THE INTERLACE POLYNOMIAL OF GRAPHS AT -1
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ABSTRACT. In this paper we give an explicit formula for the interlace polynomial at x = —1 for
any graph, and as a result prove a conjecture of Arratia, Bollobds and Sorkin [2] that states that it
is always of the form £2°. We also give a description of the graphs for which s is maximal.

1. INTRODUCTION

The study of Euler circuits of directed graphs related to DNA sequencing [1] inspired Arratia,
Bollobés and Sorkin [2] to introduce a new graph polynomial satisfying a striking recurrence re-
lation. Although in [3] a fair amount is proved about the interlace polynomial, it is still a rather
mysterious graph invariant. The aim of this note is to shed more light on the interlace polynomial
by proving a conjecture of Arratia, Bollobds and Sorkin [2]. Before we state this conjecture, we
introduce the interlace polynomial.

As usual, we write Ng(v) for the closed neighborhood of a vertex v in a graph G, i.e., Ng(v) =
{u:wv € E(G) or u = v}. For any non-empty graph G and any edge zy € E(G) define G,
the pivot of G with respect to zy, as a graph with V(G@)) = V(@) and E(G\"Y) equal to the
symmetric difference E(G) A S where S is the set of edges uv with u,v € (Ng(xz) U Ng(y)) \ {z,y}
and Ng(u) N {z,y} # Na(v) N {z, y}.

For an arbitrary graph G, the interlace polynomial qc(x) is defined by

" if G = E,, is empty;
(1) gc(z) = .
{QGx(:E) + 4o (v) if zy € E(G).
It is shown in [2] that this gives a well defined polynomial on all simple graphs. Note in particular,
if G = G1 UG- is the disjoint union of two graphs GG1 and Go then
(2) 46 (7) = g, (v)qa, (2).

Numerical evidence led Arratia, Bollobas and Sorkin [3] conjecture that the absolute value of
gc(—1) is always a non-negative integer power of 2. In [3] it is shown that the conjecture holds
for circle-graphs. In fact, in that case the conjecture follows from a theorem of Martin [6] (see Las
Vergnas [4], [5]). Here we prove the full conjecture by a completely different method. We shall also
describe the graphs G of order n for which |gg(—1)| is maximal.

2. THE VALUE AT —1

Theorem 1. Let A be the adjacency matriz of G, n = |V (G)| and let r be the rank of the Laplacian
matriz I + A over the field of two elements. Then

3) Go(~1) = (~1)°2"7 = (~1)" (2"

Date: June 22, 2000.



THE INTERLACE POLYNOMIAL OF GRAPHS AT -1 2

Proof. Using the defining relation (1) it is enough to prove the result for the empty graph E,, and to
prove that for other graphs the expression (—1)"(—2)""" satisfies the recurrence in (1). For empty
graphs the result is immediate since gg(x) = ™ and the rank of I + A = I is n. The recurrence
can be written in the form

(4) (=1)"q6(=1) + (=1)"'g6-a(=1) + (=1)" ' ggey _, (-1) = 0.

Hence we need to show that (—2)*1 + (—2)%2 4 (—2)% = 0 where s;, s2 and sz are the nullities of
I + A for the three graphs

(5) G G-z G _y
This in turn holds when these nullities are of the form s, s and s + 1 in some order for some s.
Let xy € E(G) and order the vertices in the form z,y,vo1, ..., Vok, V11, - - - , U3k, Where vg; are the

vertices adjacent to neither x nor y, vy; are adjacent to y only, vg; are adjacent to x only and v3;
are adjacent to both x and y. The matrices I + A for the graphs (5) are now of the form

11 0 0 1 1

1 1 0 1 0 1

0 0 A Aor Az Ao

0 1 Ay A A A

1 0 Az Az Ay As

1 1 Azy A3z Azx Asg
1 0 1 0 1 1 0 0 1 1
0 Agpo Aor Aoz Ao 0 A Aot Ap2 Aoz

(6) 1 Ay An Aip A 0 Ay A 1+Ap 1+A53

0 Agy Az Ay Az 1 Ay 1+Ax Ay 1+A23
1 Azg Aszr Asx Asg 1 Aszg 1+A31 1+A30  Ass

Where 1 refers to a block of 1’s of appropriate size and A;; = Aﬁ Using elementary row and
column operations we can reduce these matrices to

