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Abstract. We prove a conjecture of Horak that can be thought of as an extension of classical
results including Dirac’s theorem on the existence of Hamiltonian cycles. Namely, we prove for
1 ≤ k ≤ n − 2 if G is a connected graph with A ⊂ V (G) such that dG(v) ≥ k for all v ∈ A, then
there exists a subtree T of G such that V (T ) ⊃ A and dT (v) ≤

⌈
n−1
k

⌉
for all v ∈ A.

1. Introduction

Classical results in Hamiltonian graph theory give sufficient conditions for the existence of a
Hamiltonian cycle involving the minimum degree. The starting point for these results is the theorem
of Dirac [4].

Theorem 1. If G is a graph on n vertices such that n ≥ 3 and for all v ∈ V (G), dG(v) ≥ n/2,
then G contains a Hamiltonian cycle.

Ore [7] showed that the uniform bound can be relaxed and used a condition on the sum of degrees
over pairs of nonadjacent vertices.

Theorem 2. If G is a graph of order n ≥ 3 such that for any nonadjacent vertices x and y,
dG(x) + dG(y) ≥ n, then G is Hamiltonian.

An extension of this theorem was obtained by Pósa [8].

Theorem 3. Let G be a connected graph of order n ≥ 3 such that for any two non-adjacent vertices
x and y we have

dG(x) + dG(y) ≥ k.
If k = n then G is Hamiltonian, and if k < n then G contains a path of length k and a cycle of
length at least (k + 2)/2.

The subject of this paper is closely related to a result of Bollobás and Brightwell [2] concerning
cycles through vertices with specified degrees. This generalized a question of Katchalski, who asked
if we are given a set of vertices with a certain minimum degree condition, when can we find a cycle
through a specified number of them? This problem was investigated in the case when the set of
vertices was all of V (G) by Alon [1], Egawa and Miyamoto [5] and Bollobás and Häggkvist [3].

Theorem 4. Let G be a graph with n vertices and let W be a set of w ≥ 3 vertices of degree at
least d ≥ 1. Moreover, assume that t := dw/(dn/de − 1)e ≥ 3. Then there is a cycle in G passing
through at least t vertices of W .

In a very general sense, these classical results in graph theory can be thought of as finding struc-
tures with certain maximum degree (in these cases, two) through specified vertices with minimum
degree in a graph. The main result of this paper involves finding a subtree through a specified set
of vertices in a graph. Further, this subtree has a maximum degree which depends on the minimum
degree of the specified vertices.

Throughout we assume that G is a simple graph, and for v ∈ V (G), we write dG(v) for the degree
of v in G. Also, let the neighborhood of v ∈ V (G), denoted NG(v), be defined as {u ∈ V (G) : uv ∈
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E(G)}. Lastly, for a set A ⊂ V (G), let ∆G(A) = maxv∈A dG(v) and likewise δG(A) = minv∈A dG(v).
The following conjecture was given in a presentation by Horak [6], although it may be due to Stacho.

Conjecture 5. Let k be such that 1 ≤ k ≤ n− 2. Given a connected graph G of order n and a set
A ⊆ V (G) with δG(A) ≥ k, there exists a subtree T of G such that A ⊆ V (T ) and ∆T (A) ≤

⌈
n−1
k

⌉
.

Thus, Conjecture 5 can be thought of as an extension of several classical theorems of graph
theory. It is related to classical questions involving finding structures of bounded degree in certain
graphs.

Note that, if true, the conjecture is sharp. To see this, let k ≤ n/2 and consider the complete
bipartite graph Kk,n−k as our graph G in the theorem and let A = V (Kk,n−k). Let M and N be
the parts of the Kk,n−k, with |M | = k and |N | = n− k. Then dG(v) ≥ k for all vertices in G. As
there are n− 1 edges in a tree on n vertices and, since all of them must be incident to a vertex of
M , dT (v) ≥ (n − 1)/k for all v ∈ M . Also, since dT (v) is integral, we see that dT (v) ≥

⌈
n−1
k

⌉
for

all v ∈M .
Also, note that Theorem 4 implies the conjecture is true for n

2 ≤ k ≤ n− 2, since the maximum
degree in the tree must be two, i.e., the tree is a path and we can delete any edge of the cycle to get
this path. We further note that the conjecture is nearly true for k = n− 1. In fact, if A 6= V (G),
then the conjecture is true. For if x ∈ V (G) \ A, then every vertex in A is adjacent to x, as every
vertex in A is adjacent to every vertex in G. Then a star with center x and leaves all vertices in A
satisfies the conditions of the conjecture. However, if V (G) = A, then G = Kn and we must settle
for a Hamiltonian path, meaning the maximum tree degree is 2.

