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1. Introduction

Many problems in and areas of graph theory can be thought of in terms of graph homomor-
phisms. For graphs G and H, a homomorphism from G to H is a function φ : V (G)→ V (H)
such that if xy ∈ E(G) then φ(x)φ(y) ∈ E(H). (See [1] for a comprehensive introduction.)
Let Hom(G,H) be the set of homomorphisms from G to H. In this survey, we will be inter-
ested in counting homomorphisms from G to H and so we let hom(G,H) = |Hom(G,H)|.
When G is small relative to H, then homomorphisms from G to H roughly correspond to
embeddings of G inside of H. We will focus on the case when G is large and H is small. In
this case, we can think of a homomorphism from G to H as a labeling of the vertices of G
with the vertices of H. Thus, we sometimes refer to a homomorphism from G to H as an
H-coloring of G. Since the labeling corresponds to a homomorphism, vertices in G that are
adjacent can only receive labels of vertices that are adjacent in H. We will want to allow
that adjacent vertices in G receive the same label, and so permit the image graph H to have
loops. We will assume throughout this survey that the pre-image graph G is simple, and so
has no loops or multiple edges.

Let us consider some examples of H-colorings of graphs for various H.

Example 1: Homomorphisms from G to Kq correspond to proper q-colorings of the
vertices of G.

Example 2: If H = K◦q , a complete graph with q vertices all of which are looped,
then the set of homomorphisms from G to H consists of all maps f : V (G) → [q] =
{1, 2, . . . , q}. In other words, there are no restrictions in a K◦q -coloring of G.

Example 3: Homomorphisms from G to HI , the graph constructed from P2 (the path
on two vertices) by adding a loop to one of the vertices, correspond to independent sets
in G. This is because if we label the vertices HI as in Figure 1 and φ ∈ Hom(G,HI),
then φ−1(a) forms an independent set and there are no restrictions on vertices in
φ−1(b).

a b

Figure 1. The graph HI .

An interesting class of problems arises when the image graph H is fixed and G is allowed
to vary over some set of graphs G. We can then ask which graph(s) G ∈ G maximize (or
minimize) hom(G,H). These problems will be the main focus of this survey. In Section 2,
we let the image graph be HI , and so we are trying to maximize (or minimize) the number
of independent sets over G. In Section 3, we investigate other image graphs.
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2. Independent sets

As noted above, this section will outline many results related to maximizing or minimizing
the number of independent sets in a graph subject to some constraint(s). We let I(G) be
the set of independent sets in G and i(G) = |I(G)|, so that i(G) = hom(G,HI). We also
will occasionally be interested in results involving independent sets of a fixed size and so let
It(G) = {I ∈ I(G) : |I| = t} and it(G) = |It(G)|.

2.1. Various constraints. Our first result gives the maximum and minimum number of
independent sets among trees of order n. (For a graph G = (V,E), we let the order of G be
|V | and the size of G be |E|.) Let T (n) be the set of trees with n vertices. Prodinger and
Tichy [2] were able to show the following.

Theorem 2.1. If T ∈ T (n), then

i(Pn) ≤ i(T ) ≤ i(K1,n−1).

Prodinger and Tichy referred to i(G) as the Fibonacci number of G since i(Pn) = Fn+2,
the (n+ 2)nd Fibonacci number (where F1 = 1, F2 = 1, and Fn = Fn−1 +Fn−2). Alameddine
[3] proved a similar result for maximal outerplanar graphs. Recall that the join of graphs
G and H, denoted G ∨ H, has vertex set V (G) ∪ V (H) and edge set E(G) ∪ E(H) ∪
{xy : x ∈ V (G), y ∈ V (H)}. Also, the square of a graph G, denoted G2, has vertex set
V (G) and edges between any pair of vertices at distance at most two in G.

Theorem 2.2. If G is a maximal outerplanar graph on n vertices, then

i(P 2
n) ≤ i(G) ≤ i(K1 ∨ Pn−1).

Pedersen and Vestergaard [4] considered the class of unicyclic graphs. Following their
notation, we let Hn,k be the graph formed by adding n− k leaves to one vertex of a cycle of
length k.

