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Abstract

Nordhaus and Gaddum proved sharp upper and lower bounds on the sum and product of the
chromatic number of a graph and its complement. Over the years, similar inequalities have been
shown for a plenitude of different graph invariants. In this paper, we consider such inequalities
for the number of cliques (complete subgraphs) in a graph G, denoted k(G). We note that some
such inequalities have been well-studied, e.g., lower bounds on k(G) + k(G) = k(G) + i(G),
where i(G) is the number of independent subsets of G, has been come to be known as the study
of Ramsey multiplicity. We give a history of such problems. One could consider fixed sized
versions of these problems as well. We also investigate multicolor versions of these problems,
meaning we r-color the edges of Kn yielding graphs G1, G2, . . . , Gr and give bounds on

∑
k(Gi)

and
∏

k(Gi).

1 Introduction

Extremal results in graph theory often involve maximizing or minimizing some graph invariant over
graphs on a fixed number of vertices with some sort of restriction on the number of edges. The
restriction on the number of edges can be dispensed with if one considers both the graph and its
complement simultaneously. Nordhaus and Gaddum [14] gave upper and lower bounds on the sum
and product of the chromatic numbers of a graph on n vertices and its complement.

Theorem 1.1 (Nordhaus, Gaddum 1956). If G is a graph on n vertices, then

2
√
n ≤ χ(G) + χ(G) ≤ n+ 1,

and

n ≤ χ(G)χ(G) ≤
(
n+ 1

2

)2

.

In fact, as Nordhaus and Gaddum noted, the lower bound on χ(G)χ(G) was already known as
it had been proved by Zykov [19]. Prompted by this result, there has been an abundance of papers
that have studied Nordhaus-Gaddum inequalities for a variety of graph invariants. (See [1] for a
survey.)

More recently, there has been interest in studying Nordhaus-Gaddum inequalities for the number
of certain sets in a graph. For example, Wagner [18] gave the following lower bound on ∂(G)+∂(G),
where ∂(G) is the number of dominating sets in a graph G.
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Theorem 1.2 (Wagner 2013). If G is a graph on n vertices, then

∂(G) + ∂(G) ≥ 2n.

Keough and Shane [13], prompted by a question of Wagner, proved an upper bound on ∂(G) +
∂(G) that is sharp in the lead term.

We will be interested in Nordhaus-Gaddum-type inequalities for i(G), the number of indepen-
dent sets in G, and k(G), the number of cliques (complete subgraphs) in G. We also let it(G) be
the number of independent sets of size t in G and, likewise, kt(G) be the number of cliques of size
t in G. It should be noted that i0(G) = k0(G) = 1 for any graph G and i1(G) = k1(G) = n for any
graph G on n vertices.

To introduce some (more) notation, we are interested in studying the behavior of σ(G) = i(G)+
i(G) = i(G) + k(G) and π(G) = i(G)i(G) = i(G)k(G) as G ranges over all graphs on n vertices.
We are also interested in fixed size versions of these quantities and so let σt(G) = it(G) + kt(G)
and πt(G) = it(G)kt(G). Bounds on these have been studied in various other contexts and we will
present those via Nordhaus-Gaddum inequalities. Hu and Wei [11] gave the following upper bound
on σ(G).

Theorem 1.3 (Hu, Wei 2018). If G is a graph on n vertices, then

σ(G) ≤ 2n + n+ 1,

with equality if and only if G is Kn or En.

In fact, Hu and Wei were more interested in studying Nordhaus-Gaddum inequalities for con-
nected graphs, and Theorem 1.3 was a corollary of their main result. We note, however, that this
result is, in fact, rather easy to prove as every subset of a graph can be either empty or complete,
but not both unless it is the empty set or a single vertex. The only graphs in which every subset
of the vertex set is either complete or empty (or both) are Kn and En.

As for a lower bound on σ(G), it should be noted this problem is equivalent to finding the
minimum number of complete monochromatic subgraphs in a 2-edge-coloring of Kn. This is a
well-studied problem that is known as Ramsey multiplicity. We use log to represent the natural
logarithm throughout this paper. Feige, Kenyon and Kogan proved the following in [6].

Theorem 1.4 (Feige et al. 2020). If G is a graph on n vertices, then

σ(G) ≥ n( 1
4
+o(1)) log2 n ≥ n0.36 logn.

This was an improvement over a result of Székely [17] from 1984 which showed that σ(G) ≥
n0.2275 logn On the other hand, the random graph shows that this bound cannot be improved beyond
n( 1

2
+o(1)) log2 n ≈ n0.72 logn. See the proof of Proposition 1.6 for details.
The first of the main result of this paper is the following, which bounds π(G) both above and

below.

Theorem 1.5. For any graph G on n vertices

n(
1
2
+o(1)) log2 n ≤ π(G) ≤ (n+ 1)2n.

Furthermore, the upper bound is attained by Kn and En.