The aim of this paper is to prove Conjecture 5, i.e., the following theorem.

Theorem 6. Let k be such that 1 ≤ k ≤ n − 2. Given a connected graph G of order n and a set
A ⊆ V (G) with δG(A) ≥ k, there exists a subtree T of G such that A ⊆ V (T ) and ∆T (A) ≤

⌈
n−1
k

⌉
.

It should be noted that the proof is quite a bit more straightforward in the case when k ≤
√
n− 1.

In fact, the author originally thought that the proof split into two cases depending on whether
k ≤
√
n− 1, but the proof below, while more complicated, covers both cases.

2. The proof

The aim of this section is to prove Theorem 6. Note first that the result is trivial for k = 1,
as G is connected and thus contains a spanning tree, and any tree on n vertices has maximum
degree at most n− 1. We may also assume n ≥ 2. Lastly, since, as noted above, Theorem 4 implies
Theorem 6 when

⌈
n−1
k

⌉
= 2, we may assume that

⌈
n−1
k

⌉
≥ 3, or k < (n− 1)/2.

For 2 ≤ k < (n− 1)/2, we use proof by contradiction to get the desired result. Thus we assume
that G is a counterexample to the theorem, i.e., G contains a subset of vertices A0 with dG(v) ≥ k
for all vertices v ∈ A0 and every tree T that contains A0 in G has a vertex in A0 of degree greater
than d(n − 1)/ke. In fact, amongst all counterexamples, we shall consider one with the minimal
number of edges. We consider trees in G containing all vertices of A0 that have the smallest
maximum degree of vertices in A0, say ∆. Let T be the set of such trees with the minimal number
of vertices of A0 of degree ∆ and let T ∈ T .

Let x0 ∈ A0 be a vertex of maximum degree in T , i.e., dT (x0) = ∆ = ∆T (A0) >
⌈
n−1
k

⌉
.

Throughout the proof, we shall use NG(x) to denote the neighborhood of x in G; similarly, NT (x)
denotes the T -neighborhood of x. Further, if S ⊂ V (G), NG(S) = ∪s∈SNG(s). So, we know that
|NT (x0)| = ∆ >

⌈
n−1
k

⌉
and, by our note above, we may assume ∆ ≥ 4.

The basic idea of the proof is to first construct a modified neighborhood of x0 with some helpful
properties, including being contained in A0. This allows us to get some bound on the number of
edges between this modified neighborhood and the vertices not lying on paths in T back to x0 from
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the neighborhood. This bound, in turn, allows us to count vertices outside of the neighborhood
which leads to the desired contradiction.

Now, for some T0 ∈ T , we would like to find a particular subtree of T0. The key property of the
subtree is that the leaves have no edges between them. We shall consider the subset of T , say Tx0 ,
of all trees T ′ ∈ T such that dT ′(x0) = ∆. We will think of trees in Tx0 as rooted at x0 and will
refer to predecessors of a vertex v, meaning the vertices lying on the path in T from v to x0. We
then build the subtree in stages, depending on the distance from x0. For a tree T , v ∈ V (T ) and
X ⊂ V (T ), let T 〈v,X〉 subtree of T formed by taking the union of all paths from v to any vertex
in X. In fact, for the lemma to go through, we need to consider the subset of Tx0 consisting of
edge-minimal trees, say T min

x0
.

Lemma 1. There is a subtree T of some T0 ∈ T min
x0

such that

(1) T has at least ∆ ≥
⌈
n−1
k

⌉
+ 1 leaves, the set of which will be denoted L = L(T),

(2) L ⊂ A0,
(3) for all ` ∈ L, |NG(`) ∩ T| = 1, and
(4) for all ` ∈ L, dT0(`) < ∆− 1.

Proof. We begin by considering an arbitrary T ∈ T min
x0

. Let N1(T ) be the set of vertices of A0

encountered first on any path any from x0, i.e., the members of A0 which have no predecessors in
A0 other than x0. Note that since T is edge-minimal, every path from x0 reaches a member of A0

eventually. We then let T 1
x0

be the set of trees T in T min
x0

with the number of edges in T 〈x0, N
1(T )〉

minimized (note that in this process, N1(T ) may change from tree to tree). Let T 1 ∈ T 1
x0

. We

begin by showing that if there is an edge of G − T 1 between a vertex v of N1(T 1) and any other
vertex of T 1〈x0, N

1(T 1)〉, then dT 1(v) ≥ ∆− 1.
Let C1 be the subset of N1 which consists of vertices which are adjacent in G to a vertex in