Theorem 2.3. If G is a unicyclic graph on n vertices whose cycle is of length k, then

i(Cn) ≤ i(G) ≤ i(Hn,k).

Hua [5] considered the problem of maximizing the number of independent sets over 2-
edge-connected graphs.

Theorem 2.4. If G is a 2-edge-connected graph, then

i(G) ≤ i(K2,n−2).

Hua and Zhang [6] were able to give an upper bound for graphs with a given number of
cut-vertices. We let Sn,k be the graph formed from K1,k by subdividing one edge n−k times.

Theorem 2.5. If G is a graph on n vertices with k ≥ 1 cut-vertices, then

i(G) ≤ i(Sn,k).

While there are many other results of this type, let note one other natural constraint
before moving to bounds on the number of edges in the graphs in question. The following
result bounds the independence number of the graphs under consideration, say that Gα(n)
consists of graphs on n vertices with α(G) ≤ α. A lower bound in this case is easy: take an
independent set of size α and add all other edges, yielding Eα ∨Kn−α. (See [7] for a proof.)
The upper bound is less trivial and has, in fact, been rediscovered many times. We let Tn,α
be the Turán graph with α parts and G denote the complement of G.
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Theorem 2.6. If G is a graph on n vertices with α(G) ≤ α, then

i(G) ≤ i(Tn,α).

In fact, independent sets of any fixed size are maximized by Tn,α. This result is originally
due to Zykov [8] (who solved it in the context of complete subgraphs), but proved indepen-
dently by many others including Erdős [9], Sauer [10], Hadžiivanov [11], and Roman [12]. A
short proof can be found in [13]. In fact, these results give bounds on the number of cliques
of a particular size in a graph with given clique number.

2.2. Regular graphs. The question of maximizing the number of independent sets in reg-
ular graphs has attracted much attention because of its applications to other fields. For
example, independent sets in the Cayley graph of a group correspond to sum-free sets in
the group and Cayley graphs are regular. Granville [14] conjectured that if G is a d-regular
graph on n vertices, then

i(G) ≤ 2(1/2+ε(d))n,

where ε(d)→ 0 as d→∞. Alon [15] settled this conjecture as follows.

Theorem 2.7. If G is a d-regular graph on n vertices, then

i(G) ≤ 2(1/2+O(d−0.1))n.

Kahn [16] used a beautiful entropy argument to improve Alon’s result for bipartite graphs.

Theorem 2.8. If G is a d-regular bipartite graph on n vertices, then

i(G) ≤ (2d+1 − 1)n/(2d).

It should be noted that this result is sharp when 2d divides n by taking n/(2d) disjoint
copies of Kd,d. Kahn conjectured that this bound could be extended to all regular graphs,
rather than just bipartite ones. Nearly a decade later, Zhao [17] settled this conjecture in
the affirmative using the often rediscovered bipartite double cover of a graph.

The question of minimizing the number of independent sets in a regular graph is also
of interest. Recently, Radcliffe and the author [18] were able to show a lower bound that
corresponds to the upper bound of Kahn and Zhao.

Theorem 2.9. If G is a d-regular graph on n vertices, then

i(G) ≥ (d+ 2)n/(d+1).

This bound is also sharp: when (d+ 1)|n, it is achieved by the disjoint union of n/(d+ 1)
copies of Kd+1.

The maximization of independent sets of fixed size have also been considered in regular
graphs inspired, in part, by the following conjecture of Kahn [16].

Conjecture 1. If G is a d-regular graph on n vertices where 2d|n, then

it(G) ≤ it

( n
2d
Kd,d

)
,

for all t with 0 ≤ t ≤ n.
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Some partial progress on this conjecture has been made. Carroll, Galvin, and Tetali [19]
were able to give an asymptotic bound. All logarithms in this paper are base two. For
α ∈ [0, 1], we let H(α) be the binary entropy function, i.e.,

H(α) = −α logα− (1− α) log(1− α),

where we let 0 log 0 = 0.

Theorem 2.10. If n, d, and t are sequences satisfying t = (αn)/2 for a fixed α ∈ (0, 1) and
G is a sequence of d-regular graphs on n vertices, then

log it(G) ≤

{
n
2

(
H(α) + 2

d

)
for any G,

n
2

(
H(α) + 1

d

)
if G is bipartite.