We prove the upper bound in Section 2 using compression. The proof of the lower bound uses
main idea of the proof of Feige et al. [6] which appears in Section 3. The random graph G(n, 1/2)
shows that the lower bound cannot be improved beyond n(1+o(1)) log2 n.
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Proposition 1.6. Let G ∼ G(n, 1/2). Then π(G) ≤ n(1+o(1)) log2 n with high probability.

Proof. Note that G and G are both distributed as G(n, 1/2). The expected number of cliques in G
is bounded by ∑

i≥0

(
n

i

)
2−(

i
2) ≤

∑
i≥0

(
ne

√
2

i · 2i/2

)i

where we used the estimate
(
n
i

)
≤
(
ne
i

)i
. Let i∗ be the (real) value of i which maximizes the

summand on the right hand ride. Using calculus, we find that i∗ satisfies n
√
2 = i∗r

i∗ (i.e.,

i∗ ∼ log2

(
n
√
2

log2 n

)
∼ log2 n). Thus we have

E[k(G)] ≤ n · (e2i∗/2)i∗ = n(
1
2
+o(1)) log2 n

So using Markov’s inequality, we have that w.h.p. k(G) ≤ n(
1
2
+o(1)) log2 n and so by the union bound

(over G and G), we have that w.h.p.

π(G) ≤ n(1+o(1)) log2 n.

One can also consider fixed size versions of these problems. So, using the notation introduced
above, we would like to find upper and lower bounds for σt(G) = it(G) + kt(G) and πt(G) =
it(G)kt(G). Two of these bounds are, in fact, trivial. Note that if G is a graph on n vertices and
t ≥ 2, then

σt(G) ≤
(
n

t

)
and 0 ≤ πt(G).

Also, both inequalities are sharp for G = En or Kn. (Note that σ0(G) = 2, π0(G) = 1, σ1(G) = 2n,
and π1(G) = n2 for all G on n vertices.)

The other two bounds are much more interesting. The lower bound on σt(G) is a well-studied
and difficult problem under the umbrella of Ramsey multiplicity. The history begins with Good-
man [10] who gave a lower bound for t = 3. Improving a result of Erdős [5], Conlon [2] proved the
following.

Theorem 1.7 (Conlon 2012). If n is large enough and G is a graph on n vertices, then

σt(G) ≥ nt

C(1+o(1))t2
,

where C ≈ 2.18 is an explicit constant.

For an upper bound on πt(G), we note that a related problem was studied (independently) by
Huang et al. [12] and Frankl et al. [8]. Both of these groups were interested in finding

max {min {kt(G), it(G)} : G is a graph on n vertices} .

In fact, Huang et al. were able to do a bit more as the size of the complete graphs and independent
sets could be different. In Section 4, we find a lower bound on πt(G). While we are able to use
some elements of the techniques of Frankl et al., the proof requires quite a few new ideas. Our
result is as follows.
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Theorem 1.8. Let t ≥ 3 be fixed and define µt =
1
4
t−2+

√
t2+4t−4

t−1 and

ft(x) = xt(1− x)t−1(1 + (t− 1)x).

For any graph G on n vertices,

πt(G) = kt(G)it(G) ≤
(
nt

t!

)2

ft(µt) +O(n2t−1).

Moreover, this bound is tight as seen by considering the threshold graph with code (+)(1−µt)n(−)µtn

or with code (−)(1−µt)n(+)µtn.

Prompted by a question of Pfender [15], we also consider multicolored generalizations of these
problems. To be precise, we color the edges ofKn with, say, r colors, yielding graphs G1, G2, . . . , Gr.
We can then attempt to bound

r∑
i=1

k(Gi) and
r∏

i=1

k(Gi).

When r = 2, these of course reduce to the problems outlined above. The upper bound on the sum
is once again straightforward, generalizing Theorem 1.3.

Proposition 1.9. Let r ≥ 2. Suppose Kn is r-colored and that Gi is the graph of color i for each
i ∈ [r]. Then

∑r
i=1 k(Gi) ≤ (r − 1)(n + 1) + 2n. Moreover, this bound is achieved when Gi = Kn

for some i ∈ [r].

Proof. Consider any A ⊆ [n] with |A| ≥ 2. Then A can be a clique in at most one of the colors.
Thus the total number of monochromatic cliques of size at least 2 is at most 2n − n − 1. On the
other hand, when |A| = 0 or when |A| = 1, then A is considered a clique in every color. Thus we
have

∑r
i=1 k(Gi) ≤ r(n+1)+ 2n −n− 1 = (r− 1)(n+1)+ 2n. The only way to achieve equality is

for every subset of the vertices to yield a monochromatic clique, which can only happen when the
entire graph is monochromatic.

A lower bound on the product can be obtained by modifying the technique of Feige et al. [6],
which is done in Section 3. A lower bound on the sum follows from this as a simple corollary.
Perhaps most interestingly, the upper bound on the product does not follow from the same argument
as the two-color case as compression no longer works. One may still suspect that, as in the sum
case, the construction where one color is complete and the remaining colors are empty gives the
optimal bound, but we show that this is not the case. We are able to give an upper bound that is
sharp up to a constant multiple depending on the number of colors. This is done in Section 5. Our
results for r colors are summarized in the following theorem.

