i

(
∑

j+2k=i

α(j)α(k))p.

Are each of the following statements true for all such α?

1. ‖α‖‖α+ 2 · α‖ ≤ ‖α+ α‖2

2. ‖α+ 2 · α‖ ≤ log3 4‖α+ α‖
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3. ‖α+ 2 · α‖ ≥ ‖α+ α‖

Since a subset of the integers is equivalent to the fractional dilate of its characteristic function,
positive answers to these questions would imply positive answers to the corresponding questions
in Section 3. If either Conjecture 39 or Conjecture 40 is true the questions in the two sections are
equivalent. A negative answer to any of these questions would either lead to an extension of the
feasible region F1,2 or a better understanding of the above conjectures.

The biggest open question we leave is whether fractional dilates can find a use elsewhere.
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