
INDEPENDENT SETS IN GRAPHS WITH GIVEN MINIMUM DEGREE

JAMES ALEXANDER, JONATHAN CUTLER, AND TIM MINK

Abstract. The enumeration of independent sets in graphs with various restrictions has been a
topic of much interest of late. Let i(G) be the number of independent sets in a graph G and let
it(G) be the number of independent sets in G of size t. Kahn used entropy to show that if G is

an r-regular bipartite graph with n vertices, then i(G) ≤ i(Kr,r)
n/2r. Zhao used bipartite double

covers to extend this bound to general r-regular graphs. Galvin proved that if G is a graph with
δ(G) ≥ δ and n large enough, then i(G) ≤ i(Kδ,n−δ). In this paper, we prove that if G is a bipartite
graph on n vertices with δ(G) ≥ δ where n ≥ 2δ, then it(G) ≤ it(Kδ,n−δ) when t ≥ 3. We note
that this result cannot be extended to t = 2 (and is trivial for t = 0, 1). Also, we use Kahn’s
entropy argument and Zhao’s extension to prove that if G is a graph with n vertices, δ(G) ≥ δ, and

∆(G) ≤ ∆, then i(G) ≤ i(Kδ,∆)n/2δ.

1. Introduction

The study of independent sets in various classes of graphs has been a topic of much recent
interest. For a graph G, we let I(G) be the set of independent sets of G and i(G) = |I(G)|. Kahn
[8] made a breakthrough on these problems when he proved the following result with a beautiful
entropy argument.

Theorem 1.1 (Kahn). If G is an r-regular bipartite graph on n vertices with r ≥ 1, then

i(G) ≤ i(Kr,r)
n/2r =

(
2r+1 − 1

)n/2r
.

In fact, Kahn proved a stronger result for weighted independent sets. Galvin and Tetali [5] gener-
alized Theorem 1.1 to homomorphisms and, in the process, extended Kahn’s weighted independent
sets result. Zhao [12] extended Theorem 1.1 to all r-regular graphs using the bipartite double cover
of a graph. Given a graph G, define the bipartite double cover of G, denoted G × K2, to be the
graph with vertex set V (G) × {0, 1} with (u, i) ∼ (v, j) if and only if uv ∈ E(G) and i 6= j. The
key lemma of Zhao [12] was the following.

Lemma 1.2 (Zhao). If G is any graph, then

i(G)2 ≤ i(G×K2),

with equality if and only if G is bipartite.

The problem of maximizing the number of independent sets among graphs in other classes has
also been well-studied. If we consider graphs on n vertices and m edges, then the answer follows
from the Kruskal-Katona theorem [10, 9]. Define the lex graph with n vertices and m edges, denoted
L(n,m), to be the graph with vertex set [n] and edge set consisting of an initial segment of size m

of
(

[n]
2

)
under the lexicographic ordering. (Recall that for sets A,B ⊂ Z, we say A < B in the lex

order if min(A4B) ∈ A.) The following is a consequence of the Kruskal-Katona theorem. (See [2]
for an alternative proof.)

Corollary 1.3. If G is a graph with n vertices and m edges, then

i(G) ≤ i(L(n,m)).
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Maximizing the number of independent sets in several other classes of graphs was considered in
[3].

The main focus of this paper will be on independent sets in graphs with n vertices and minimum
degree δ. The asymptotic version of this problem was studied by Sapozhenko [11] in bipartite
graphs with large minimum degree. Recently, Galvin [4] proved the following asymptotic result.

Theorem 1.4 (Galvin). Fix δ > 0. There is a n(δ) such that for all n ≥ n(δ), the unique graph
with the most independent sets is Kδ,n−δ.

In the same paper, Galvin conjectured the following.

Conjecture 1 (Galvin). If G is a graph on n vertices with minimum degree at least δ, where n
and δ satisfy n ≥ 2δ, then

i(G) ≤ i(Kδ,n−δ).