Theorem 1.10. Let r ≥ 3. Suppose the edges of Kn have been r-colored and for all i ∈ [r], Gi

represents the graph of i-colored edges. Then there is a constant Cr such that

n( 1
2
+o(1)) logr n ≤

r∏
i=1

k(Gi) ≤ Crn
(r2)

2n.

Furthermore, the upper bound is tight up to the constant Cr and the lower bound is tight up to a
multiple of 3 log3 r in the exponent.
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2 Upper bound on π(G)

One tool that helps us in some cases is that of compression. Compression has been used many
times to prove various results in extremal graph theory. Given two vertices x and y in a graph G,
they partition the rest of the vertices into four sets:

Nx(G) = {v ∈ V (G) \ {x, y} : v ∼ x, v ̸∼ y} ,
Ny(G) = {v ∈ V (G) \ {x, y} : v ̸∼ x, v ∼ y} ,
Nxy(G) = {v ∈ V (G) \ {x, y} : v ∼ x, v ∼ y} , and

Oxy(G) = {v ∈ V (G) \ {x, y} : v ̸∼ x, v ̸∼ y} .

We then define the compression of G from x to y, denoted Gx→y, to be the graph with vertex set
V (G) and edge set consisting of all edges of G except those in Nx with the addition of edges between
y and Nx. In other words, Nx(Gx→y) = ∅, Ny(Gx→y) = Nx(G) ∪ Ny(G), Nxy(Gx→y) = Nxy(G),
and Oxy(Gx→y) = Oxy(G). The following lemma is well-known (see, e.g., [4]), but we include a
sketch of a proof for completeness.

Lemma 2.1. If G is a graph with vertices x and y, then i(G) ≤ i(Gx→y) and i(G) ≤ i(Gx→y).

Proof. We show that there is an injection from I(G) \ I(Gx→y) to I(Gx→y) \ I(G). Note that
if I ∈ I(G) \ I(Gx→y), then it must contain an edge of Gx→y that does not exist in G. Thus,
y ∈ I and there is some z ∈ Nx(G) such that z ∈ I. But then x ̸∈ I since xz ∈ E(G) and so
I △ {x, y} ∈ I(Gx→y) \ I(G). It is straightforward to check that the map I 7→ I △ {x, y} is an
injection. Thus, we have that i(G) ≤ i(Gx→y).

For the other inequality, note that compression in G yields compression in G as well. In
particular, Gx→y = Gy→x. Thus, we also have that i(G) ≤ i(Gx→y).

In fact, the same proof yields that the number of independent sets of fixed size does not decrease
under compression.

Corollary 2.2. If G is a graph with vertices x and y, then it(G) ≤ it(Gx→y) and it(G) ≤ it(Gx→y).

Proof. Note that in the proof of Lemma 2.1, the map I 7→ I △{x, y} is in fact a map between sets
of the same size. The result follows.

Note that compressions force (closed) neighborhoods to become nested, and so repeated com-
pressions yield a graph in which the closed neighborhoods are ordered by containment. Such graphs
are known as threshold graphs.

Definition 1. A graph is a threshold graph if it can be formed iteratively from a single vertex by,
at each step, adding either an isolated vertex or a dominating vertex.

A threshold graph on n vertices, by definition, can be represented by a binary code of length
n− 1 (the initial vertex does not need to be encoded) where + corresponds to a dominating vertex
and − corresponds to an isolate. We call this the code of a threshold graph and write it from right
to left.

Lemma 2.3. For any graph G on n vertices, there is a threshold graph T on n vertices such that

π(G) ≤ π(T ) and πt(G) ≤ πt(T ).
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Theorem 2.4. If G is a graph on n vertices, then

π(G) ≤ (n+ 1)2n = π(Kn).

Proof. We prove the statement by induction on n and note that the statement is trivial for n = 1.
Thus, assume the statement is true for n and let G be a graph on n + 1 vertices. By Lemma 2.3,
we know that there is a threshold graph T on n + 1 vertices with π(G) ≤ π(T ). Note that if T
is a threshold graph, then T is also a threshold graph (with complementary code to that of T ).
Further, we know that π(T ) = π(T ) and so may assume that the final vertex, say x, added to T
was a dominating vertex. Let T ′ = T − x. Then, since x is a dominating vertex, it can be added
(or not) to any clique of T ′ to get a clique in T . Also, the vertex x is only in one independent set
in T , namely {x}. So, we have π(T ) = i(T )k(T ) = (i(T ′) + 1)2k(T ′). So,

π(T ) = (i(T ′) + 1)2k(T ′)

= 2π(T ′) + 2k(T ′)

≤ 2[(n+ 1)2n] + 2 · 2n

= (n+ 2)2n+1,

where the inequality follows from the induction hypothesis and the fact that k(T ′) ≤ 2n.

3 Lower bound for π(G)

In this section, we prove the lower bounds in Theorem 1.5 and Theorem 1.10.