T 1〈x0, N
1(T 1)〉 other than its T 1-parent. We will show that for any v ∈ C1, dT (v) ≥ ∆ − 1. Let

v ∈ C1 and suppose that v is adjacent in G to w ∈ T 1〈x0, N
1(T 1)〉, where w is not the parent of

v in T 1. We split the argument into two cases, depending on whether w is a predecessor of v or
not. Firstly, suppose w is a predecessor of v. In this case, we know that distT 1(v, w) ≥ 2 since v
and w are adjacent in G − T 1. Then if we add vw to T 1, and remove the first edge on a path in
T 1 from w to v, we have decreased the number of edges in T 1〈x0, N

1(T 1)〉, a contradiction. We
can do this without creating a new vertex of T 1-degree ∆ (or even ∆ + 1) unless dT 1(v) ≥ ∆− 1.
Secondly, if w is not a predecessor of v, then we add vw to T 1 and remove the first edge on a path
in T 1 from w to x0. Then we have either reduced the degree of x0 (if wx0 ∈ T 1) or this gives a tree
T̄ 1 with fewer edges in T̄ 1〈x0, N

1(T̄ 1)〉 than in T 1〈x0, N
1(T 1)〉, contradicting the assumption that

T 1 ∈ T 1
x0

. Once again, we can do this without creating a new vertex of degree ∆ or ∆ + 1 unless
dT 1(v) ≥ ∆− 1.

So, we have shown now that if v ∈ C1, then dT 1(v) ≥ ∆ − 1. Note that there could be other
vertices in N1 which have T 1-degree at least ∆− 1. Let the set of vertices v ∈ N1 \ C1 such that
dT 1(v) ≥ ∆ − 1 be denoted D1 and B1 = C1

⊎
D1 (See Figure 1). Thus, B1 is the set of vertices

v ∈ N1 with T 1-degree at least ∆ − 1. At this point, for reasons that will become apparent in a
bit, we let B1

x0
be the subset of T 1

x0
such that |B1| is minimized. If there exists a T ∈ B1

x0
such

that B1 = ∅, we are done as the conditions of the lemma are satisfied by T = T 1〈x0, N
1〉. If not,

then for each v ∈ B1, we consider the set of members of A0 which are first encountered on a path
from v in T 1 away from x0. Let the set of elements of A0 reached in this way be N2

v . We then let
N2(T 1) = (N1 \ B1) ∪ (∪v∈B1N2

v ). Also, let T 2
x0

be the set of trees T ∈ B1
x0

with the number of

edges in T 〈x0, N
2(T )〉 minimized.

Working in the general case, let T i
x0

be the set of trees T i ∈ Bi−1
x0

so that the number of

edges in T i〈x0, N
i(T i)〉 is minimized. Note that when T i ∈ T i

x0
, then |E(T i〈x0, N

i(T i)〉)| >
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x0

N1 ⊆ A0

C1

D1

Figure 1. An example of N1, C1 and D1 with ∆ = 4. Solid lines represent edges
in the tree, while dotted edges are in G but not the tree.

|E(T i〈x0, N
i−1(T i)〉)| since otherwise we could find a subtree T̄ i of T i with fewer edges in T̄ i〈x0, N

i−1(T̄ i)〉
than in T i〈x0, N

i−1(T i)〉, a contradiction. Thus,

|V (T i〈x0, N
i(T i)〉)| = |E(T i〈x0, N

i(T i)〉)|+ 1

> |E(T i〈x0, N
i−1(T i)〉)|+ 1

= |V (T i〈x0, N
i−1(T i)〉)|. (1)

Now, let Ci be the subset of N i consisting of vertices that are adjacent in G to a vertex in
T i〈x0, N

i(T i)〉 other than its parent. We must now use a bit more care when showing that if
v ∈ Ci, then dT i(v) is large. Whereas in the initial case, we could show that if y ∈ C1, then
dT 1(y) ≥ ∆ − 1, we can now only show that if v ∈ Ci, then dT i(v) ≥ ∆ − 2. This will, however,
suffice to give us our desired tree. To this end, let v ∈ Ci and let w be the vertex in T i〈x0, N

i(T i)〉
to which v is adjacent in G, other than its parent.

