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Abstract. The Friendship Paradox, proved by Feld in 1991, states that “on

average, your friends have more friends than you do.” In fact, Feld proved two

versions of the paradox. We discuss generalizations of each of them which talk
about the average number of friends that, for instance, a friend of a friend of

a friend of a friend has.

1. Introduction and Notation

The Friendship Paradox, proved by Feld [3], can be phrased as, “On average,
your friends have more friends than you do.” He proved two graph theoretic results,
below labeled as the Friendship Paradox Theorems. We include Feld’s proofs for
completeness. Our notation is standard; we let

d =
1

n

∑
v∈V (G)

d(v)

be the average degree of a graph G. Throughout the paper, we let V (G) be the
vertex set of G, E(G) be its edge set, n = |V (G)|, and m = |E(G)|. We write x ∼ y
if x is adjacent to y.

We will think of our graphs as modeling friendship networks, where we join two
people if they are friends. So, the degree of a vertex is the number of friends
they have. In our models, all friendships are reciprocated and so our graphs are
undirected. Feld’s first theorem concerns picking a (uniformly) random person, and
then a (uniformly) random friend of theirs. The theorem states that this person
has, on average, more friends than the initially chosen person. Friendless people
are a problem for this model since the second step cannot be performed. Thus, we
only consider graphs with no isolated vertices.

Friendship Paradox Theorem One. Let G be a graph with no isolated vertices.
Pick a random vertex X1 of G by first picking a uniformly random vertex X0, then
letting X1 be a uniformly random neighbor of X0. Then,

E(d(X1)− d(X0)) = E d(X1)− d ≥ 0.

Equality holds if and only if G is locally regular, i.e., for all u, v ∈ V (G) with u ∼ v,
we have d(u) = d(v).

Proof. The equality is simply linearity of expectation. For the inequality, we bound
E d(X1) using the fact that for any positive r ∈ R, we have r+ 1

r ≥ 2, with equality
1
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if and only if r = 1. So,

E d(X1) =
1

n

∑
x0∈V (G)

1

d(x0)

∑
x1:x1∼x0

d(x1) =
1

n

∑
{x0,x1}∈E(G)

(
d(x0)

d(x1)
+
d(x1)

d(x0)

)
≥ 2m

n
= d.

We have equality if and only if d(x0) = d(x1) for all x0 ∼ x1, that is, G is locally
regular. �

There are alternative perspectives on what it means to pick a random friend. In
Feld’s original paper he writes:

The basic logic can be described simply. If there are some people
with many friendship ties and others with few, those with many ties
show up disproportionately in sets of friends. For example, those
with 40 friends show up in each of 40 individual friendship networks
and thus can make 40 people feel relatively deprived, while those
with only one friend show up in only one friendship network and
can make only that one person feel relatively advantaged. Thus, it
is inevitable that individual friendship networks disproportionately
include those with the most friends.

This describes a model in which one first picks a friendship uniformly, and then
picks one of these two friends uniformly. This model exhibits the same behavior in
the sense that the person eventually chosen has more friends than average. To run
this model, we simply require that G has some edges. Before stating the theorem,
we give an example to clarify that these two models are, in fact, different. We let
Ka,b denote the complete bipartite graph with parts of size a and b.

Example. Consider G = K1,n−1 and let c be the central vertex of degree n − 1.
Let X0 be a uniformly random vertex of G and X1 be a uniformly random neighbor
of X0. Also, let Y1 be a random vertex of G chosen by first selecting a uniformly
random edge e, and then picking one of the two endpoints of e, each with probability
1/2. Clearly, P(X1 = c) = n−1

n , whereas P(Y1 = c) = 1/2. See Figure 1 for a
schematic.

X0

X1

X1

X0 e

Y1

Figure 1. A schematic for the difference between X1 and Y1 on
K1,5. The first two pictures illustrate possibilities for choosing X1;
the last shows one of the possibilities for choosing Y1.

Consider now a general graph G and again let Y1 be a random endpoint of a
random edge. If v ∈ V (G), then P(Y1 = v) is proportional to the number of edges
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incident with v, i.e., the degree of v. Just as in Feld’s quote, vertices with higher
degree are given more weight in the distribution of Y1. Thus, it is not surprising
that E d(Y1) ≥ d. On the other hand, it does not seem to us that E d(Y1) accurately
captures the notion of the average degree of a random friend, while E d(X1) does.
We are now ready to state Feld’s second Friendship Paradox, that E d(Y1) is always
at least d.

