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Abstract. Extremal problems for graph homomorphisms have recently become a topic of much
research. Let hom(G,H) denote the number of homomorphisms from G to H. A natural set of
problems arises when we fix an image graph H and determine which graph(s) G on n vertices and
m edges maximize hom(G,H). We prove that if H is loop-threshold, then, for every n and m, there
is a threshold graph G with n vertices and m edges which maximizes hom(G,H). Similarly, we
show that loop-quasi-threshold image graphs have quasi-threshold extremal graphs.

In the case H = P o

3 , the path on three vertices in which every vertex in looped, the authors [5]
determined a set of five graphs, one of which must be extremal for hom(G,P o

3 ). Also in this paper,
using similar techniques, we determine a set of extremal graphs for “the fox”, a graph formed by
deleting the loop on one of the end-vertices of P o

3 . The fox is the unique connected loop-threshold
image graph on at most three vertices for which the extremal problem was not previously solved.

1. Introduction

The study of extremal problems related to graph homomorphisms includes many areas of classical
graph theory. For graphs G and H, we define Hom(G,H) be the set of homomorphisms from G to
H, i.e.,

Hom(G,H) = {φ : V (G) → V (H) : xy ∈ E(G) =⇒ φ(x)φ(y) ∈ E(H)} .

Also, we let hom(G,H) = |Hom(G,H)|. A natural set of problems arises from fixing an image graph
H and determining which graph (or graphs) G from some class of graphs maximizes hom(G,H)—
see, for instance, [1, 5, 7, 8, 12, 15]. For example, setting H = Kq, we see that hom(G,Kq) is simply
the number of proper q-colorings of G. The problem of maximizing the number of q-colorings over
graphs on n vertices and m edges was proposed by Linial [11] and Wilf [14]. This problem has
been studied by many researchers—see the paper of Loh, Pikhurko, and Sudakov [12] for a detailed
summary of research in this area.

Another image graph for which hom(G,H) has been extensively studied is the path on two
vertices with one vertex looped and the other unlooped, denotedHI (see Figure 1). Homomorphisms

Figure 1. HI

from G to HI correspond exactly to independent sets of G, as vertices that are mapped to the
unlooped vertex ofHI form an independent set, and there is no restriction on the vertices mapped to
the looped vertex of HI . Thus, if we let I(G) be the set of independent sets of G and i(G) = |I(G)|,
then i(G) = hom(G,HI). Kahn [8] gave the following upper bound on i(G) when G is an r-regular
bipartite graph.

Theorem 1.1. If G is an r-regular bipartite graph on n vertices, then

i(G) ≤ (2r+1 − 1)n/2r.

1
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Zhao [15] extended the above bound to all r-regular graphs. Also, Galvin and Tetali [7] gen-

eralized Theorem 1.1 to general homomorphisms, proving that hom(G,H) ≤ hom(Kr,r, H)n/2r

whenever G is a bipartite r-regular graph. For the problem of maximizing the number of indepen-
dent sets over graphs of a fixed order and size, the solution is a corollary of the Kruskal-Katona
theorem [10, 9]. Define the lex graph on n vertices and m edges, denoted L(n,m), to be the graph
with vertex set [n] and edge set given by the initial m elements in the lexicographic ordering1 on
(

[n]
2

)

. We have the following (see [5] for a proof).

Theorem 1.2. If G is a graph on n vertices and m edges, then

i(G) ≤ i(L(n, e)).

The problem of computing the partition function for the Widom-Rowlinson model in statistical
physics is another homomorphism enumeration problem. Writing P o

3 for the fully-looped path
on three vertices, the number of states of the Widom-Rowlinson model on graph G is exactly
hom(G,P o

3 ). In [5], the present authors determined the maximum possible value for wr(G) =
hom(G,P o

3 ). To be precise, for each n and m, a collection of five graphs was exhibited such that
at least one of them attains the maximum value of wr(G) among all graphs with n vertices and m
edges.

The image graphs HI and P o
3 are examples of loop-quasi-threshold graphs. (We define this notion

in the following section.) We say that a graph G is hom(·, H)-extremal if hom(G,H) ≥ hom(G′, H)
for all graphs G′ with n(G′) = n(G) and e(G′) = e(G). If the graph H is clear from context, we
will simply call G extremal. In Section 2, we prove a broad result showing that if H is a loop-quasi-
threshold image graph, then there is a quasi-threshold hom(·, H)-extremal graph G of every order
and size. Our approach is based on compressions as in [5]. For most small loop-quasi-threshold
graphs, the extremal problem is understood. The analysis of weighted independent sets in [6],
together with the results in [5], take care of all connected loop-quasi-threshold image graphs on
at most three vertices with one exception. For a comprehensive survey of extremal enumeration
problems for small loop-quasi-threshold image graphs, and a result on the one exceptional image
graph, see [3].

The latter sections of this paper will investigate homomorphisms into this exceptional graph
that we call the fox. (It has also been called the wrench by Brightwell and Winkler [1].) The fox,
denoted F , is formed from P o

3 by deleting the loop on one of the end-vertices of the path (see
Figure 2). Note that elements of Hom(G,F ) have a rather natural graph theoretic interpretation.

a b

c

Figure 2. The fox, F

Using the labeling of the vertices of F in Figure 2, we note that vertices of G mapped to c form an
independent set, and vertices mapped to a and c must be non-adjacent. Thus, in the complement

1A set A is less than B in the lex order if min(A △ B) ∈ A.
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of G, vertices that get mapped to a and c form a split subgraph2 of G. So we have that hom(G,F )
counts the number of split subgraphs of G. We let vl(G) = hom(G,F ).