One of the main results of this paper is a “level sets” version of this conjecture for bipartite graphs.
We let It(G) = {I ∈ I(G) : |I| = t} and it(G) = |It(G)|. For any graph G on n vertices, we have
that i0(G) = 1 and i1(G) = n, so the problems of maximizing i0(G) and i1(G) are not interesting.
The problem of maximizing i2(G) is a bit more interesting. Note that i2(G) =

(
n
2

)
− e(G), and so

maximizing i2(G) corresponds to minimizing e(G). Thus, if we are interested in maximizing i2(G)
where G is a graph with n vertices and minimum degree δ, we simply want to make G “as regular
as possible.” Thus, it is not the case in general that i2(G) ≤ i2(Kδ,n−δ) for G a graph with n
vertices and minimum degree δ. Galvin [4] was able to prove that K1,n−1 is the unique maximizer
for it(G) with t ≥ 3 among graphs with minimum degree one. We believe that it(G) ≤ it(Kδ,n−δ)
for t ≥ 3 and are able to prove as much when G is bipartite.

Theorem 1.5. Let n, δ, and t be positive integers with n ≥ 2δ and t ≥ 3. If G is a bipartite graph
on n vertices and minimum degree at least δ, then

it(G) ≤ it(Kδ,n−δ),

with equality if and only if G = Kδ,n−δ.

Even among bipartite graphs it is, in general, not the case that Kδ,n−δ maximizes the number
of independent sets of size two. The cases when n = 2δ or n = 2δ + 1 are not of much interest
since there is a unique bipartite graph (Kδ,δ or Kδ,δ+1) satisfying the conditions of the theorem.
If n ≥ 2δ + 2, we know that Kδ+1,n−δ−1 has fewer edges (and thus more independent sets of size
two) than Kδ,n−δ. In Section 2, we will prove Theorem 1.5 along with some related results. For
example, we can prove that Theorem 1.5 implies the bipartite case of Conjecture 1.

In a related question, one might hope to get a bound on the number of independent sets in
a graph in terms of its minimum and maximum degrees. The following conjecture was made by
Kahn; see [6]. We let iso(G) be the number of isolated vertices in a graph G.

Conjecture 2 (Kahn). If G is any graph, then

i(G) ≤ 2iso(G)
∏

uv∈E(G)

(
2d(u) + 2d(v) − 1

) 1
d(u)d(v)

.

In Section 3, we modify the entropy proof of Kahn [8] to get the following.

Theorem 1.6. If G is a bipartite graph with bipartition (A,B) such that δ(G) ≥ δ ≥ 1, then

i(G) ≤
∏
v∈A

(
2δ + 2d(v) − 1

)1/δ
.

From this, it is easy to derive a general bound using Zhao’s extension.
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Corollary 1.7. If G is a graph on n vertices with δ(G) ≥ δ ≥ 1 and ∆(G) ≤ ∆, then

i(G) ≤ i(Kδ,∆)n/2δ.

Proof. If H is any bipartite graph with minimum degree δ and ∆(G) ≤ ∆ then, by applying
Theorem 1.6 since one of its two parts contains at most half of its vertices, we have

i(H) ≤ (2δ + 2∆ − 1)n/2δ = i(Kδ,∆)n/2δ.

Thus, to prove the same bound for general G, we can use its bipartite double cover (which also has
the minimum and maximum degree of G) and apply Lemma 1.2 to get

i(G)2 ≤ i(G×K2) ≤ i(Kδ,∆)2n/2δ,

which yields the result. �

While this result does give a bound for non-regular graphs, it does not seem to be sharp except
when G is regular (and so reduces to Theorem 1.1). In particular, it would nice to get a bound
that would imply Conjecture 1 in general. We conjecture the following.

Conjecture 3. If G is a graph on n vertices with minimum degree at least δ ≥ 1 and maximum
degree at most ∆, then

i(G) ≤ i(Kδ,∆)d
n

δ+∆e.

We are able to prove a slightly stronger result in the case when δ = 1 and do so at the end of
Section 3.

Theorem 1.8. If n and ∆ are integers with 1 ≤ ∆ ≤ n − 1 and q and r are defined to be the
unique integers such that n = q(∆ + 1) + r and 0 ≤ r < ∆ + 1, then for any graph G on n vertices
with δ(G) ≥ 1 and ∆(G) ≤ ∆, it is the case that

i(G) ≤ i(K1,∆)qi(K1,r−1).