00 O 1 1 0

0 0 0 0
App Aot Aoz Aoz
Ao 1+An A 1+Ag3
Asg  Aar Az Az
Aszg 14+A31 Aszp 14+As3

O~ Rk OO
OO OO

1 0 0 0 0 1 0 1 1 0

0 Ao Aot Aoz Aos 0 Ao Aot Aoz Aos
(7) 0 A 14+Ann A 14Ag 1 Ao 1+A1n A 1+Ag3

0 Az A Ay A 1 Ay Ay A Ay

0 Azg 1+A37 Az 1+As3 0 Azg 1+A3; Az 1+As3

without affecting their rank. In the first matrix we have added the second row to the first, fourth
and sixth (blocks of) rows. Then the second column was added to the first, fourth and sixth (blocks
of) columns, so as to clear the non-diagonal entries in the second row. For the other two matrices
we have added the first row to the third and fifth blocks of rows so as to make the first column
of these matrices have the given forms. Then the first column was added to the third and fifth
blocks of columns so as to make the first row have the given forms. Since removing the second row
and column in the first matrix does not affect its nullity, the Theorem will now follow from the
following simple algebraic lemma. (Il
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Lemma 2. If M = M7 is symmetric, b is a row vector and all matrices are over the field of two
elements then the nullities of the following matrices are of the form s, s and s + 1 in some order.

Groa) G o)

Proof. Assume first that there exists a vector v with vM = b. By adding v; times row ¢ to row 1
and v; times column 7 to column 1 in the first two matrices we are reduced to the case b = 0.
(If vb" = 1 then the top left entry will be changed in both matrices, however this just swaps the
formats of these matrices.) In the case b = 0 the nullities of the three matrices are clearly s + 1, s
and s respectively where s is the nullity of M. Now assume b is linearly independent of the rows
of M. Since M is symmetric, b’ is linearly independent of the columns of M. Hence the rank of
the matrix (bT M ) is exactly one more than the rank of M, and the first row of either of the first
two matrices is linearly independent of the others. Hence the ranks of the three matrices are r + 2,
r 4+ 2 and r 4+ 1 where r is the rank of M. The nullities are therefore of the form s, s, s + 1. O

3. THE MAXIMAL VALUES OF ¢g(—1)

In this section we will determine the graphs G of order n for which gg(—1) is large. By Theorem 1
this is equivalent to determining the graphs for which the rank of the Laplacian I + A is small.

Given a graph G, we write Cp(G) = ]F;/(G) for the vector space generated by V(G) over the field
of two elements. We shall often regard Cy(G) as the set of subsets V(G) with addition defined by
the symmetric difference. Similarly, if S is any set of vertices of G, we let Co(S) = F5 be the vector
subspace of Cy(G) spanned by S.

As above, define the closed neighborhood map Ng: V(G) — Co(G) by Ng(v) = {z : zv €
E(G) or x = v}. We can then uniquely extend Ng to a linear vector space map Lg: Co(G) —
Co(@). In the standard basis of Cy(G), L¢ is given by the Laplacian I + A. On the other hand, if
we regard elements of Cy(G) as subsets of V(G), then Lg maps S C V(G) to AyesNea(v).

Define the rank of G, denoted r(G), to be the dimension of Im L¢, where Im denotes the image
of a map. In other words, the rank of G is the rank of the matrix I + A over Fo. Two vertices x
and y of G are called twins if for all z # x,y, zz € E(G) if and only if yz € E(G).

Note that in the induced subgraph of G on S, say, v € S has even degree if and only if v € Lg(5).
Therefore, S\ La(S) is of even size. In particular, if Lg(S) = () then |S] is even. Furthermore, if
Le({v,w}) = 0 then Ng(v) = Ng(w) and so v and w are adjacent twins.

Lemma 3. Let G be a graph on n vertices. If Lg(S) =0 and v € S, then r(G) = r(G —v).