In Sections 3-5, we solve the problem of determining max {vl(G) : n(G) = n, e(G) = m}. It turns
out that, in its broad outlines, the behavior is very similar to that of the Widom-Rowlinson problem.
In both instances, the extremal graphs transition between “lex-like” and “colex-like” graphs. A
priori, it was not at all clear that the extremal graphs would exhibit such similar behavior in this
case. It would be of interest to determine how widely this phenomenon occurs. Of relevance are the
results of Loh, Pikhurko, and Sudakov [12]. They prove that for any fixed image graph H, up to
an error factor, the optimizer for hom(·, H) is a certain {0, 1}-valued graphon that is the solution
of a quadratically constrained linear program.

The precise form of our result is that we determine, for each n and m, a small set of graphs,
one of which must be vl-extremal. In Section 3, we introduce the potentially extremal graphs for
vl(G). In Section 4, we state and prove the main theorem, relying on several technical lemmas,
whose proofs are given in Section 5.

2. Threshold and quasi-threshold optimizers

In this section we will show that for suitable image graphs H we can guarantee that we can
find hom(·, H)-extremal graphs G that have a structural similarity with H. To be precise we will
show that loop-quasi-threshold graphs H have quasi-threshold optimizers G, and loop-threshold H
have threshold optimizers G. We define these classes in this section and quote some elementary
facts about them. These classes have been extensively studied—see, for instance, [13]. Part of our
reason for studying threshold graphs is that the fox is not only loop-quasi-threshold but, in fact,
loop-threshold.

As the examples of HI and F attest, it is natural to consider image graphs with loops. On
the other hand, the natural extremal question is which simple graph G (with m edges) maximizes
hom(G,H). We therefore need to make a distinction between threshold graphs G, which are simple,
and what we call loop-threshold graphs H, which may contain loops. We define threshold graphs
here and postpone the definition of quasi-threshold graphs.

Definition. A simple graph G is a threshold graph if there exists a function w : V (G) → R and
a threshold t ∈ R such that x ∼G y if and only if w(x) + w(y) ≥ t. Equivalently (see [2]) a
graph is threshold if it can be constructed inductively from a single vertex by successively adding
dominating vertices or isolated vertices. The code of a threshold graph on vertex set [n] is the
sequence (c1, c2, . . . , cn) ∈ {0, 1}n such that, for x 6= y,

x ∼G y if and only if cmin(x,y) = 1.

Similarly, a loop-threshold graph is constructed inductively from a single, possibly looped, vertex
by successively adding looped dominating vertices or unlooped isolated vertices. Again, we can
define the code of a loop-threshold graph H on vertex set [n] to be the sequence (c1, c2, . . . , cn) ∈
{0, 1}n such that

x ∼H y if and only if cmin(x,y) = 1,

where we have allowed for the possibility that x = y.

Note that if our code is (c1, c2, . . . , cn), then whether vertex vi is adjacent to vj is determined,
if i < j, by ci. In particular, for threshold graphs, the value cn has no effect on the graph, but
for loop-threshold graphs, the value cn determines whether vn is looped or not. One can think of

2We define the join of graphs G and H, denoted G∨H, to be the graph with vertex set V (G)∪V (H) and edge set
E(G) ∪ E(H) ∪ {{x, y} : x ∈ V (G) and y ∈ V (H)}. A split graph is a graph of the form Kp ∨ Eq for some integers
p, q ≥ 1.
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constructing the graph from right to left: first we put down vn, then we put down vn−1, joined to
vn or not according to the value of cn−1. We continue in this way, adding vertices and joining them
to all or none of the vertices added so far (including the vertex itself in the loop-threshold case).

We will write expressions such as 1a0b1c . . . for the sequence consisting of a sequence of a 1s, b
0s, c 1s, etc. Zeroes are only adjacent to ones to their left, while ones are adjacent to every vertex
on their right and also ones on their left. For instance, the loop-threshold graph with code 1406 is
Ko

4 ∨E6, where Ko
4 is a fully-looped K4. Similarly, the fox has code 101. Given sequences σ and τ ,

we write σ.τ for their concatenation. For a {0, 1}-sequence σ, we let T (σ) be the threshold graph
with code σ. See [5] for a more extensive discussion.

The definition of (loop-)quasi-threshold graphs parallels the inductive definition of threshold
graphs.

Definition. A simple graph G is quasi-threshold if it is either K1, a non-trivial disjoint union of
two quasi-threshold graphs, or a join of the form K1 ∨ G′ where G′ is a quasi-threshold graph. A
loop-quasi-threshold graph is constructed inductively as either a K1 (possibly looped), a disjoint
union of two loop-quasi-threshold graphs, or the join of a loop-quasi-threshold graph with a looped
K1.

See Figure 3 for some examples of threshold, loop-threshold, quasi-threshold, and loop-quasi-
threshold graphs. Threshold and quasi-threshold graphs have similar characterizations in terms

G1 G2

G3 G4

Figure 3. Examples: G1 is quasi-threshold, but not threshold, G2 is threshold, G3

is loop-quasi-threshold, but not loop-threshold, and G4 is loop-threshold.

of neighborhood inclusion. For a vertex v in a graph G, we define the (open) neighborhood of v,
denoted N(v), by N(v) = {y ∈ V (G) : vy ∈ E(G)}.

Lemma 2.1.

(1) A graph G is threshold if for all distinct x, y ∈ V (G) either

N(x) \ {y} ⊆ N(y) \ {x} or N(y) \ {x} ⊆ N(x) \ {y} .