Galvin [20] was able to improve this bound for general d-regular graphs when n =
ω(d log d), d = ω(1), and t = (αn)/2 so that it matches the conjectured bound in the
first two terms in the exponent.

2.3. Graphs of fixed size. Another natural problems arises when the class of graphs under
consideration consists of graphs of fixed order and size. The extremal graph in this case is
defined in terms of the lexicographic (or lex) ordering in which we let A < B if min(A4B) ∈
A. We are interested in the lex ordering on

(
[n]
2

)
= {A ⊆ [n] : |A| = 2} in which the sets are

ordered as follows:

{1, 2} , {1, 3} , {1, 4} , . . . , {1, n} , {2, 3} , {2, 4} , . . . , {2, n} , {3, 4} , . . .
Define the lex graph with n vertices and m edges, denoted L(n,m), to be the graph with

vertex set [n] and edge set comprised of the first m elements of
(

[n]
2

)
according to the lex

ordering. The following result is a consequence of the Kruskal-Katona theorem [21, 22]. (See
[23] for another proof.)

Corollary 2.11. If G is graph with n vertices and m edges, then

i(G) ≤ i(L(n,m)).

In fact, the Kruskal-Katona theorem implies the following result about independent sets
of a fixed size as well.

Corollary 2.12. If G is a graph with n vertices and m edges and t is such that 0 ≤ t ≤ n,
then

it(G) ≤ it(L(n,m)).

It seems that lower bounds in the case of graphs of fixed order and size is a difficult
problem. In [13], Radcliffe and the author were able to give a lower bound on the number
of independent sets in a graph with n vertices and m edges provided 0 ≤ m ≤ n. We define
the extremal graphs Z(n,m) depending on where m is in the above range. If 0 ≤ m < n/2,
then Z(n,m) consists of independent edges and isolated vertices. For n/2 ≤ m ≤ n, the
graph Z(n,m) consists mainly of independent edges and triangles, along with at most one
P3 or P4. If m = n, then Z(n,m) consists of disjoint triangles, along with at most one C4 or
C5.

Theorem 2.13. Let n be a positive integer and m be an integer such that 0 ≤ m ≤ n. If G
is a graph with n vertices and m edges, then

i(G) ≥ i(Z(n,m)).
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Of course, this result leaves much to be desired. While it would be nice to settle the
question entirely, we propose the following conjecture as a step towards this goal.

Conjecture 2. If d|n, m = n
d

(
d
2

)
and G is a graph with n vertices and m edges, then

i(G) ≥ i
(n
d
Kd

)
.

It should also be noted that there has been a lot of research devoted to the question of
minimizing the number of Kts for small t in graphs of fixed order and size. Of course, this
problem corresponds to minimizing it(G) for small t (and since the size of G is fixed, so is
that of G). A survey of this area and many others related to homomorphisms can be found
in [24]. Recently, Razborov [25] improved the bound for t = 3 and Nikiforov [26], in turn,
improved this and the best known bound for t = 4.

For independent sets, it is natural to ask whether these extremal results extend to hyper-
graphs. For an r-uniform hypergraph H = (V, E) and an integer j with 1 ≤ j ≤ r, we say
that a set I ⊆ V is j-independent if |I ∩ E| < j for all E ∈ E . Note that if H is 2-uniform
(and so is therefore a graph), then a 2-independent set is what we have called an independent
set above. In general, a 1-independent set in an r-uniform hypergraph H is a set of isolated
vertices. Thus, if we ask which r-uniform hypergraph with n vertices and m edges has the
maximum number of 1-independent sets, the answer follows from maximizing the number of
isolates. One way to do this is to take the r-uniform colex hypergraph with n vertices and
m edges, denoted C(r)(n,m), which has vertex set [n] and edge set consisting of the first m

elements according to the colex order1 on
(

[n]
r

)
= {A ⊆ [n] : |A| = r}. If, on the other hand,

we ask which r-uniform hypergraph has the maximum number of r-independent sets, then
the Kruskal-Katona theorem again implies that this is done by the lex hypergraph, defined
in the obvious way.