Friendship Paradox Theorem Two. Let G be a nonempty graph and Y1 a
random vertex of G chosen by first choosing a uniformly random edge e, and then
letting Y1 be a uniformly random endpoint of e. Then

E d(Y1) ≥ d,
with equality if and only if G is regular.

Proof. In this proof, we need to consider both the average degree and the variance
of the degrees. Recalling the definition of X0 from the previous theorem as a
uniformly randomly chosen vertex of G, we have

Var(d(X0)) =
1

n

∑
v∈V (G)

(d(v)− d)2 =

 1

n

∑
v∈V (G)

d(v)2

− d2.
Abbreviating Var(d(X0)) as σ2, we have the following:

E d(Y1) =
1

m

∑
{y0,y1}∈E(G)

d(y0) + d(y1)

2
=

n

2m
· 1

n

∑
y1∈V (G)

d(y1)2

=
n

2m

(
d
2

+ σ2
)

=
d
2

+ σ2

d
= d+

σ2

d
≥ d.

The second equality follows from the fact that each vertex’s degree is counted once
for each edge with which the vertex is incident. Equality holds if and only if σ2 = 0,
i.e., if and only if G is regular. �

In this paper, we consider k-step generalizations of both of these theorems. Gen-
eralizing Friendship Paradox Theorem One, we consider picking a starting vertex
X0 uniformly at random and then taking a random walk (X0, X1, . . . , Xk). We
prove that E d(Xk) ≥ d. Extending Friendship Paradox Theorem Two, we con-
sider a random sequence (Y0, Y1, . . . , Yk) chosen uniformly from among all walks of
length k in G. In this case we use a result of Erdős and Simonovits [2] to show
that, provided k is odd, E d(Yk) ≥ d. Somewhat surprisingly, this is false in general
when k is even.

1.1. The two multistep models. We generalize both versions of Feld’s theorem
to k-step versions, in which we consider the number of friends (on average) that a
typical friend of a friend of a . . . friend has. We distinguish the two models as the
random walk model and the homomorphism model. Both models assign probabilities
to walks in G. It will be helpful in explaining our terminology if we also define what
a homomorphism between graphs is.

Definition. Given graphs G and H we say that a map φ : V (G) → V (H) is a
homomorphism from G to H if for all vertices u, v ∈ V (G) we have u ∼G v =⇒
φ(u) ∼H φ(v). In other words φ is an adjacency preserving map between V (G) and
V (H).
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We denote the path of length k by Pk. It will be convenient for us to let V (Pk) =
{0, 1, 2 . . . , k}, with edges between consecutive integers. A walk in G of length k,
which we also call a k-walk, is a sequence of vertices w0w1 . . . wk such that wi ∼ wi+1

for 0 ≤ i < k. Equivalently, it is a homomorphism w from Pk to G that sends i to
wi. We write Wk for the set of all walks in G of length k.

Our first model for picking a k-walk in G is the following “random walk” model.

Definition. Let G be a graph with minimum vertex degree at least 1. We define a
sequence of random variables (X0, X1, X2, . . . ) by picking X0 uniformly from V (G)
and then at each step letting Xi+1 be chosen uniformly from among the neighbors
of Xi. This sequence is a Markov chain; in fact it is a “random walk in G” in the
technical sense.

Note that this definition agrees with our notation in Friendship Paradox Theorem
One. Also d = E d(X0). This model feels like the one that closest approximates
the non-mathematical statement of the problem.

Our second model, the homomorphism model, simply picks a homomorphism
Y ∈ Wk uniformly at random.

Definition. Given a graph G with at least one edge and an integer k ≥ 1, we
define a random sequence Y = (Y0, Y1, Y2, . . . , Yk) by choosing Y ∈ Wk uniformly
at random.

This definition agrees with our notation in Friendship Paradox Theorem Two.
When k = 1, the homomorphisms from P1 to G are precisely the ordered pairs
(y0, y1) of vertices of G such that y0 ∼ y1. In other words, if Y is a uniformly
random element of W1, then Y1 is a (uniformly) random end of a (uniformly)
random edge.

It is a standard result of Markov chain theory (see, e.g., [4]) that for connected
nonbipartite graphs, d(Xk) converges to d(Y1) in distribution. So in particular
E d(Xk)→ E d(Y1) as k →∞.

2. The Multistep Friendship Paradox Theorems

In this section we prove our k-step versions of Friendship Paradox Theorems One
and Two.