(2) A graph G is quasi-threshold if for all x, y ∈ V (G) with x ∼ y either

N(x) \ {y} ⊆ N(y) \ {x} or N(y) \ {x} ⊆ N(x) \ {y} .

Proof. See [2] for (1) and [5] for (2). �

Lemma 2.2.

(1) A graph H is loop-threshold if for all x, y ∈ V (H) either

N(x) ⊆ N(y) or N(y) ⊆ N(x).
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(2) A graph H is loop-quasi-threshold if for all x, y ∈ V (H) with x ∼ y either

N(x) ⊆ N(y) or N(y) ⊆ N(x).

Proof. Straightforward adaptation of the proof of Lemma 2.1. �

We now introduce a compression which makes a graph “more threshold”. Let G be any non-
complete graph, and let x and y be distinct vertices in G. The choice of x and y defines a natural
partition of V (G \ {x, y}) into four parts: vertices which are adjacent only to x, vertices adjacent
only to y, vertices adjacent to both and vertices adjacent to neither. We write

Axȳ = {v ∈ V (G \ {x, y}) : v ∼ x, v 6∼ y} ,

Axy = {v ∈ V (G \ {x, y}) : v ∼ x, v ∼ y} , and

Ax̄y = {v ∈ V (G \ {x, y}) : v 6∼ x, v ∼ y} .

Definition. The compression of G from x to y, denoted Gx→y, is the graph obtained from G by
deleting all edges between x and Axȳ and adding all edges from y to Axȳ.

It is relatively straightforward to prove that a graph with the property that no compression
changes its isomorphism type is threshold. Rather than prove this explicitly, we find it more
convenient in the next lemma to use the degree variance, or equivalently

d2(G) =
∑

x∈V (G)

d2(x),

as a measure of how close we are to being threshold. The lemma shows that repeatedly applying
compression eventually yields a (quasi-)threshold graph.

Lemma 2.3. Suppose that G is a family of graphs on a fixed vertex set V .

(1) If G is closed under all compressions, i.e., for any G′ ∈ G and any x, y ∈ V we also have
G′

x→y ∈ G, and moreover G satisfies

d2(G) = max
{

d2(G
′) : G′ ∈ G

}

,

then G is threshold.
(2) If G is closed under adjacent compressions, i.e., for any G′ ∈ G and any x, y ∈ V with x ∼ y

we also have G′

x→y ∈ G, and moreover G satisfies

d2(G) = max
{

d2(G
′) : G′ ∈ G

}

,

then G is quasi-threshold.

Proof. It is easy to see that if x, y ∈ G have incomparable neighborhoods in the sense of Lemma 2.1,
then d2(Gx→y) > d2(G), contradicting our assumption on G. Thus, by Lemma 2.1, G is respectively
threshold or quasi-threshold. �

We are ready to state and prove the main result of this section. This will imply that for every
n and m, there is a vl-extremal threshold graph.

Theorem 2.4.

(1) If H is a loop-threshold graph, n ≥ 0, and 0 ≤ m ≤
(

n
2

)

, then there is a threshold graph G
with n vertices and m edges such that

hom(G,H) = max
{

hom(G′, H) : G′ has n vertices and m edges
}

.
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(2) If H is a loop-quasi-threshold graph, n ≥ 0, and 0 ≤ m ≤
(

n
2

)

, then there is a quasi-threshold
graph G with n vertices and m edges such that

hom(G,H) = max
{

hom(G′, H) : G′ has n vertices and m edges
}

.

Proof. We prove (1), the other case is similar. By Lemma 2.3, it suffices to show that the set
of graphs on vertex set [n], having m edges, and maximizing hom(·, H) is closed under arbitrary
compressions. This, in turn, follows if we can show hom(G,H) ≤ hom(Gx→y, H) for all G. To see
this, we construct an injection

Hom(G,H) \Hom(Gx→y, H) →֒ Hom(Gx→y, H) \Hom(G,H).

Given φ ∈ Hom(G,H) \Hom(Gx→y, H), we define a new map φ′ : V (G) → V (H) that switches the
colors of x and y. (Given a homomorphism φ ∈ Hom(G,H) and a vertex v of G, we call φ(v) the
color of v, by analogy with the case H = Kq.) To be precise,

φ′(w) =











φ(w) if w 6= x, y

φ(x) if w = y

φ(y) if w = x.

It remains to show that φ′ ∈ Hom(Gx→y, H) \ Hom(G,H). Since φ 6∈ Hom(Gx→y, H), there must
exist z ∈ Axȳ such that φ(z) ∼ φ(x), but φ(z) ≁ φ(y). This shows that φ′ 6∈ Hom(G,H) since
φ′(z) ≁ φ′(x). To show φ′ ∈ Hom(Gx→y, H), note that most adjacencies are preserved; we only
need to check adjacencies involving x or y. Also, H is loop-threshold and so the existence of z as
above implies that N(φ(x)) ) N(φ(y)). If w ∈ NGx→y

(y), then w ∈ NG(x) ∪NG(y). Hence, φ(w)
is adjacent in H to either φ(x) or φ(y), but, by the inclusion above, this implies

φ′(w) = φ(w) ∼ φ(x) = φ′(y).

On the other hand, if w ∈ NGx→y
(x) \ {y}, then w ∈ NG(x) ∩NG(y). Thus, φ(w) is adjacent in H

to both φ(x) and φ(y) and in particular φ(w) ∈ NH(φ(y)). So,

φ′(w) = φ(w) ∼ φ(y) = φ′(x).