Proof. Deleting v from G corresponds to deleting the row and column corresponding to v from the
matrix I + A. However, if v € S and Lg(S) = () then the row corresponding to v is just the sum
of the rows corresponding to the elements of S\ {v}. Hence, removing this row does not affect the
rank of the matrix I + A. Similarly, removing the column corresponding to v does not affect the
rank. Hence r(G — v) = r(G). 0

In particular, the presence of adjacent twins does not affect the rank, so we will mainly consider
graphs without adjacent twins, and will show that any such graph with rank bounded by k is
highly structured. In particular, will show that there exists a graph Oy such that all such graphs
are induced subgraphs of Ok.

Define a graph G to be closed if for all sets S of vertices with |S| odd, there exists a unique
vertex v such that Lg(S) = Ng(v). Taking a set S consisting of a single vertex, we see that a
closed graph has no adjacent twins. We shall show that graphs with no adjacent twins and rank k
are contained as induced subgraphs in closed graphs of rank k£ and give a bound on the number of
vertices in these graphs.



THE INTERLACE POLYNOMIAL OF GRAPHS AT -1 4

-V

Ol 02 03 O4

FiGURE 1. Oy for small k.

Lemma 4. Let G be a graph on n vertices with no adjacent twins and of rank r(G) = k. Then
n < 2871 with equality if and only if G is closed.

Proof. Let v,w € V(G). Then v and w are adjacent twins if and only if Ng(v) = Ng(w). Therefore
the map Ng is an injection and |Im Ng| = |[V(G)| = n. Let € be the subset of Cy(G) consisting
of sets S with |S| even. Since the map Cy(G) — Fy given by S — |S| mod 2 is linear, £ is a linear
subspace of Cy(G) of codimension 1. The complement of £ is O, the set of all odd subsets of V(G),
and is a coset of £. Since Lg(S) # 0 for all S € O, the image Lg(O) is a non-trivial coset of
Lg(E). Therefore |Lg(O)| = |Lg(E)] = %|Lg(C'0(G))| = 2F=1_ Since Im Ng is the image of Lg on
one element sets, Im Ng C Lg(O) with equality if and only if G is closed. Hence n < 2k=1 with
equality if and only if G is closed. O

Lemma 5. Suppose G is a graph with no adjacent twins. Then there exists a closed graph H such
that G is an induced subgraph of H and r(G) = r(H).

Proof. Fix the rank k. By Lemma 4, the number of vertices of any counterexamples of this given
rank is bounded. Consider a counterexample G of maximal order.

First note that G is clearly not closed. It cannot be the case that there exists S and distinct
vertices v, w such that Lg(S) = Ng(v) = Ng(w), since G has no adjacent twins. Therefore there
exists S C V(G) with |S| odd such that there is no v with Lg(S) = Ng(v).

Define a new graph G’ as follows. Take a vertex w not in G, and connect it to the vertices in
L (S). We claim that G” has no adjacent twins and is of rank k.

Any pair of adjacent twins in G’ must contain w since G' had no such pair. Any twin v of w
would have Ng(v) = Lg(S), and by assumption, no such v exists. Hence there are no adjacent
twins in G'.

Since S\ Lg(9)| is even and |S| is odd, w is adjacent to an odd number of vertices in S.
Hence Lg/(S) = La(S) U{w} = Ler({w}). Thus Le/ (S U {w}) = 0 and so by Lemma 3, r(G') =
r(G —w)=r(G)=k.

Since G’ satisfies the conditions above, and G is a maximal counterexample, there exists a closed
graph H such that G’ is an induced subgraph of H and r(H) = k. Therefore H also contains G as
an induced subgraph, giving the desired contradiction. O

We now show that there is a unique closed graph of given rank, and we characterize its structure.
Define the graph Oy to have vertex set {S C [k] : |S|is odd} and edge set given by {{S,T} :
|SNT|is odd}.

Theorem 6. Let G be a closed graph with r(G) = k. Then G is isomorphic to Oy.