2. Proof of Theorem 1.5 and related results

In this section, we begin by proving Theorem 1.5.

Theorem 1.5. Let n, δ, and t be positive integers with n ≥ 2δ and t ≥ 3. If G is a bipartite graph
on n vertices and minimum degree at least δ, then

it(G) ≤ it(Kδ,n−δ),

with equality if and only if G = Kδ,n−δ.

Proof. Let G be any n-vertex bipartite graph of minimum degree at least δ with bipartition G =
A ∪ B. We may assume, without loss of generality, that |A| ≤ |B|. We know that |A| ≥ δ, for if
not, the vertices of B could not satisfy the minimum degree requirement. Define the integer c so
that |A| = δ + c. Thus, |B| = n− δ − c and 0 ≤ c ≤ n−2δ

2 since |A| ≤ |B|.
We know that independent sets in G can be partitioned into those contained entirely in A,

those contained entirely in B, and those containing vertices from both A and B. Let Λt =
{I ∈ It(G) : I ∩A, I ∩B 6= ∅}. So, as A and B are themselves independent sets, we have

it(G) =

(
|A|
t

)
+

(
|B|
t

)
+ |Λt| =

(
δ + c

t

)
+

(
n− δ − c

t

)
+ |Λt| .

Our first goal will be to bound |Λt|. To this end, note that

|Λt| =
t−1∑
j=1

|{I ∈ It(G) : |I ∩B| = j}| =
t−1∑
j=1

1

j

∑
b∈B
|{(b, I) : I ∈ It(G), |I ∩B| = j, b ∈ I}| .
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If I ∈ It(G) is such that |I ∩B| = j and b ∈ I for some b ∈ B, then the vertices of I ∩ A cannot
be in the neighborhood of b and so, since d(b) ≥ δ, there are at most |A| − δ = c vertices in A from
which to choose the t − j vertices of I ∩ A. Further, the vertices of (I ∩ B) \ {b} must not be in
any of the neighborhoods of the vertices in I ∩A. This joint neighborhood must have size at least
δ and so there are at most n− 2δ − c− 1 vertices left to choose the j − 1 vertices of (I ∩B) \ {b}.
Thus, we have

|Λt| =
t−1∑
j=1

1

j

∑
b∈B
|{(b, I) : I ∈ It(G), |I ∩B| = j, b ∈ I}|

≤
t−1∑
j=1

1

j

∑
b∈B

(
c

t− j

)(
n− 2δ − c− 1

j − 1

)

=

t−1∑
j=1

n− δ − c
j

(
c

t− j

)(
n− 2δ − c− 1

j − 1

)

=
n− δ − c
n− 2δ − c

t−1∑
j=1

(
c

t− j

)(
n− 2δ − c

j

)
. (1)

We will now use this bound on Λt to show that if t ≥ 3, then the difference it(Kδ,n−δ)− it(G) is
nonnegative. Using (1), we see

it(Kδ,n−δ)− it(G) ≥
(
n− δ
t

)
+

(
δ

t

)
−
(
n− δ − c

t

)
−
(
δ + c

t

)
− n− δ − c
n− 2δ − c

t−1∑
j=1

(
c

t− j

)(
n− 2δ − c

j

)

=

t∑
j=0

(
c

t− j

)(
n− δ − c

j

)
+

(
δ

t

)
−
(
n− δ − c

t

)
−

t∑
j=0

(
c

t− j

)(
δ

j

)

− n− δ − c
n− 2δ − c

t−1∑
j=1

(
c

t− j

)(
n− 2δ − c

j

)

=
t−1∑
j=1

(
c

t− j

)(
n− δ − c

j

)
−

t−1∑
j=1

(
c

t− j

)(
δ

j

)

− n− δ − c
n− 2δ − c

t−1∑
j=1

(
c

t− j

)(
n− 2δ − c

j

)

=
t−1∑
j=1

(
c

t− j

)[(
n− δ − c

j

)
−
(
δ

j

)
− n− δ − c
n− 2δ − c

(
n− 2δ − c

j

)]
,
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where the first equality follows from Vandermonde’s identity. Expanding and applying this again
to the above, we have

it(Kδ,n−δ)− it(G) =
t−1∑
j=1

(
c

t− j

)[j−1∑
l=1

(
δ

l

)(
n− 2δ − c
j − l

)
− δ

n− 2δ − c

(
n− 2δ − c

j

)]