Finally, if x ∼Gx→y
y, then x ∼G y so φ(x) and φ(y) are adjacent in H, i.e., φ′(x) ∼H φ′(y). �

3. The potentially extremal graphs

For the remainder of the paper, we work on the problem of maximizing vl(G) = hom(G,F )
over graphs on n vertices and m edges. We know, from Theorem 2.4, that we can restrict our
attention to threshold graphs. We prove that there are a small number of threshold graphs that are
candidates for being the extremal graph. In this section, we introduce these potentially extremal
graphs. In the next section, we present a collection of lemmas and deduce our main theorem. In
the final section, we prove these lemmas.

All of the potentially extremal graphs look very similar either to the lex graph or to the colex
graph. The lex graph was discussed in the introduction, and is very similar to the split graph
S(n, k) = Kk ∨ En−k for some k. The colex graph with n vertices and m edges, denoted C(n,m),

has vertex set [n] and its edges are the first m elements of
(

[n]
2

)

in colex order3. All colex graphs
are similar to Kq ∪ En−q for some q. In fact, it will be valuable in our analysis to incorporate
the appropriate value of k for lex graphs and the appropriate value of q for colex graphs into our
notation.

3A is less than B in the colex order if max(A △ B) ∈ B.
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The first three examples are all very close to being split graphs. The first “almost split” graph
is the lex graph as defined above. Lex graphs interpolate between S(n, k − 1) and S(n, k). If

(

k − 1

2

)

+ (k − 1)(n− k + 1) ≤

(

k − 1

2

)

+ (k − 1)(n− k + 1) + w <

(

k

2

)

+ k(n− k),

i.e., 0 ≤ w ≤ n− k − 1, then the lex graph with e =
(

k−1
2

)

+ (k − 1)(n− k + 1) + w edges is

L(n, k, w) := L(n, e) = S(n, k)− {kx : k + w + 1 ≤ x ≤ n} .

Note that S(n, k − 1) = L(n, k, 0), so that all split graphs are special examples of lex graphs.
Our next potentially extremal graph is the split graph S(n − 1, k) with a vertex adjacent to a

portion of the complete subgraph. For 0 ≤ w ≤ k ≤ n, we define the deficient split graph to be

S0(n, k, w) = S(n− 1, k) + {nx : 1 ≤ x ≤ w} .

The isodeficient split graph occurs when we add an isolate to a deficient split graph. So, for
0 ≤ w ≤ k ≤ n, we have

S1(n, k, w) = S(n− 2, k) + {(n− 1)x : 1 ≤ x ≤ w} .

The other potentially extremal examples are close to colex graphs. Colex graphs themselves
interpolate between graphs

U(n, q) = Kq ∪ En−q,

with consecutive values of q. To be precise, for 0 ≤ w ≤ q ≤ n− 1,

C(n, q, w) := C(n, e) = U(n, q) + {x(n− q) : n− w + 1 ≤ x ≤ n} ,

with e =
(

q
2

)

+ w. Thus, C(n, q, w) is a complete graph on q vertices, together with one vertex
joined to w of these, and n− q − 1 isolates.

Our final potentially extremal graph is the antitriangle graph. This is a U(n, q) with a triangle
deleted. We let

∇(n, k) = U(n, q)− {12, 23, 13} .

Definition. A graph G is said to be potentially extremal if

G ∈ {L(n, k, w), C(n, q, w),∇(n, q),S0(n, k, w),S1(n, k, w)}

for some values of n, k, q, w. See Figure 4 for drawings of the potentially extremal graphs.

Lemma 3.1. The potentially extremal graphs have code and number of edges as given below. The
codes specified give graphs isomorphic to those defined above.

G Code Name of code e(G)

S(n, k) 1k0n−k s(n, k)
(

k
2

)

+ k(n− k)

S0(n, k, w) 1w01k−w0n−k−1 s0(n, k, w)
(

k
2

)

+ k(n− k − 1) + w

S1(n, k, w) 01w01k−w0n−k−2 s1(n, k, w)
(

k
2

)

+ k(n− k − 2) + w

L(n, k, w) 1k−10n−k−w10w ℓ(n, k, w)
(

k
2

)

+ (k − 1)(n− k) + w

∇(n, q) 0n−q1q−303 a(n, q)
(

q
2

)

− 3

C(n, q, w) 0n−q−11w01q−w c(n, q, w)
(

q
2

)

+ w

Proof. Routine calculation. �

Lemma 3.2.

(1) If v ∈ V (G) is an isolated vertex, then vl(G) = 3 vl (G \ {v}) , and
(2) If v ∈ V (G) is a dominating vertex, then vl(G) = vl (G \ {v}) + 2n−1 + 1.
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Kk En−k

S(n, k)

Kk−1 En−k

k−1 w

L(n, k, w)

Kk En−k−1

w

S0(n, k, w)

Kk En−k−2

w

S1(n, k, w)

Kq

En−q

∇(n, q)

Kq En−q−1

w

C(n, q, w)

Figure 4. The potentially extremal graphs.

Proof. Straightforward. �

Lemma 3.3. The values of vl(G) for the potentially extremal graphs G are as follows.