Proof. We claim that G has an independent set of k vertices. Suppose not and let S be a independent
set of vertices of maximal size. First, we will show the existence of a vertex v ¢ S, adjacent to
precisely one element w of S.
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Define Ng: V(G) — Cy(S) by Ns(x) = Ng(z) N'S. By maximality of S, there does not exist
xz € V(G) with Ng(z) = 0, and so Ng is not surjective. Since |S| < k, we have by Lemma 4 that
[V(G)| = 28=1 > |Cp(S)| and so Ng is not injective. Let x, y be such that Ng(x) = Ng(y) and
x #y. If x € S, then Ng(y) = {x} and we may set v = y and w = x. (We know y ¢ S since
y is adjacent to x.) If z,y ¢ S, let w € S. Since G is closed, there exists a vertex v such that
Le({w,z,y}) = Ng(v). Then Ng(v) NS = Ng(w) = {w}, so v, w have the required properties.

Note that the positions of v and w with respect to the set S are switched with respect to the
maximal independent set S A {v,w} and that therefore v and w are symmetric.

As v and w are not adjacent twins, by symmetry we may assume that there is a vertex x adjacent
to v and not w. Then x is not in S. Let T" = Ng(z) be the set of vertices in S adjacent to z,
and let 8" = S U {v,z} (See Figure 2). Suppose that |T| is even. Then by the closure property,
there is a vertex z such that Ng(z) = Lg(T U {z}). Then Ng(z) NS’ = {v,x}. Therefore z
is not adjacent to any vertex in S, z ¢ S and S U {z} is a larger independent set, causing a
contradiction. If alternatively |T'| were odd, we would have z such that Ng(z) = Lg(T U {v,z}).
Then Ng(z)NS" = {w,z}. Therefore z # v, z ¢ S and SU{z,v}\ {w} is a larger independent set,
causing a contradiction. These contradictions imply that there is an independent set S of size k.

Define Lg: Co(G) — Co(S) by Ls(T) = La(T)NS. Fori € S, Ls({i}) = Ng(i) = {i}. Thus
Lg acts as the identity on subsets of S. Hence Lg(Q) = Im Ng contains all 2°~! odd subsets of S.
However, |Im Ng| < |V(G)| = 2¢!, so Ng must induce a bijection between V(G) and the set of
all subsets of S of odd size.

Since S is a set of size k, we can identify the set of odd subsets of S with V(Og). The map
Ng now induces a bijection from V(G) to V(Og). We now prove that Ng gives an isomorphism
between G and Oy.

Let v be any vertex of G. Since Ng(v) is a subset of S of odd order and G is closed, there exists a
vertex = such that Ng(z) = Lg(Ns(v)). Then Ng(z) = Ls(Ng(v)) = Ng(v) and v = x. Therefore
Ng(v) = Lg(Ng(v)), and for all vertices w, w € Ng(v) if and only if w is adjacent (or equal) to
an odd number of elements of Ng(v). In other words, w is adjacent or equal to v if and only if
|Ns(w) N Ng(v)| is odd. This is equivalent to Ng(w) and Ng(v) being adjacent or equal in Or. O

Note that we have only shown that if there exists a closed graph of rank k, then this must be
isomorphic to Oi. We have yet to show that Oy is a closed graph of rank k. We also note some
other properties.

Corollary 7. The graph Oy is a closed graph of rank k with the following properties:
(1) Ok has 281 wertices,
(2) Oy is preserved by the pivot operation,
(3) the automorphism group of Oy is transitive on the ordered independent sets of size k.
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Proof. If we apply Lemma 5 to the empty graph Ej, we see that there exists a closed graph of
rank %, which by Theorem 6 must be Oy. The number of vertices is 25~ by Lemma 4. Since Oy, is
the unique graph of rank k with 2¥~! vertices without adjacent twins, all of which properties are
preserved by the pivot operation, the graph itself is preserved by the pivot operation. Applying the
proof of Theorem 6 to Oy, gives an automorphism Ng of Oy taking any ordered independent set S
of size k to {{1},{2},...,{k}}. O

Finally, we get a definition of the rank of a graph with no adjacent twins in terms of the graphs Ox.

Corollary 8. Let G be a graph with no adjacent twins. Then the rank of G is the smallest integer k
such that G is an induced subgraph of Oy.

Proof. We have shown in Lemma 5 and Theorem 6 that G is an induced subgraph of Of. Assume
I < k. Then G, which is of rank k cannot be an induced subgraph of O; since, by Corollary 7, O,
is of rank [ and induced subgraphs cannot have larger ranks than the whole graph. ([l
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