Theorem 3.1. Let r ≥ 2 and suppose that rm ≤ n < rm+1. Suppose Kn is r-colored and that Gi

is the graph of color i for each i ∈ [r]. Then

r∏
i=1

k(Gi) ≥ r
1
2
m2−O(m logm) = n( 1

2
+o(1)) logr n

Proof. As noted in the introduction, we use a modification of a technique of Feige et al. [6]. Let
G be an r-colored Kn. We say that a sequence of distinct vertices (v1, . . . , vq) is good if for all
i = 1, . . . q − 1, there exists Ci ∈ [r] such that {vi+1, . . . , vq} ⊆ NCi(vi). Here, NC(v) refers to the
C-colored neighborhood of v, i.e. {w ∈ G : vw is color C}.

Let X (G, q) be the set of all good sequences of G of length q. Define the recursive sequence
a1 = n and ak+1 =

⌈
ak−1
r

⌉
for all k ≥ 1. Note that since n ≥ rm, we have that ak ≥ rm−k+1 for all

1 ≤ k ≤ m. Indeed, by induction, we have that ak+1 =
⌈
ak−1
r

⌉
≥
⌈
rm−k+1−1

r

⌉
= rm−k.

We now claim that
q∏

i=1

ai ≤ X (G, q) ≤ q! ·
r∏

i=1

k(Gi) (1)

To see the lower bound, we note that there are a1 = n choices for the first vertex, v1, in a good
sequence. Now v1 has at least a2 neighbors of some color C1 ∈ [r] and so there are at least a2 choices
for v2. We restrict G to NC1(v1) and note that v2 has at least a3 neighbors in NC1(v1) of some
color C2 ∈ [r]. Continuing in this manner (restricting to the nested monochromatic neighborhoods
at each step) we have the lower bound.

To see the upper bound, notice that all the vertices vi in a good sequence with Ci = k form
a clique in color k. So each good sequence corresponds to a tuple of monochromatic cliques
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(A1, . . . , Ar). A set of vertices {v1, . . . , vq} can appear in at most q! many good sequences. Rear-
ranging (1) and setting q = m, we have

r∏
i=1

k(Gi) ≥
1

m!

m∏
i=1

ai ≥
1

m!

m∏
i=1

rm−i+1 ≥ r
1
2
m2−O(m logm).

The tightness mentioned in Theorem 1.10 follows from considering a randomly 3-colored Kn.
A nearly identical proof to that of Proposition 1.6 shows that in this case, with high probability,

3∏
i=1

k(Gi) ≤ n( 3
2
+o(1)) log3 n = n(3 log3 r)·( 12+o(1)) logr n.

It is interesting to note that in this case, taking a randomly r-colored Kn would lead to an exponent
of essentially r

2 logr n which is larger than the given exponent for r = 2 and all r > 3.
We have the following Corollary which provides a lower bound for

∑r
i=1 k(Gi) for r ≥ 2. The

result follows simply by applying the AM-GM inequality
∑r

i=1 k(Gi) ≥ r · (
∏r

i=1 k(Gi))
1/r.

Corollary 3.2. Let r ≥ 2 and suppose that rm ≤ n < rm+1. Suppose Kn is r-colored and that Gi

is the graph of color i for each i ∈ [r]. Then

r∑
i=1

k(Gi) ≥ r
1
2r

m2−O(m logm) = n( 1
2r

+o(1)) logr n.

4 Upper bound on πt(G)

In this section we prove Theorem 1.8. As noted in the introduction, to find an upper bound on
πt(G) = it(G)kt(G), we begin by following the method of Frankl et al. [7]. We give a moderately
terse description of the setup and refer the reader to Section 2.3 of [7] for more details.

Firstly, we note that by Lemma 2.3, we need only to maximize πt(T ) among threshold graphs.
As noted above, a threshold graph T on n vertices is formed by successively adding dominating and
isolated vertices and so can be associated with a binary code where + denotes an added dominating
vertex and − denotes an isolate. The set of all dominating vertices forms a clique, say VK , in T
and the set of all isolates forms an independent set, say VI . Note that V (T ) is the disjoint union of
VI and VK and there is, of course, a bipartite graph between VI and VK . If we want to count the
number of cliques of size t in T , then we get

SK := kt(T ) =

(
|VK |
t

)
+
∑
w∈VI

(
dT (w)

t− 1

)
.

Likewise, if we want to count the number of independent sets of size t, we get

SI := it(T ) =

(
|VI |
t

)
+
∑
v∈VK

(
dT (v)

t− 1

)
.

We can order the vertices in VK and VI according to their degree in T and T , respectively (note
that we are effectively ignoring the edges within VK since we only consider dT (v) for all v ∈ VK).
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We let VK = {v1, v2, . . . , vr} where dT (vi) = ai and a1 ≥ a2 ≥ · · · ≥ ar. Also, VI = {w1, w2, . . . , ws}
where dT (wj) = bj and b1 ≤ b2 ≤ · · · ≤ bs. Thus, we have

SK =
1

t!

rt + t
s∑

j=1

bt−1
j +O(nt−1)

 and SI =
1

t!