G vl(G)

S(n, k) 3n−k + 2n − 2n−k + k
S0(n, k, w) 3n−k + 2n − 2n−k + 2n−w−1 − 2n−k−1 + k + 2(k − w)
S1(n, k, w) 3

(

3n−1−k + 2n−1 − 2n−1−k + 2n−w−2 − 2n−k−2 + k + 2(k − w)
)

L(n, k, w) 3n−k + (2w + 1)3n−k−w + 2n − 2n−k+1 + k − 1
∇(n, q) 3n−q (2q + q + 16)
C(n, q, w) 3n−q−1

(

2q+1 + 2q−w + q + 2(q − w)
)

Proof. Routine calculation. �

4. Proof of the main theorem

In this section, we will state our main theorem precisely and prove it, relying on a sequence of
lemmas whose proofs we delay until the following section.

Theorem 4.1. Let G be a graph on n vertices and m edges. Then there is some

H ∈ {L(n, k, w), C(n, q, w),∇(n, q),S0(n, k, w),S1(n, k, w)}

such that vl(G) ≤ vl(H) and H has m edges (and, of course, n vertices). Moreover, if G is
vl-extremal and threshold, then it is isomorphic to one of the graphs above.

Note that if G is vl-extremal, this does not imply that G is potentially extremal. It is possible
that there are vl-extremal graphs that are not threshold, although we are not aware of any such
examples.

As in the Widom-Rowlinson case, the optimal graph transitions from being “lex-like” when m is
small to being “colex-like” when m is large. Using the techniques of Loh, Pikhurko, and Sudakov
[12], it is straightforward to determine that this transition occurs when the edge density is

4
(

ln4(3)− 2 ln(2) ln3(3) + ln2(2) ln2(3)
)

ln4(2) + 4 ln4(3)− 4 ln3(2) ln(3)− 8 ln(2) ln3(3) + 8 ln2(2) ln2(3)
≃ 0.422044.
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Of course, these techniques are only accurate up to a constant (but extremely large) factor since
they rely on the regularity lemma.

The tail of an extremal sequence is extremal, so in proving the theorem our main task is to show
that the only possible extensions of smaller extremal graphs are the ones allowed in the statement
of the theorem. The following technical lemmas allow us to do this. Recall that for {0, 1}-sequences
σ and τ , we write σ.τ for their concatenation and T (σ) for the threshold graph with code σ.

Lemma 4.2. If k ≤ (ln(3/2)/ ln(3))n, then the threshold graph G = T (0.ℓ(n − 1, k, w)) is not
vl-extremal unless one of the following conditions holds:

(1) w = 0, in which case G = S1(n, k − 1, k − 1) is potentially extremal,
(2) k = 1, in which case G = L(n, 1, w) is potentially extremal,
(3) w = n− k − 1, in which case G = S1(n, k, k) is potentially extremal, or
(4) w = n− k − 2, in which case G = S1(n, k, k − 1) is potentially extremal.

Lemma 4.3. If q ≥ n
2 − 2, then the threshold graph G = T (1.c(n − 1, q, w)) is not vl-extremal

unless q = n− 2 in which case G = C(n, n− 1, w + 1) is potentially extremal.

Lemma 4.4. If 2q − log(q) ≥ n, then G = T (1.a(n− 1, q)) is not vl-extremal, unless q = n− 1 in
which case G = ∇(n, n).

Lemma 4.5. If k ≤ (ln(3/2)/ ln(3))n, then neither G0 = T (0.s1(n−1, k, w)) nor G1 = T (1.s1(n−
1, k, w)) is vl-extremal except for the cases T (0.s1(n − 1, 1, 1)) = L(n, 1, n − 3) and T (1.s1(n −
1, 1, 1)) = S0(n, 2, 1).

Lemma 4.6.

(1) If n ≥ 200 and 0.35n < k < n− 4, then L(n, k, w) is not vl-extremal.
(2) If n ≥ 200 and 0.35n < k, then S1(n, k, w) is not vl-extremal.

Lemma 4.7. If k ≥ n− 4, then G = L(n, k, w) is not vl-extremal unless

(1) e(G) ≥
(

n
2

)

− 2 in which case G is a colex graph and is vl-extremal, or

(2) e(G) =
(

n
2

)

− 3 in which case G is the extremal graph ∇(n, n).

Lemma 4.8.

(1) If n ≥ 200 and 0.04n < q < 0.6n, then neither C(n, q, w) nor ∇(n, q) is vl-extremal.
(2) If n ≥ 240 and 21 ≤ q < 0.25n, then neither C(n, q, w) nor ∇(n, q) is vl-extremal.

Proof of Theorem 4.1. We prove the result by induction on n. All the cases with n ≤ 240 have
been verified by computer search. The search is tremendously simplified by the fact that any suffix
of a vl-extremal code must itself be extremal. Our program uses this observation to generate a list
of all extremal codes on n vertices from the corresponding list for n−1 vertices (see [4]). Therefore,
we may assume n > 240.

Without loss of generality, we may assume G is vl-extremal. We are left to show that G is
potentially extremal, i.e., it falls into one of the five classes in the statement of the theorem. By
Theorem 2.4, we may assume that G = T (σ1, σ2, . . . , σn) is threshold since the fox, F , is loop-
threshold. By Lemma 3.2, G′ = T (σ2, . . . , σn) is also vl-extremal. Thus, we may assume, by
induction,

G′ ∈ {L(n− 1, k, w), C(n− 1, q, w),∇(n− 1, q),S0(n− 1, k, d),S1(n− 1, k, d)}

for some suitable values of k, w, q, d. The structure of the proof is outlined in Table 1. We deal
with the cases σ1 = 0, 1, coupled with the five possibilities for the structure of G′.