2.1. The random walk model. To prove the result for the random walk model,
we start with a simple lemma.

Lemma 1. Given a walk w = (w0, w1, . . . , wk) ∈ Wk, we define

r(w) =
1

d(w1)d(w2) · · · d(wk−1)
,

to be the product of the reciprocal degrees of internal vertices in the walk. Then, for
graphs G and all k ≥ 1, ∑

w∈Wk

r(w) = 2m.

Proof. Consider the sequence X = (X0, X1, X2, . . . , Xk) from the random walk
model. For a k-walk w = (w0, w1, . . . , wk) we have

P(X = w) =
1

n

1

d(w0)d(w1) · · · d(wk−1)
=

1

nd(w0)
r(w).
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Thus ∑
w∈Wk

r(w) =
∑

w∈Wk

nd(w0)P(X = w) = nE d(X0) = nd = 2m.

�

We are now ready to prove the k-step generalization of Friendship Paradox The-
orem One. Note that there are more cases of equality when k is even than when
k = 1.

Theorem 2. If G is a graph without isolated vertices and k is any nonnegative
integer, then

E d(Xk) ≥ d.
Equality holds for k odd exactly when G is locally regular. When k is even, the
requirement is that each component of G is either regular or a biregular1 bipartite
graph.

Proof. For a walk w = (w0, w1, . . . , wk), we let rev(w) = (wk, wk−1, . . . , w0) be the
reverse of w. Since the set of reverses of k-walks is the same as the set of k-walks,
we have

2E d(Xk) =
∑

w∈Wk

(d(wk)P(X = w) + d(w0)P(X = rev(w)))

=
∑

w∈Wk

d(wk)
1

n

k−1∏
i=0

1

d(wi)
+ d(w0)

1

n

k∏
i=1

1

d(wi)

=
1

n

∑
w∈Wk

[
d(wk)

d(w0)
+
d(w0)

d(wk)

] k−1∏
i=1

1

d(wi)

≥ 1

n

∑
w∈Wk

2

k−1∏
i=1

1

d(wi)
.

Therefore,

E d(Xk) ≥ 1

n

∑
w∈Wk

r(w) =
2m

n
= d.

Note that equality holds if and only if the endpoints of any walk of length k have
the same degree. The next lemma determines exactly when this happens. �

We say that a graph is k-walk regular if for each walk of length k its endpoints
have the same degree. For example, K2,3 is 2-walk regular, but not 1-walk regular.

Lemma 3. G is k-walk regular if and only if G is k′-walk regular where k′ ∈ {1, 2}
and k′ ≡ k (mod 2). Further, being 1-walk regular is the same as being locally
regular, and G is 2-walk regular if and only if each component of G is either regular
or a biregular bipartite graph.

1A bipartite graph with bipartition (A,B) is biregular if all vertices in A have the same degree
and likewise for B.
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Proof. Suppose first G is k-walk regular and that v and w are the endpoints of a
k′-walk W . Then there is a k-walk with endpoints v and w obtained by traversing
the first edge of W many times, so v and w have the same degree. The other
direction is immediate by concatenating k′-walks.

It is clear that 1-walk regularity is equivalent to local regularity, and that if G
is regular or biregular bipartite that it is 2-walk regular. Suppose then that G is 2-
walk regular and, without loss of generality, connected. If G contains an odd cycle,
then any two vertices of G can be joined by a walk of even length (if necessary, by
traversing the odd cycle), thus G is regular. On the other hand, if G is bipartite,
then any two vertices on the same side can be joined by an even walk, so must have
the same degree. �

2.2. The path homomorphism model. It is natural to wonder whether Feld’s
Friendship Paradox Theorem Two behavior generalizes to k > 1. Here we prove
that it does for odd k, and not for even k. We start with a simple lemma relating
E d(Yk) to the number of walks in G.

Lemma 4. If G is any graph, then

E d(Yk) =
|Wk+1|
|Wk|

.

Proof. For a walk w = (w0, w1, . . . , wk) ∈ Wk, we let

init(w) = (w0, w1, . . . , wk−1).

We have

E d(Yk) =
1

|Wk|
∑

w∈Wk

d(wk)

=
1

|Wk|
∑

w∈Wk

|{w′ ∈ Wk+1 : init(w′) = w}|

=
|Wk+1|
|Wk|

. �

In [2], Erdős and Simonovits discuss the behavior of the parameter vk = |Wk|/n,
the average number of walks of length k starting at a uniformly chosen vertex. Note
that v1 = 2m/n = d. Their central result in this area is as follows.