The other cases, i.e., when 1 < j < r, of maximizing the number of j-independent sets in
an r-uniform hypergraph with n vertices and m edges remain open questions. Radcliffe and
the author [27] were able to give an asymptotic bound that is sharp up to an error in the
exponent. We define the extremal hypergraphs as follows. Let the r-uniform hypergraph
denoted Sj(r)(A,B) have vertex set V = A ∪B and edge set{

e ∈
(
V

r

)
: |e ∩ A| < j

}
.

When the identity of the sets A and B is unimportant, we write Sj(r)(k, n− k) for Sj(r)(A,B)

where |A| = k and |B| = n − k. Let ij(H) be the number of j-independent sets in a

hypergraph H. Note that e
(
Sj(r)(k, n− k)

)
decreases as k increases and so for fixed integers

n and q (and j and r), there is a maximal k for which q ≤ e
(
Sj(r)(k, n− k)

)
.

Theorem 2.14. Given ε > 0 and any r-uniform hypergraph H on n vertices with ε
(
n
r

)
≤

e(H) ≤ (1− ε)
(
n
r

)
, if we let k be maximal such that

e(H) ≤ e
(
Sj(r)(k, n− k)

)
,

1The colex order is defined by letting A < B if max(A4B) ∈ B.
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then

log ij(H) ≤ (1 + o(1)) log
(
ij
(
Sj(r)(k, n− k)

))
.

2.4. Degree conditions. Perhaps the most general conjecture involving the maximization
of i(G) for graphs with given degree seqence was made by Kahn; see [28]. We let iso(G) be
the number of isolated vertices in a graph G.

Conjecture 3. If G is any graph, then

i(G) ≤ 2iso(G)
∏

uv∈E(G)

(
2d(u) + 2d(v) − 1

) 1
d(u)d(v) .

This would imply, for example, Zhao’s extension of Theorem 2.8. Galvin [29] considered a
problem more general than that of regular graphs, but not as general as Conjecture 3. The
class considered by Galvin was that of graphs on n vertices with a given minimum degree
and he was able to prove the following.

Theorem 2.15. Fix δ > 0. There is an n(δ) such that for all n ≥ n(δ), the unique graph
with n vertices and minimum degree at least δ is Kδ,n−δ.

This result was presented as partial progress towards the following conjecture proposed
by Galvin.

Conjecture 4. Let n and δ be integers with n ≥ 2δ. If G is a graph with n vertices and
minimum degree at least δ, then

i(G) ≤ i(Kδ,n−δ).

Alexander, Mink, and the author [30] were able to prove a stronger version of this for
bipartite graphs. This stronger version yields a “level sets” result for independent sets of
a fixed size. Note that i0(G) = 1 for any graph G and i1(G) = n for any graph G on n
vertices. Independent sets of size two in a graph are exactly non-edges of the graph, and so
i2(G) =

(
n
2

)
− e(G). If we wanted a level sets version of Conjecture 4, then we would like to

have that for any graph G with n vertices and minimum degree δ, it is the case that

it(G) ≤ it(Kδ,n−δ).

However, any δ-regular graph on n vertices will have less edges than Kδ,n−δ, and so if G is
δ-regular on n vertices, then

i2(G) =

(
n

2

)
− δn

2
>

(
n

2

)
− δ(n− δ) = i2(Kδ,n−δ),

provided 2δ < n. This corresponds to the cases when Kδ,n−δ is not δ-regular itself. We were
able to show the following theorem.

Theorem 2.16. Let n, δ, and t be integers such that 2δ ≤ n and t ≥ 3. If G is a graph with
n vertices and minimum degree at least δ, then

it(G) ≤ it(Kδ,n−δ).

The bipartite case of Conjecture 4 is a corollary of this theorem. Unfortunately, since the
bound is not exponential, we cannot use the bipartite double cover of Zhao to extend from
bipartite graphs to general ones. Many cases of Conjecture 4 remain open, although recently
Engbers and Galvin [31] were able to provide more evidence in support of the conjecture.



COLORING GRAPHS WITH GRAPHS: A SURVEY 7

It would be nice to have some general result that would imply Conjecture 4. One possible
route to this goal would be via graphs with bounded minimum and maximum degree. In
[30], the following was conjectured which would, in fact, imply Conjecture 4.