= −
(

c

t− 1

)
δ +

(
c

t− 2

)[
δ(n− 2δ − c)− δ

n− 2δ − c

(
n− 2δ − c

2

)]
+

t−1∑
j=3

(
c

t− j

)[j−1∑
l=1

(
δ

l

)(
n− 2δ − c
j − l

)
− δ

n− 2δ − c

(
n− 2δ − c

j

)]
, (2)

where the second equality holds because t ≥ 3. We then note that

j−1∑
l=1

(
δ

l

)(
n− 2δ − c
j − l

)
≥ δ
(
n− 2δ − c
j − 1

)
>

δ

n− 2δ − c

(
n− 2δ − c

j

)
. (3)

So, to show that it(Kδ,n−δ)− it(G) ≥ 0, it suffices to show that(
c

t− 2

)[
δ(n− 2δ − c)− δ

n− 2δ − c

(
n− 2δ − c

2

)]
−
(

c

t− 1

)
δ ≥ 0.

Applying Vandermonde’s identity once more, we have that the left hand side of the above is equal
to

δ

(
c

t− 1

)[
t− 1

c− t+ 2

(
n− 2δ − c+ 1

2

)
− 1

]
= δ

(
c

t− 1

)[
(t− 1)(c+ 1)

2(c− t+ 2)
− 1

]
.

Further, since t ≥ 3, we have 2(c− t+ 2) ≤ 2(c− 1) ≤ (t− 1)(c+ 1), and so the above expression
is nonnegative. To show that Kδ,n−δ is the unique maximizer of it(G), we note that in (3), the
inequality is strict and so it(G) > it(Kδ,n−δ) unless c = 0. This, in turn, implies that G = Kδ,n−δ
since the only bipartite graph with |A| = δ satisfying the minimum degree condition is Kδ,n−δ. �

Remark 1. We note that in the case t = 2, the equation (2) would become

i2(Kδ,n−δ)− i2(G) ≥ c
[
(n− δ − c)− δ − n− δ − c

n− 2δ − c
(n− 2δ − c)

]
= −cδ, (4)

which makes sense, for any graph with less edges than Kδ,n−δ should have more independent sets
of size 2. In particular, e(Kδ,n−δ)− e(G) ≤ (n− δ)δ − (n− δ − c)δ = cδ for any G with minimum
degree at least δ.

Theorem 1.5 has several implications, some of which we present here. To begin, we prove that it
implies Conjecture 1 for bipartite graphs. In fact, it gives a bound on the independence polynomial
for bipartite graphs with given minimum degree. For a graph G, we let the independence polynomial
of G, denoted P (G, x), be the generating function for independent sets in G, i.e.,

P (G, x) =

α(G)∑
t=0

it(G)xt,

where α(G) is the independence number of G. We are able to show, as a corollary of the proof of
Theorem 1.5, that Kδ,n−δ maximizes P (G, x) for all x ≥ 1.

Porism 2.1. If G is an n-vertex bipartite graph with minimum degree at least δ where n ≥ 2δ, then
P (G, x) ≤ P (Kδ,n−δ, x) for all x ≥ 1 with equality if and only if G = Kδ,n−δ.



6 J. ALEXANDER, J. CUTLER, AND T. MINK

Proof. Using the first two terms on the right hand side of (2) and also the bound in (4), we see
that

P (Kδ,n−δ)− P (G, x) =
∞∑
t=0

(it(Kδ,n−δ)− it(G))xt

≥ −cδx2 +
∞∑
t=3

[
−δ
(

c

t− 1

)
+ δ

(
c

t− 2

)
n− 2δ − c+ 1

2

]
xt

=
∞∑
t=2

−δ
(

c

t− 1

)
xt +

∞∑
t=3

δ
n− 2δ − c+ 1

2

(
c

t− 2

)
xt

=
∞∑
t=2

−δ
(

c

t− 1

)
xt +

∞∑
t=2

δ
n− 2δ − c+ 1

2

(
c

t− 1

)
xt+1

=

∞∑
t=2

δ

(
c

t− 1

)(
−1 +

n− 2δ − c+ 1

2
x

)
xt.