(
st + t

r∑
i=1

at−1
i +O(nt−1)

)
.

So, we are interested in maximizing the product SKSI . In order to do this, we would like to
shift to a continuous version of the problem. However, we must first limit the types of sequences
a = (a1, a2, . . . , ar) and b = (b1, b2, . . . , bs). We can do this using the well-known Gale-Ryser
Theorem [9, 16] that classifies the degree sequences of bipartite graphs. Recall that given a sequence
c = (c1, c2, . . . , cs), we obtain its conjugate c∗ = (c∗1, c

∗
2, . . .) by defining c∗j = |{i : ci ≥ j}|. Also we

say that a sequence a is majorized by c, denoted a ≺ c, if
∑k

i=1 ai ≤
∑k

i=1 ci for all k (where we
extend one of the sequences by appending 0s if necessary).

Theorem 4.1 (Gale, Ryser). Let a = (a1, a2, . . . , ar) and c = (c1, c2, . . . , cs) be non-increasing
sequences of non-negative integers with the same sum. Then there is a bipartite graph G with
partition V (G) = A ∪ C such that a and c are the degree sequences of A and C if and only if
a ≺ c∗.

Note that we cannot apply the Gale-Ryser Theorem to our sequences a and b above since
a is a degree sequence in T and b is a degree sequence in T . But if we let cj = r − bj , then
c = (c1, c2, . . . , cs) is the degree sequence of VI in T and, further, c1 ≥ c2 ≥ · · · ≥ cs. Since∑r

i=1 ai =
∑s

j=1 cj , the Gale-Ryser Theorem yields that a ≺ c∗.

Since at−1
i is a convex function, we note that if a ≺ â, then

∑
at−1
i ≤

∑
ât−1
i . Suppose that we

fix the sequence b so that SK is fixed. Then we’d like to maximize SI or, equivalently, maximize∑
at−1
i . But since a ≺ c∗, we need to take a = c∗. If a = (a1, a2, . . . , ar) and b = (b1, b2, . . . , bs),

where s ≥ a1 ≥ a2 ≥ · · · ar ≥ 0 and 0 ≤ b1 ≤ b2 ≤ · · · ≤ bs ≤ r, then we say a and b are packed if
a = c∗ where c = (r − b1, r − b2, . . . , r − bs). We are interested in

gt(r, s) =
1

(t!)2
max


rt + t

s∑
j=1

bt−1
j

(st + t

r∑
i=1

at−1
i

)
: a and b are packed

 ,

where the a and b in the maximization problem are as above. Lastly, we let

gt(n) = max {gt(r, s) : 1 ≤ r ≤ s ≤ n, r + s = n} .

We have that for any G on n vertices, πt(G) ≤ gt(n). The packing requirement on a and b means
that if we are given r, s, and b, then a is determined. Further, we can visualize this packing by
noting that a and b can be packed into an r×s rectangle of unit squares where the border between
the a squares and the b squares yields an “up-right” path from (0, 0) to (s, r). As an example, let
s = 4, r = 3 and b = (0, 1, 1, 3). Then c = (3, 2, 2, 0) and so a = c∗ = (3, 3, 1). This example is
visualized in Figure 1.

These paths generalize easily to a continuous setting. We let p, q ∈ R+ be such that p+ q = 1
(interpreting p as r/n and q as s/n). Let x : [0, 1] → [0, q] and y : [0, 1] → [0, p] be differentiable.
The path ℓ = {(x(τ), y(τ)) : 0 ≤ τ ≤ 1} is said to be a border if

1. ℓ starts at (0, 0) and ends at (q, p), i.e., x(0) = y(0) = 0, x(1) = q, and y(1) = p,

2. ℓ is non-decreasing, i.e., x′(τ) ≥ 0 and y′(τ) ≥ 0 for all τ ∈ [0, 1], and
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3

3

1

0 1 1 3

a

b

Figure 1: Packing a = (3, 3, 1) and b = (0, 1, 1, 3) into a 3× 4 rectangle.

3. each segment of ℓ is either a horizontal or a vertical line, i.e., x′(τ)y′(τ) = 0 for all τ ∈ [0, 1].

Let L = L(q) be the set of all borders, and let L = ∪i≥1Li, where Li is the set of borders with
exactly i turns. Finally, define

ht(q) = max
ℓ∈L

(
pt + tIX(ℓ)

) (
qt + tIY (ℓ)

)
, (2)

where

IX(ℓ) = IX =

∫ 1

0
(y(τ))t−1x′(τ) dτ and IY (ℓ) = IY =

∫ 1

0
(x(τ))t−1y′(τ) dτ

for ℓ = {(x(τ), y(τ)) : 0 ≤ τ ≤ 1} ∈ L. So, we have

IX(ℓ) ≤ qpt−1 and IY (ℓ) ≤ pqt−1,

for all ℓ ∈ L. We then have that for any G on n vertices,

πt(G) ≤
(
nt

t!