Conjecture 5. If G is a graph on n vertices with minimum degree at least δ ≥ 1 and
maximum degree at most ∆, then

i(G) ≤ i(Kδ,∆)d
n

δ+∆e = (2δ + 2∆ − 1)d
n

δ+∆e.

We note that it is, in fact, enough to prove Conjecture 5 for bipartite graphs since the
bipartite double cover does work on this bound.

The minimization problem among graphs with n vertices and minimum degree at least δ
is trivial since Kn is in the class under consideration and so, of course, has the minimum
number of independent sets in the class.

3. Other image graphs

The question of maximizing (or minimizing) the number of H-colorings for H 6= HI has
been less well-studied. We begin this section by considering again graphs G which are regular
and then move on to questions about graphs of fixed size.

3.1. Regular graphs. Inspired by the result of Kahn (Theorem 2.8), Galvin and Tetali [32]
made the fundamental observation that independent sets are an example of a homomorphism
into a small image graph. They studied the general question of maximizing the number of
homomorphisms from regular bipartite graphs to any image graph H. Their main result is
as follows.

Theorem 3.1. If G is a d-regular bipartite graph on n vertices and H is any graph with
(perhaps) loops, then

hom(G,H) ≤ hom(Kd,d, H)n/(2d).

They conjectured that this result extends to general regular graphs, but unfortunately,
this is not true. If H is E◦2 , the fully-looped empty graph on two vertices, then

hom(Kd+1, E
◦
2) = 2 > 2(d+1)/2d = hom(Kd,d, E

◦
2)(d+1)/(2d).

However, it does seem that either Kd+1 or Kd,d maximize the number of homomorphisms
into any image graph. Galvin conjectured as much.

Conjecture 6. If G is a d-regular graph and H is any graph with (perhaps) loops, then

hom(G,H) ≤ max
{

hom(Kd+1)n/(d+1), hom(Kd,d)
n/(2d)

}
.

Zhao [33] has made some progress on this conjecture by classifying some graphs for which
the Kd,d-bound holds.

3.2. Fixed size. One of the most well-studied problems included in this survey involves
maximizing the number of proper vertex colorings using q colors over graphs with fixed
order and size. As was noted in the Introduction, this question corresponds to maximizing
hom(G,Kq) over graphs G of fixed order and size. The question arose independently in
different settings and was first posed by Linial [34] and Wilf [35]. Lazebnik [36] solved the
case when q = 2 as follows.
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Theorem 3.2. If G is a graph with n vertices and m edges, then

hom(G,K2) ≤


2n if m = 0,

2n−d2
√
me+1 if 0 < m ≤ bn2/4c,

0 if m > bn2/4c.

Lazebnik [37] was able to show that the Turán graph Tn,r maximizes hom(G,Kq) when
q = Ω(n6). Lazebnik, Pikhurko, and Wolder [38] proved that T2k,2 = Kk,k is extremal for
q = 3 and asymptotically extremal when q = 4. Loh, Pikhurko, and Sudakov [39], after
providing a comprehensive survey of this field, were able to use the regularity lemma to give
an asymptotic answer to the cases when q ≥ 4.

States of the Widom-Rowlinson model in statistical physics correspond to homomorphisms
from a graph to the fully-looped path on three vertices, P ◦3 . (See Figure 2.) Because of the

a b c

Figure 2. The graph P ◦3

connection to the Widom-Rowlinson model, we let wr(G) = hom(G,P ◦3 ). Radcliffe and the
author [23] studied the problem of maximizing wr(G) over graphs on n vertices and m edges.
In this case, and others as we will see below, it turns out that one can prove that for any n
and m, there is a threshold graph that is extremal for wr(G). Threshold graphs were first
introduced by Chavátal and Hammer [40]. There are many characterizations of threshold
graphs (see, e.g., [41]), but the one most useful to us is the following.

Definition. A threshold graph is a graph that can be constructed from a single vertex graph
by repeatedly adding either an isolated vertex or a dominating vertex.