If c = 0, then
(
c
t−1

)
= 0, each term in the sum is zero. If c ≥ 1, then each coefficient is at least

δ
(
c
t−1

)
(−1 + c+1

2 x) as c ≤ n−2δ
2 , which is clearly non-negative when c, x ≥ 1. �

Letting x = 1, the following is immediate.

Corollary 2.2. Suppose n and δ are positive integers with n ≥ 2δ. If G is an n-vertex bipartite
graph with minimum degree at least δ, then i(G) ≤ i(Kδ,n−δ) with equality if and only if G = Kδ,n−δ.

The next result of this section proves the level set version of Conjecture 1 when n = 2δ.

Theorem 2.3. If G is any 2δ-vertex graph with minimum degree at least δ, then it(G) ≤ it(Kδ,n−δ) =
it(Kδ,δ) for all t ≥ 0.

Proof. We show this by induction on t. We have that i1(G) = i1(Kδ,δ) trivially. Assume that
it(G) ≤ it(Kδ,δ). Let Jt(G) = {(v, I) : v ∈ I, I ∈ It(G)}. Then we have

(t+ 1)it+1(G) = |Jt+1(G)| ≤ (n− δ − t)it(G).

So,

it+1(G) ≤ n− δ − t
t+ 1

it(G) ≤ n− δ − t
t+ 1

it(Kδ,δ) = it+1(Kδ,δ),

where the second inequality is by induction and the last step follows from n = 2δ. �

The following corollary immediately follows.

Corollary 2.4. If G is any 2δ-vertex graph with minimum degree at least δ, then P (G, x) ≤
P (Kδ,δ, x) for any x ≥ 0.

3. A different bound

In this section, we prove a weak version of Conjecture 3 based on Kahn’s entropy proof of
Theorem 1.1. In fact, we use ideas from Galvin and Tetali’s extension of Theorem 1.1 to general
homomorphisms [5]. The proof uses entropy methods and so we begin this section with a reminder
of some basic facts about entropy. A more detailed introduction can be found in, for example, [7].
Throughout this section, all logarithms are base two.

Definition. The entropy of a random variable X is defined by

H(X) =
∑
x

P(X = x) log
1

P(X = x)
.
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For random variables X and Y, the conditional entropy of X given Y is defined by

H(X | Y) = E(H(X | Y = y)) =
∑
y

P(Y = y)H(X | Y = y).

Entropy has some natural, and useful, properties, some of which we include in the following
theorem.

Theorem 3.1.

(1) If X is a random variable, then

H(X) ≤ log |range(X)|

with equality if and only if X is uniform on its range.
(2) If X = (X1,X2, . . . ,Xn) is a random sequence, then

H(X) = H(X1) +H(X2 | X1) + · · ·+H(Xn | X1,X2, . . . ,Xn−1).

(3) If X, Y, and Z are random variables, then

H(X | Y,Z) ≤ H(X | Y).

Part (2) of the theorem is usually called the chain rule, and we will call part (1) the uniform
bound and part (3) the information loss bound.

We also make use of the following lemma, known as Shearer’s Lemma [1]. If X = (X1,X2, . . . ,Xn)
is a random sequence and A ⊆ [n], we write XA for the random sequence (Xa)a∈A.

Theorem 3.2 (Shearer). Let X = (X1,X2, . . . ,Xn) be a random sequence and A be a collection
of subsets of [n] such that each element i ∈ [n] is in at least k elements of A. Then

H(X) ≤ 1

k

∑
A∈A

H(XA).

With the preliminaries of entropy out of the way, we will restate and prove the main theorem of
this section.

Theorem 1.6. If G is a bipartite graph with bipartition (A,B) such that δ(G) ≥ δ ≥ 1, then

i(G) ≤
∏
v∈A

(
2δ + 2d(v) − 1

)1/δ
.