)2

max
q∈[0,1]

ht(q) +O(n2t−1). (3)

Our goal is to show that, in fact, that the maximum in (2) occurs in L1 (which contains only two
paths: “up-right” and “right-up.”). These paths correspond to threshold graphs with only one sign
change in their code. Once we know this, the maximization in (3) becomes a simple single variable
calculus problem. Crucially, the following result of Frankl et al. [7], which is Lemma 6 in their
paper, tells us that we can already restrict our attention to borders in L1 ∪ L2.

Theorem 4.2 (Frankl, Kato, Katona, Tokushige [7]). Let n ≥ 3. For every ℓ ∈ Ln, there is an
ℓ′ ∈ Ln′ with n′ < n such that

IX(ℓ′) > IX(ℓ) and IY (ℓ
′) > IY (ℓ).

Further, paths in L2 either start going up, turn right, go all the way across, and finally turn
up to end at (q, p), or they start going right, turn up, go all the way up, and turn right to end at
(q, p). By symmetry, we can analyze the former case which is pictured in Figure 2.

Note that, using (0, a) as the point at which the border turns right as in Figure 2, we have

IX(ℓ) = qat−1 and IY (ℓ) = (p− a)qt−1.

We let b = p− a, so that p = a+ b, and let q = c. Then by (2), we are trying to maximize(
(a+ b)t + tcat−1

) (
ct + tbct−1

)
(4)

subject to a, b, c ≥ 0 and a+ b+ c = 1. Note that if c = 0, then this product is 0, so we will assume
below that c ̸= 0. We would like to show that the maximum is achieved on the boundary (when
either a = 0 or b = 0).

9



(0, 0)

(0, a) (q, a)

(q, p)

Figure 2: An example of a path ℓ in L2 with turn points (0, a) and (q, a).

Lemma 4.3. If g(a, b, c) =
(
(a+ b)t + tcat−1

) (
ct + tbct−1

)
has a maximum on{

(a, b, c) ∈ R3 : a+ b+ c = 1, a, b, c ≥ 0
}

at a point (a∗, b∗, c∗), then a∗ = 0 or b∗ = 0.

Proof. We prove this by fixing the second factor of (4), i.e., y := ct+ tbct−1, letting c vary, and then
maximizing the first factor of (4), i.e., x := (a+ b)t + tcat−1. Suppose that y = ct + tbct−1 = K for
some fixed constant K. Notice, then, that the largest possible value of c in this case occurs when
b is as small as possible (i.e. b = 0) and the smallest possible value of c occurs when b is as large
as possible (i.e. a = 0). Since y = K is fixed, we have

dy

dc
= tct−1

(
1 +

db

dc

)
+ t(t− 1)bct−2 = 0.

So, solving for db/dc, we get
db

dc
= −1− (t− 1)

b

c
.

Since a + b + c = 1, we know that da
dc + db

dc +
dc
dc = 0, and so da

dc + db
dc = −1 and da

dc = (t − 1) bc . So,
differentiating x, we get

dx

dc
= t(a+ b)t−1

(
da

dc
+

db

dc

)
+ tat−1 + t(t− 1)cat−2da

dc

= tat−1 + t(t− 1)2bat−2 − t(a+ b)t−1. (5)

The maximum of x (as a function of c along the level curve y = K), occurs at either the largest
possible c (which happens when b = 0), the smallest possible c (which happens when a = 0), or at
a value of c where dx/dc = 0. Let us rule out this third possibility. We have that dx/dc = 0 implies

at−1 + (t− 1)2bat−2 = (a+ b)t−1.

Note that if a ̸= 0, we can divide through by at−1 to get

1 + (t− 1)2
b

a
=

(
1 +

b

a

)t−1

.
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Letting λ = b/a, we have
1 + (t− 1)2λ = (1 + λ)t−1.

But then by Descartes’ rule of signs, this polynomial equation has a unique positive solution at
some λ∗ ∈ (0,∞).

Putting this all together, we have that at the smallest possible c, it is the case that a = 0,
and so using (5), we have dx/dc = −tbt−1 < 0. At the largest possible c, we have b = 0, and so
dx/dc = tat−1 − tat−1 = 0. We’ve just shown that at exactly one point between, namely where
b = λ∗a, we have dx/dc = 0. And so x = (a+ b)t + tcat−1, as a function of c, starts off decreasing,
reaches a point where the derivative is 0 and so that point in the middle cannot be a maximum.
This shows that the maximum occurs when either a = 0 or b = 0.

We now know that the maximum in (2) occurs in L1 = {ℓ1, ℓ2} where ℓ1 is the path that goes
up then right, and ℓ2 is the path that goes right then up. Note that for ℓ1, we have that IY (ℓ1) = 0
and IX(ℓ1) = qpt−1. For ℓ2, we have that IX(ℓ2) = 0 and IY (ℓ2) = pqt−1. Thus

ht(q) = max
{
(pt + tqpt−1)qt, pt(qt + tpqt−1)

}
.