Using the above characterization, we can associate a binary code of plusses and minuses
with each threshold graph where plusses represent dominating vertices and minuses isolated
vertices. We represent the first vertex with a dot and build the graph from the right of the
code. It turns out that the lex graph is a threshold graph whose code is of the form

+ + · · ·+−− · · · − (+)−− · · · − •,

where the parenthetical plus can occur anywhere in the string of minuses. Note that plusses
in the code are adjacent to everything to their right and plusses to their left, while minuses
are only adjacent to plusses to their left. The main result of Radcliffe and the author is as
follows.

Theorem 3.3. If G is a graph with n vertices and m edges, then

wr(G) ≤ wr(T ),
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where T is a threshold graph on n vertices and m edges with code of one of the following
forms:

−−−−−−−−−− + + + + + (−) + + + + + •
+ + + + + + + + + + −−−−− (+)−−−−− •
+ + + + + + + + + + −−−−−−−−−−+ +•
+ + + + +(−) + + + −−−−−−−−−−−−•
−+ + + +(−) + + + −−−−−−−−−−−−•

Radcliffe and the author [42] also studied the related question involving maximizing the
number of homomorphisms into “the fox.” The fox, denoted F , is the graph obtained from
P ◦3 by deleting a loop from one of the endpoints. (See Figure 3). Let vl(G) = hom(G,F ).

a b

c

Figure 3. The fox, F .

We were able to obtain a similar result for vl(G) as we did for wr(G).

Theorem 3.4. If G is a graph with n vertices and m edges, then

vl(G) ≤ vl(T ),

where T is a threshold graph on n vertices and m edges with code of one of the following
forms:

−−−−−−−−−− + + + + + (−) + + + + + •
+ + + + + + + + + + −−−−− (+)−−−−− •
−−−−−−−−−− + + + + + + + + + +−−•

+ + + + +(−) + + + −−−−−−−−−−−−•
−+ + + +(−) + + + −−−−−−−−−−−−•

It is perhaps surprising that the extremal threshold graphs in Theorem 3.4 coincide with
those in Theorem 3.3 except for one of the five. In that case (the third in each of the
theorems), the graphs are in fact complements of one another.

Kass and the author [43] studied the case of this problem when the image graph is E1∪HI ,
which we call J . (See Figure 4.) Note that if φ ∈ Hom(G, J) and J is labelled as in Figure 4,

a b c

Figure 4. The graph J .
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then φ−1(a) consists of isolated vertices of G. Thus, all nontrivial components of G are
mapped to the HI component of J and, as we saw in the Introduction, the vertices mapped
to b must form an independent set in G. Let j(G) = hom(G, J). We were able to show, as
one might expect, that the extremal graph for j(G) must consist of a lex graph along with
isolated vertices. The question that remains is to determine the number of isolates in the
extremal graph (or, equivalently, the size of the lex component). Unfortunately, and perhaps
surprisingly, if n is fixed and m is increased, the number of isolates in the extremal graph is
not monotonic. However, we were able to determine the behavior when m is fixed and n is
increased. For an integer m, let `(m) be the number of vertices in the lex component of the
extremal graph with m + 1 vertices and m edges. We proved that if L(n′,m) ∪ Em+1−n′ is
extremal for j(G), then L(n′,m) ∪En−n′ is extremal for any n ≥ m+ 1. Thus, the function
`(m) describes the structure of the extremal graph for j(G) when the number of edges is m
and the number of vertices is large enough. We were able to prove the following.

Theorem 3.5. If m is sufficiently large, then

1.414
√
m ≤ `(m) ≤ 1.897

√
m+ c,

for a constant c.

The lower bound in the theorem corresponds to the fact that no graph on n vertices and
m edges exists if m >

(
n
2

)
. Using computer testing, it seems that the upper bound is, in

fact, closer to the truth than the lower bound.

4. Conclusion

Although this survey has outlined many results involving the enumeration ofH-colorings of
graphs, many interesting and fundamental questions remain open. Of course, the resolution
of Conjecture 3 of Kahn would imply many of the results and questions in Section 2. While
that may be a bit too much to hope for, we have presented other possible avenues of attack.
We have also shown some extremal results for image graphs other than HI , but there are
many other image graphs left to investigate. It does not seem that minimization problems
have been studied for other image graphs (including the Widom-Rowlinson model), and so
this could be an area of future interest.
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