Proof. Let G = (V,E) be a bipartite graph with bipartition (A,B) with |A| ≤ |B|, so that |A| ≤
n/2. Choose an independent set I uniformly from I(G) and define a random vector X = (Xv)v∈V
where Xv = 1 if v ∈ I and Xv = 0 if v 6∈ I. Since I is chosen uniformly, we know that H(X) =
log i(G). We have

H(X) = H(XB) +H(XA | XB)

≤
∑
v∈A

[
1

δ
H(XN(v)) +H(Xv | XN(v))

]
=

1

δ

∑
v∈A

[
H(XN(v) + δH(Xv | XN(v)))

]
,

where the first equality is the chain rule and the first inequality is by the information loss bound
and Shearer’s lemma with A = {N(v) : v ∈ A}. We then note that if there is a vertex w ∈ N(v)
such that Xw = 1, then Xv must be 0. We let Qv = {Xw : w ∈ N(v)} and, for R ⊆ {0, 1},
qv(R) = P(Qv = R). Also, for R ⊆ {0, 1}, let sv(R) be the number of R-labelings of the vertices
in Nv in which all elements of R are used (i.e., the number of surjections from Nv to R) and tv(R)
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be the number of possible values of Xv given that Qv = R. Thus, sv({0}) = sv({1}) = 1 and

sv({0, 1}) = 2d(v) − 2. We also have that tv({0, 1}) = tv({1}) = 1 and tv({0}) = 2.
We then see that

1

δ

∑
v∈A

[
H(XN(v) + δH(Xv | XN(v)))

]
=

1

δ

∑
v∈A

[
H(Qv) +H(XN(v) | Qv) + δH(Xv | XN(v)))

]
≤ 1

δ

∑
v∈A

∑
∅6=R⊆{0,1}

[
qv(R) log

1

qv(R)

+ qv(R)H(XN(v) | Qv = R)

+ qv(R)δH(Xv | XN(v), Qv = R)

]
(5)

≤ 1

δ

∑
v∈A

∑
∅6=R⊆{0,1}

[
qv(R) log

1

qv(R)

+ qv(R) log sv(R) + qv(R)δ log tv(R)

]
=

1

δ

∑
v∈A

∑
∅6=R⊆{0,1}

qv(R) log
sv(R)tv(R)δ

qv(R)

≤ 1

δ

∑
v∈A

log

 ∑
∅6=R⊆{0,1}

sv(R)tv(R)δ

 (6)

=
1

δ

∑
v∈A

log
(

2δ + 2d(v) − 1
)
,

where we used the uniform bound on entropy repeatedly, the definition of conditional entropy for
(5), and Jensen’s inequality for (6). �

Remark 2. We note that this argument can be generalized to homomorphisms into any image
graph just as Galvin and Tetali proved [5]. This gives an upper bound on the number of homomor-
phisms to any image graph from a graph with given minimum and maximum degree.

We conclude the paper by proving a slightly stronger version of the δ = 1 case of Conjecture 3.

Theorem 1.8. If n and ∆ are integers with 1 ≤ ∆ ≤ n−1 and q and r are defined to be the unique
integers such that n = q(∆ + 1) + r and 0 ≤ r < ∆ + 1, then for any graph G on n vertices with
δ(G) ≥ 1 and ∆(G) ≤ ∆, it is the case that

i(G) ≤ i(K1,∆)qi(K1,r−1).

Proof. Let G be a graph with minimum degree at least one and maximum degree at most ∆. Form
a graph G′ by removing edges from G until every edge is incident to a vertex of degree one. Note
that i(G) ≤ i(G′) and also that G′ must be the disjoint union of stars. That is,

G′ =
k⋃
i=1

K1,ni ,
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where k +
∑

i ni = n. Suppose that G′ has two components that are not K1,∆’s, i.e., there are
1 ≤ s < t ≤ k such that ns, nt < ∆. Assume that ns ≤ nt. Note that i(K1,x) = 2x + 1, so that

i(K1,ns)i(K1,nt) = (2ns + 1)(2nt + 1)

< (2ns−1 + 1)(2nt+1 + 1)

= i(K1,ns−1)i(K1,nt+1).

Repeating this process, we see that there is at most one component in an extremal graph that is
not K1,∆. Thus, we have

i(G) ≤ i(G′) ≤ i(K1,∆)qi(K1,r−1).

�
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