Theorem 5 (Erdős-Simonovits). For all graphs G on n vertices and k ≥ 1, we
have

v
1/k
k ≥ d = v

1/1
1 .

In addition, for all k, t ≥ 1 with k even and k ≥ t,

v
1/k
k ≥ v1/tt .

As was noted by Erdős and Simonovits, the first part of this theorem follows
from a much more general result of Blakley and Roy [1] concerning matrices with
nonnegative entries, such as the adjacency matrix of a graph. Blakley and Roy

established the cases of equality which imply, in our case, that v
1/k
k = d for some

k > 1 if and only if G is regular. In their proof of the second half of the theorem,
Erdős and Simonovits use the convexity of xk/t; this explains the restriction to k
even.

From these results and our lemma above, we have the following.
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Corollary 6. Let G be a nonempty graph, k ≥ 1 be odd, and t ≤ k.

(1) E d(Yk) ≥ d, and

(2) (E d(Yt) · E d(Yt+1) · · ·E d(Yk))
1/(k−t+1) ≥ d. In other words, the geometric

mean of a sequence of E d(Yi)s, ending in an odd i, is at least the average
degree.

In both cases, equality holds for k > 1 if and only if G is regular.

Proof. Let k ≥ 1 be an odd integer. By Theorem 5, we have

v
1/(k+1)
k+1 = (|Wk+1|/n)1/(k+1) ≥ (|Wk|/n)1/k = v

1/k
k .

Raising both sides to the (k + 1)st power, we see

|Wk+1|
n

≥ |Wk|
n

(
|Wk|
n

)1/k

.

Hence, using Theorem 5 again,

E d(Yk) =
|Wk+1|
|Wk|

≥
(
|Wk|
n

)1/k

= v
1/k
k ≥ d.(1)

To prove the second part, note that

E d(Yt) · E d(Yt+1) · · ·E d(Yk) =
|Wk+1|
|Wt|

,

and the proof proceeds similarly.
For equality, it is necessary to have equality in (1). As in the discussion after

Theorem 5, this requires G to be regular. �

We end this section with an example showing that the restriction in Corollary 6
that k is odd is necessary.

Example. Consider the graph Ka,b ∪Kc. Note that

|Wk| =

{
(a+ b)(ab)k/2 + c(c− 1)k if k is even,

2(ab)(k+1)/2 + c(c− 1)k if k is odd.

Note that d = (2ab + c(c − 1))/(a + b + c) and so, when k is even, we have that
|Wk+1|/|Wk| ≥ d if and only if

[2(ab)(k+2)/2 + c(c− 1)k+1](a+ b+ c)

− [(a+ b)(ab)k/2 + c(c− 1)k](2ab+ c(c− 1)) ≥ 0.

This is false when k = 2, a = 1, b = 5, and c = 3. For arbitrary (even) k, if
we substitute a = t2, b = t6, and c = t3, the left hand side is a polynomial in t
with leading term −t4k+12. Thus, for large integer t, the graph Kt2,t6 ∪ Kt3 has

E(d(Yk)) < d. This example works because the bipartite component is sensitive to
parity, while the complete component is not, and the two behaviors can’t mix.
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3. Further directions

In this section, we discuss possible extensions of the results in this paper. The

Erdős-Simonovits Theorem (Theorem 5) has two parts: that v
1/k
k ≥ d, and a mono-

tonicity result for the sequence
(
v
1/k
k

)
k≥1. In fact, they made the following conjec-

ture, extending the monotonicity part of Theorem 5.

Conjecture (Erdős-Simonovits). For k ≥ t ≥ 1 both odd, we have

v
1/k
k ≥ v1/tt .

This conjecture is still open. One might hope for corresponding monotonicity
results for the sequences (E d(Xk))k≥0, which we call the walk average degrees, and
(E d(Yk))k≥0, the hom average degrees for k of fixed parity. The following examples
show that we cannot expect to have monotonicity.

Example. Consider the graph . The walk average degrees are non-
monotonic both for k even and for k odd. The hom average degrees are non-
monotonic for k odd.

The graph K1,3 ∪ P4 has non-monotonic hom average degree for k even. We do
not know an example of a connected graph for which the hom average degrees are
not increasing for k even.

One other possibility for further investigation is to determine whether a version
of the Friendship Paradox holds in directed graphs, perhaps better reflecting the
real world situation.
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