Note that these two functions are symmetric in q and p = 1 − q and correspond to ℓ1 and ℓ2
respectively. Thus if we find a maximum of the first function at q = µt, then the second function
has a maximum at p = µt. Let

f(x) = ((1− x)t + tx(1− x)t−1)xt = xt(1− x)t−1(1 + (t− 1)x)

and note that f(q) is the first function in the maximum and f(1− q) is the second. Then

f ′(x) = xt−1(1− x)t−2t
(
−(2t− 2)x2 + (t− 2)x+ 1

)
and we find that f ′ has a unique zero on (0, 1) at µt :=

1
4
t−2+

√
t2+4t−4

t−1 and f(x) has a maximum
at this point (since f(0) = f(1) = 0). Thus (referring to (3)) the upper bound in Theorem 1.8 is
proved.

Returning to the original interpretation discussed at the beginning of this section, the path ℓ1
corresponds to a threshold graph in which |VK | = r = pn = (1 − q)n and |VI | = s = qn where
a1, . . . , ar = 0. In other words dT (v) = 0 for all v ∈ VT , and so T is complete between VK and
VI . This corresponds to a threshold graph where all the + symbols are to the left of all the −
symbols. The maximum of SKSI in this case occurs when q = µt and is attained by a threshold
graph with code (+)(1−µt)n(−)µtn. Similarly for ℓ2, we have a threshold graph T where the bipartite
graph between VK and VI is empty (i.e., a disjoint union of a clique and an independent set). The
maximum of SKSI in this case occurs when q = 1−µt and is attained by the threshold graph with
code (−)(1−µt)n(+)µtn.

5 An upper bound on the multicolored product

In this section, we will prove an upper bound on
∏r

i=1 k(Gi) where Gi is the graph induced by the
ith color in an r-coloring of the edges of Kn.

Theorem 5.1. Let G1, . . . , Gr be edge disjoint graphs on the same vertex set V of n vertices. Then
the number of ordered sequences of sets of vertices (S1, . . . , Sr) such that Sj induces a clique on Gj

for all j = 1, 2, . . . , r and
⋃r

j=1 Sj = V is at most

(4r − 2)r(r−1)n(
r
2).
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Proof. If there are no such sequences, then we are done. So suppose there is at least one such
sequence. By omitting repeated vertices, if necessary, we can choose such a sequence where the
unions are disjoint, say T1, . . . , Tr. If Ti = V for some i, then Gi is complete. In this case, there are
at most (n+ 1)r−12r−1 sequences (S1, . . . , Sr) since every other Sj is either a singleton or empty.

Say that a vertex v is viable for graph Gk if it is adjacent, in Gk, to all but at most r−1 vertices
in Tk. Define the directed graph H on the vertex set [r] = {1, . . . , r} by having an edge from j to
k if there are at least 2r − 1 vertices in Tj which are viable for Gk.

Then there are no vertices j and k in H such that both j → k and k → j are edges in H. For,
otherwise, there would be a subset Uj of Tj of size 2r − 1 such that every u ∈ Uj is viable for Gk.
Likewise, there would be a subset Uk of Tk of size 2r − 1 such that every u ∈ Uk is viable for Gj .
Every vertex which is viable for Gk is adjacent, in Gk, to all but at most r − 1 vertices in Tk and
therefore to at least 2r − 1 − (r − 1) = r vertices in Uk. So Gk contains at least r(2r − 1) edges
between Uj and Uk. But, by the same argument, so does Gj . This is a contradiction as Gj and
Gk are edge-disjoint and there are only |Uj ||Uk| = (2r − 1)2 such edges in total. Thus there are at
most

(
r
2

)
directed edges in H.

Let us first count how many choices there are for (S1, . . . , Sr) such that the Si form a partition
of V . The main idea is that any such partition must “mostly” look like (T1, . . . , Tr). Indeed, for
any j ̸= k, Sj ∩ Tk must form a clique in both edge disjoint graphs Gj and Gk which implies that
|Sj ∩Tk| ≤ 1. So we have that for all i ∈ [r], |Ti \Si| ≤ r− 1 and |Si \Ti| ≤ r− 1. Since Si contains
all but at most r− 1 elements of Ti, and Si is a clique in Gi, each element of Si must be viable for
Gi.

Note that (S1, . . . , Sr) is determined if we specify the elements in Si∩Tj for i ̸= j. If v ∈ Si∩Tj ,
then v ∈ Tj and v is viable for Gi. If ji is not an edge of H, then there are at most 2r−2 vertices in
Tj which are viable for Gi and so there are at most 2r− 1 choices for Si ∩ Tj (including the empty
set). If ji is an edge of H, then there are at most |Tj |+ 1 choices for Si ∩ Tj (again including the
empty set). Thus the number of sequences (S1, . . . , Sr) is at most

(2r − 1)r(r−1)
∏

j→i∈H
(|Tj |+ 1) ≤ (2r − 1)r(r−1)n(

r
2),

using the facts that |Tj | ≤ n− 1 for all j ∈ [r] and e(H) ≤
(
r
2

)
.