To complete the proof, we need only address each “unless” in the Table 1. We deal with each
one in turn, going down the table.
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Choices for σ1
0 1

L(n− 1, k, w) Not extremal by Lemma 4.2 unless
k is large or k = 1, n− w − 2

G = L(n, k + 1, w)

C(n− 1, q, w) G = C(n, q, w) Not extremal by Lemma 4.3 unless
q is small

∇(n− 1, q) G = ∇(n, q) Not extremal by Lemma 4.4 unless
q is small or q = n− 1

S0(n− 1, k, w) G = S1(n, k, w) G = S0(n, k + 1, w + 1)
S1(n− 1, k, w) Not extremal by Lemma 4.5 unless

k = w = 1
Not extremal by Lemma 4.5

Table 1. Structure of the proof of Theorem 4.1

G = T (0.ℓ(n− 1, k, w)): Lemma 4.2 does not apply if k > (ln(3/2)/ ln(3))n. If this is the case,
then Lemma 4.6 implies that G′ was not extremal, unless G′ is a colex graph in which case
G is also colex and hence potentially extremal. If k ≤ (ln(3/2)/ ln(3))n, then Lemma 4.2
tells us that G is potentially extremal.

G = T (1.c(n− 1, q, w)): Lemma 4.3 does not apply if q < n
2 − 2. If 21 ≤ q < 0.6(n− 1) then,

by Lemma 4.8, G′ is not extremal. If q < 21, then G consists of some graph on at most
(

21
2

)

− 1 vertices, together with a collection of isolated vertices. Therefore, our computer
analysis of graphs on at most 240 vertices has already established that no such graph is
vl-extremal, except C(n− 1, 0, w) for w ≤ 2. These two graphs are lex graphs.

G = T (1.a(n− 1, q)): Lemma 4.4 does not apply if 2q − log(q) ≥ n in which case Lemma 4.8
implies that ∇(n− 1, q) is not vl-extremal.

G = T (0.s1(n− 1, 1, 1)): As we observe in Lemma 4.5, we have G = L(n, 1, n− 3).

We have established that G is potentially extremal, and so we are done. �

5. Proofs of lemmata

Lemma 4.2. If k ≤ (ln(3/2)/ ln(3))n, then the threshold graph G = T (0.ℓ(n − 1, k, w)) is not
vl-extremal unless one of the following conditions holds:

(1) w = 0, in which case G = S1(n, k − 1, k − 1) is potentially extremal,
(2) k = 1, in which case G = L(n, 1, w) is potentially extremal,
(3) w = n− k − 1, in which case G = S1(n, k, k) is potentially extremal, or
(4) w = n− k − 2, in which case G = S1(n, k, k − 1) is potentially extremal.

Proof. Note that

vl(G) = 3
(

3n−1−k + (2w + 1)3n−1−k−w + 2n−1 − 2n−k + k − 1
)

.

There are three cases in the proof depending on the size of w. In each of the three cases, there is
an alternative graph G′ with the same number of edges which beats G. We let

G′ =











L(n, k − 1, w + n− 2k + 2) if 0 ≤ w ≤ k − 2,

L(n, k, w − k + 1) if k − 1 ≤ w ≤ n− 2k − 1,

S1(n, k, w − n+ 2k + 1) if n− 2k ≤ w.

In each case, we have e(G) = e(G′).
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In the first case, when 0 ≤ w ≤ k − 2, we have

vl(G′) = 3n−k+1 + (2w+n−2k+2 + 1)3k−w−1 + 2n − 2n−k+2 + k − 2.

First note that
3n−k + (2w + 1)3n−k−w + 3k − 3 ≤ 2 · 3n−k + k − 2,

since w ≥ 1 and the linear terms are dominated by the exponential ones. We now need to show

3(2n−1 − 2n−k) ≤ 3n−k + 2n − 2n−k+2,

which is equivalent to
2n−1 + 2n−k ≤ 3n−k.

This holds provided

k ≤
ln(3/2)

ln(3)
n.

In the second case, when k − 1 ≤ w ≤ n− 2k − 1, we have

vl(G′) = 3n−k + (2w−k+1 + 1)3n−w−1 + 2n − 2n−k+1 + k − 1.

We first deal with the case when k = 2, where

vl(G′)− vl(G) = 2w−13n−w−1 + 3n−w−1 + 2n−1 + 1− 2w3n−w−2 − 3n−w−2 − 3 · 2n−2 − 3

= 2w−13n−w−2 + 2 · 3n−w−2 − 2n−2 − 2

> 0.

If k ≥ 3, then we observe that the dominant (non-canceling) term in vl(G′) is 2w−k+13n−w−1. We
will use half of this to beat the term (2w + 1)3n−k−w in vl(G), and the other half to beat the
remaining terms. Clearly, 2w−k3n−w−1 ≥ (2w + 1)3n−k−w. On the other hand,

2w−k3n−w−1 = 3n
(

2

3

)w+1(1

2

)k+1

≥ 3n
(

2

3

)n−2k (1

2

)k+1

= 2n−1

(

9

8

)k

.

Thus,
2w−k3n−w−1 + 2n − 2n−k+1 + k − 1 ≥ 3 · 2n−1 + 3k − 3.

In the final case, when n− 2k ≤ w, we have

vl(G′) = 3
(

3n−k−1 + 2n−1 − 2n−1−k + 22n−w−2k−3 − 2n−k−2 + 3k − 2w
)

.

We will first do the case w = n− k− 3, noting that the case w = n− k− 2 is one of the exceptional
cases in the lemma. We have

1

3
(vl(G′)− vl(G)) = 2n−k−3(8− 4− 2) + 4k − 2n+ 6− 2n−k−3(9− 8)− k − 8 > 0.

If w ≤ n− k − 4, we have 22n−w−2k−3 ≥ 2w3n−k−1−w since

22n−w−2k−3

2w3n−k−1−w
=

3

8

(

4

3

)n−k−w

≥
3

8

(

4

3

)4

=
32

27
.

For the remaining terms, we see

2n−k − k + 1 ≥ 3 · 2n−k−2 + 3k − 2w.
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�

Lemma 4.3. If q ≥ n
2 −2, then the threshold graph G = T (1.c(n−1, q, w)) is not vl-extremal unless

q = n− 2 in which case G = C(n, n− 1, w + 1) is potentially extremal.

Proof. There are two cases in the proof. In each, we compare G to a colex graph G′ = C(n, q′, w′).
In the first case q′ = q + 1, and in the second q′ = q + 2.

The first case applies when w ≤ 2q−n+2. We set q′ = q+1 and w′ = w+n− q− 1. Note that
w′ ≤ q + 1 by our assumption on w. We have

vl(G) = 3n−q−2
(

2q+1 + 2q−w + 3q − 2w
)

+ 2n−1 + 1, and

vl(G′) = 3n−q−2
(

2q+2 + 22q+2−w−n + 5q + 5− 2w − 2n
)

.

So,

vl(G′)− vl(G) ≥
[

3n−q−22q+2 − 3n−q−22q+1 − 3n−q−22q−w − 2n−1
]

− 3n−q−2(3q − 2w)− 1

= 3n−q−22q+1

[

1−

(

1

2

)w+1

−

(

2

3

)n−q−2
]

− 3n−q−2(3q − 2w)− 1

> 0,

provided q ≤ n− 4. The remaining cases are when q = n− 2, which is one of the exceptional cases
in the lemma, and q = n− 3, which we do separately. We have

vl(G′)− vl(G) = 3
(

2n−1 + 2n−w−4 + 3n− 2w − 15
)

− 3
(

2n−2 + 2n−w−3 + 3n− 2w − 9
)

− 2n−1 − 1

= 2n−2 − 3 · 2n−w−4 − 19

> 0.

The second case applies when w > 2q − n+ 2. We set q′ = q + 2 and w′ = w+ n− 2q − 2. Note
that 0 ≤ w′ ≤ q + 2. Now we have

vl(G′) = 3n−q−3
(

2q+3 + 23q+4−w−n + 7q + 10− 2w − 2n
)

.

When q ≤ n− 5, we see 3n−q−22q−w ≤ 3n−q−32q
′
−w′

since q′ −w′ ≥ (q−w) + 2. For the remaining
exponential terms, we have

3n−q−32q+3 − 3n−q−22q+1 − 2n−1 = 3n−q−32q+1

[

4− 3− 3

(

2

3

)n−q−2
]

≥ 3n−q−32q+1

(

1

9

)

,

since n− q − 2 ≥ 3. The remaining terms in vl(G′)− vl(G) are dominated by this one. The cases
q = n− 4 and q = n− 3 proceed similarly to the above. �

Lemma 4.4. If 2q − log(q) ≥ n, then G = T (1.a(n− 1, q)) is not vl-extremal, unless q = n− 1 in
which case G = ∇(n, n).

Proof. We compare G to C := C(n, q + 1, n − q − 4), since both graphs have
(

q
2

)

− 3 edges. Since
2q − log(q) ≥ n, it is the case that

22q−n+5 + q + 1 + 2(2q − n+ 5) ≥ 32q + q + 1 + 2(2q − n+ 5) ≥ 3q + 48,
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provided q ≥ 2. Thus, we have

vl(C)− vl(G) = 3n−q−2
(

2q+2 + 22q−n+5 + q + 1 + 2(2q − n+ 5)
)

− 3n−q−1 (2q + q + 16)− 2n−1 − 1

≥ 3n−q−22q − 2n−1 − 1

> 0,

as long as q ≤ n − 4. The cases q = n − 2 and q = n − 3 are routine. We compare G to the
corresponding colex graph. �

Lemma 4.5. If k ≤ (ln(3/2)/ ln(3))n, then neither G0 = T (0.s1(n− 1, k, w)) nor G1 = T (1.s1(n−
1, k, w)) is vl-extremal except for the cases T (0.s1(n − 1, 1, 1)) = L(n, 1, n − 3) and T (1.s1(n −
1, 1, 1)) = S0(n, 2, 1).

Proof. We may assume that k ≥ 2. We first deal with the G0 case. Depending on the value of w,
we will compare G0 to either G′ = L(n, k, w′) or G′′ = L(n, k − 1, w′′). If w ≥ 4k − n, we use the
former; otherwise we use the latter. We start with the case w ≥ 4k − n, and set w′ = w + n− 4k.
Note that 0 ≤ w′ ≤ n− k. We have

vl(G0) = 9
(

3n−2−k + 2n−2 − 2n−2−k + 2n−w−3 − 2n−k−3 + 3k − 2w
)

, and

vl(G′) = 3n−k +
(

2w+n−4k + 1
)

33k−w + 2n − 2n−k+1 + k − 1.

Under the conditions of the lemma,

2n+w−4k33k−w = 16 · 2n−4

(

27

16

)k (2

3

)w

≥ 16 · 2n−4

(

27

16

)k−w (

9

8

)w

≥ 34 · 2n−4,

provided k ≥ w + 2 or w ≥ 2. Assuming k ≥ 3, we have

vl(G′)− vl(G0) ≥ 34 · 2n−4 + 2n − 2n−k+1 − 9 · 2n−2 − 9 · 2n−w−3 − 26k

≥ 2n−4(34 + 16− 4− 36− 9)− 26k

> 0.