Now we consider sequences of sets (S1, . . . , Sr) which does not necessarily form a partition of
V . Each such sequence can be obtained by starting with a sequence (S′

1, . . . , S
′
r) that does form

a partition and then adding some subset of Ti \ S′
i to S′

i. Thus each such (S′
1 . . . , S

′
r) gives rise to

at most (2|Ti\S′
i|)r ≤ 2r(r−1) many sequences (S1, . . . , Sr). Thus the total number of sequences is at

most
(2r − 1)r(r−1)n(

r
2) · 2r(r−1) = (4r − 2)r(r−1)n(

r
2).

Corollary 5.2. Let G1, . . . , Gr be edge-disjoint graphs on the same set of n vertices, V . Then

r∏
i=1

k(Gi) ≤ (4r − 2)r(r−1)n
(r2)

2n.

Proof. Firstly, note that
∏r

i=1 k(Gi) is simply the number of r-tuples (S1, S2, . . . , Sr) where Si is a
clique in Gi for all i = 1, 2, . . . , r. If we specify that ∪r

i=1Si = S for some S ⊆ V with |S| = k, then
Theorem 5.1 implies that the number of such tuples is at most

(4r − 2)r(r−1)kr(r−1)/2.
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But then,

r∏
i=1

k(Gi) ≤
n∑

k=1

∑
S⊆V
|S|=k

(4r − 2)r(r−1)kr(r−1)/2

= (4r − 2)r(r−1)
n∑

k=1

(
n

k

)
kr(r−1)/2

≤ (4r − 2)r(r−1)nr(r−1)/22n,

where we used the inequality
∑

k

(
n
k

)
kt ≤ nt2n in the final step.

We are able to construct edge-disjoint graphs G1, G2, . . . , Gr on n vertices where
∏r

i=1 k(Gi)
matches the bound in Corollary 5.2 up to the constant multiple depending on r. Note that the
following construction works for any n and r, but the bound is much cleaner to state when n is
divisible by

(
r
2

)
. An example of the construction is given in Figure 3.

1 2

34

1 → 2

1 → 3

1 → 4

3 → 2

4 → 2

4 → 3

Figure 3: An example of the construction in Theorem 5.3. The tournament on the left leads to the
coloring of V on the right.

Theorem 5.3. If
(
r
2

)
divides n, there exist edge-disjoint graphs G1, . . . , Gr on a set of n vertices,

say V , where
r∏

i=1

k(Gi) ≥

(
n(
r
2

))(r2) 2n.
Proof. Let T be any tournament on the vertices 1, 2, . . . , r. Split the n vertices of V into r(r−1)/2
sets of equal size (or as equal as possible in the case that

(
r
2

)
does not divide n) and label each

set by an edge of the tournament, i.e., Si→j for some edge i → j. Then let Gi consist of all edges
within each set Si→j and all edges between elements of Se1 and Se2 where e1 and e2 are distinct
edges both incident to vertex i. Note that the Gi graphs are edge-disjoint. Also, note that in this
construction, we do not color all edges of Kn as we do not assign edges between Se and Sf for
disjoint e and f in T to any of the Gi’s.
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If we choose any subset of each Si→j and at most one vertex from each Sj→i, we will get a
clique in Gi. Thus the number of cliques in Gi is∏

e:e=j→i

(1 + |Se|) ·
∏

f :f=i→k

2|Sf |.

If we multiply these factors over all i, each edge of T counts once towards each of the products
above. And so,

r∏
i=1

k(Gi) =
∏
e∈T

(1 + |Se|)2|Se|

= 2n
∏
e

(1 + |Se|)

≥ 2n
∏
e

n(
r
2

)
= 2n

(
n(
r
2

))(r2) .
6 Conclusion

In this paper we have explored upper and lower bounds on the product and sum of the number
of independent sets in a graph and its complement. More generally, we have also investigated the
fixed size and multicolor versions of these problems. Many interesting open problems remain.

In Theorem 1.8 we proved a tight upper bound on πt(G) = kt(G1)kt(G2) where G2 = G1. We
made use of compression to show that the G which attains the maximum must be a threshold
graph. One may pursue a multicolor version of this theorem, i.e., finding a (tight) upper bound
for

∏r
k=1 kt(Gi). As mentioned earlier, we know of no multicolor analogue of graph compression

which makes the problem much more difficult. We trivially have an upper bound of
(
n
t

)r ∼ 1
t!rn

tr.
Partitioning Kn into r vertex disjoint cliques shows that there is a graph with

∏r
k=1 kt(Gi) ≥(

n/r
t

)r
∼ 1

rtrt!rn
tr.

Another interesting place for improvement is in the lower bound for the multicolor product∏r
i=1 k(Gi) in Theorem 3.1. In this case, the proven lower bound and the tightness example differ

by a factor of 3 log3 r in the exponent. While finding the exact exponent may be a difficult problem,
it may be nice to find a tightness example which differs only by a factor not depending on r.

Finally, a possible area of future exploration is that of a lower bound on the multicolor fixed-size
sum

∑r
i=1 kt(Gi). The case of r = 3 colors and triangles (t = 3) is relatively well-known and was

settled by Cummings et al. [3]. The authors of that paper also asked about triangles in graphs
colored with more than three colors.
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