The remaining case (when k = 2) is an easy calculation.
On the other hand, when 1 ≤ w ≤ 4k − n − 1, we let G′′ = L(n, k − 1, w′′) where w′′ =

w + 2n− 5k + 1. Note that 0 ≤ w′′ ≤ n− k + 1. We have

vl(G′′) = 3n−k+1 + (2w+2n−5k+1 + 1)34k−n−w−1 + 2n − 2n−k+2

≥ 3n−k+1 + 2n−k + 2n − 2n−k+2,

since w ≤ 4k − n− 1. On the other hand, noting that w ≥ 1,

vl(G0) ≥ 3n−k + 9 · 2n−2 − 27 · 2n−k−3 + 9 · 2n−4.

Thus,

vl(G′′)− vl(G0) ≥ 2 · 3n−k − 29 · 2n−4

> 0,

since by hypothesis k ≤ (ln(3/2) ln(3))n.
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For the G1 case, we let S = S1(n, k + 1, w + 1). Then,

vl(S)− vl(G1) = 2n−2 + 2 > 0.

�

Lemma 4.6.

(1) If n ≥ 200 and 0.35n < k < n− 4, then L(n, k, w) is not vl-extremal.
(2) If n ≥ 200 and 0.35n < k, then S1(n, k, w) is not vl-extremal.

Proof. Let L = L(n, k, w) and let C be the colex graph with the same number of vertices and edges
as L. We have

C ⊆ Km ∪ En−m,

where m =
⌈

√

k(n− k) + 1
2

⌉

. Also, S(n, k − 1) ⊆ L. Hence we have

vl(L) ≤ vl(S(n, k − 1)) and vl(C) ≥ vl(Km ∪ En−m),

and it suffices to show vl(Km ∪ En−m) ≥ vl(S(n, k − 1)). We have

vl(S(n, k − 1)) ≤ 3n−k+1 + 2n + k − 1 ≤ 3n−k+1 + 2n+1,

whereas

vl(Km ∪ En−m) ≥ 2m3n−m.

In [5], Lemma 6.6, it is proved that 2m3n−m > 3n−k+1 + 2n+1 under the conditions in the lemma.
The other case is proved similarly, noting that vl(S1(n, k, w)) is at most 9 vl(S(n− 2, k)). �

Lemma 4.7. If k ≥ n− 4, then G = L(n, k, w) is not vl-extremal unless

(1) e(G) ≥
(

n
2

)

− 2 in which case G is a colex graph and is vl-extremal, or

(2) e(G) =
(

n
2

)

− 3 in which case G is the extremal graph ∇(n, n).

Proof. Since G has so many edges, it will be simpler to analyze vl(G) in terms of its complementary
graph G. We split vl(G) into three terms: one counting homomorphisms which only use labels b
and c, and have at least two c’s (see Figure 2 for our labeling of the vertices of F ); one counting
those in which both a’s and c’s appear; and finally the remainder, those using entirely a’s and b’s,
together with those using only b’s and at most one c. The importance of this split is that it is only
the final term that depends on n. We have

vl(G) = k(G) + spl(G) + (2n + n),

where k(G) is the number of complete subgraphs of G with at least two vertices; spl(G) is the
number of colorings of V (G) with colors a, b, and c such that the graph induced by the vertices of
colors a and c forms a split graph with the complete side colored c; and the term 2n+n counts the
final class of homomorphisms. Note that e(G) ≤ 10 and adding isolated vertices changes neither
k(G) nor spl(G). Thus, it is a simple case analysis to verify all the claims of lemma. �

Lemma 4.8.

(1) If n ≥ 200 and 0.04n < q < 0.6n, then neither C(n, q, w) nor ∇(n, q) is vl-extremal.
(2) If n ≥ 240 and 21 ≤ q < 0.25n, then neither C(n, q, w) nor ∇(n, q) is vl-extremal.

Proof. In both cases, we prove that G = C(n, q, w) is beaten by a lex graph. Since Kq ∪ En−q is a
subgraph of G, we know vl(G) ≤ vl(Kq ∪ En−q). We will choose k in such a way that S = S(n, k)
has e(S) ≥ e(Kq ∪En−q) and vl(S) > vl(Kq ∪En−q). Indeed, all we will use about vl(S) is that it

is at least 3n−k, and the only bound on vl(Kq ∪ En−q) we use is vl(Kq ∪ En−q) ≤ 3n−q2q+1.
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For (1) we define

k =

⌈

n−
√

n2 − q2 +
n

2
√

n2 − q2

⌉

.

Exactly as in the proof of Lemma 6.8 of [5], this k satisfies our conditions4.
For (2) we let ε = e(G)/n2 and

k =
⌈ εn

0.85

⌉

.

The proof now is precisely the same as that of Lemma 6.9 of [5]. The case where G = ∇(n, q) is
essentially identical. �

6. Further directions

While this paper answers the last remaining extremal question for quasi-loop-threshold image
graphs on three or fewer vertices, many interesting questions remain. One, as mentioned above,
is to determine whether there are non-threshold extremal graphs. Another would be to solve
the extremal homomorphism enumeration question for connected non-loop-quasi-threshold image
graphs on three or fewer vertices. (See Figure 5 for a list of such image graphs.) It would seem that

Figure 5. The connected image graphs on three or less vertices for which the
extremal homomorphism enumeration question remains open.

entirely different techniques need to be developed in order to solve the question for these image
graphs.
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