If w is not a predecessor of v, then we can add vw to T i and delete the first edge on the path
in T i from w to x0. If dT i(v) < ∆ − 1 in this case, this operation reduces the number of edges
in T i〈x0, N

j(T i)〉 for some j ≤ i, a contradiction to the assumption that T i ∈ T i
x0

. On the other
hand, if w is a predecessor of v, then the proof splits into two cases. Firstly, if w is not a parent of a
vertex of N j(T i) for some j < i, then we add wv to T i, delete the first edge on the path of T i from

w to v and the number of edges in T i〈x0, N
j′(T i)〉 has been reduced for some j′ < i. Secondly, if

w is a predecessor of some member of N j(T i) for some j < i, then we can again add vw to T i and
delete the first edge on the path from w to v in T i. If w is not the parent of a vertex in Bj , then
we contradict our choice of T j as we have found a tree which meets the criteria for T j with less
edges. If w is the parent of some y ∈ Bj , then we also reach a contradiction unless dT i(v) ≥ ∆− 2.
This is because we have produced a tree with v ∈ N j , where v /∈ Bj , and thus have reduced the
size of Bj in T j . However, we have shown that if v ∈ Ci, then dT i(v) ≥ ∆− 2.
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Thus, for all v ∈ N i(T i) with a G-neighbor in T i〈x0, N
i(T i)〉, dT i(v) ≥ ∆− 2. We can continue

this process since ∆ − 2 ≥
⌈
n−1
k

⌉
− 1 ≥ 2 (since we assumed that

⌈
n−1
k

⌉
≥ 3) and thus each time

we get a vertex in Bi, it has at least one T i-neighbor outside of T i〈x0, N
i(T i)〉.

Finally, note that this process ends when either there is an i such that Bi = ∅ or we run out of
vertices of G, since for any i ≥ 2, we saw in (1) that

|V (T i〈x0, N
i(T i)〉)| > |V (T i〈x0, N

i−1(T i)〉)|.

In the latter case, we reach a contradiction and thus must not have a counterexample, proving the
theorem. In the former case, we let T0 = T i for this i and T = T i〈x0, N

i〉. This completes the
proof of the lemma. �

We begin by applying Lemma 1 to G to find T, T0 and L. Note that for all ` ∈ L, |NG(`)∩T| = 1
and since ` ∈ A0, we have that each ` ∈ L has at least k − 1 neighbors in G outside of T. Further,
we have that G[L] does not have any edges. We will use one other fact about T0 throughout the
remainder of the proof, namely, that in the construction of T, we minimized the number of edges
in T0〈x0, N

i〉 for each i.

We define N̂(T0), or simply N̂ , to be the set NG(L) \ T. The main idea of the proof is to try

to associate each edge of G between L and N̂ with a vertex in V (G) \ V (T). Given A,B ⊂ V (G)
with A∩B = ∅, write G[A,B] for the graph with vertex set A∪B and edge set E(G[A,B]) = {e ∈
E(G) : e = ab, a ∈ A, b ∈ B}. Thus, we would like to construct a map with domain the set of edges

of G[L, N̂ ] and range V (G) \ V (T). We construct this map to get a lower bound on |V (G) \ V (T)|.
Ideally, this map would be an injection, for if this were the case, there would be at least ∆ + 1
vertices in T and k − 1 vertices outside T for each vertex in L. Thus, we would see:

n = V (G) ≥ |V (T)|+ |V (G) \ V (T)|
≥ 1 + ∆ + (k − 1)∆

≥ 1 + k∆

≥ 1 + k

(⌈
n− 1

k

⌉
+ 1

)
≥ n+ k, (2)

a contradiction. In fact, we shall show that while we cannot guarantee an injection from edges of

G[L, N̂ ] to V (G) \ V (T), we can get something close, i.e., a map which is injective except on a
specific set of edges.

The map that we are aiming for is not hard to describe. For v ∈ N̂ , let the packet of v be all of

the edges of G[L, N̂ ] incident to v. We will then map edges in a packet of v ∈ N̂ to a set of unique

vertices of V (G)\V (T). This set of vertices will be associated with each v ∈ N̂ and, in fact, consist
of vertices in the closed T0-neighborhood of v.

We shall begin by partitioning the vertices of N̂ . We do this according to whether the vertices
are shared or unshared as neighbors of L as follows. Let

U = {u ∈ N̂ : ∃!` ∈ L such that u` ∈ E(G)}

and

S = {s ∈ N̂ : |NG(s) ∩ L| ≥ 2}

(see Figure 2). Note that S 6= ∅ since otherwise we could simply map an edge in G[L, N̂ ] to
the unique vertex in U to which it is incident. This gives an injection and thus (2) provides a
contradiction. We would like to show that each vertex in S has large tree degree. We begin by
showing that S ⊆ V (T0).
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x0

L

S

U

Figure 2. An example of U and S with ∆ = 4.

Claim 1. S ⊆ V (T0).

Proof. Recall that we let G be an edge-minimal counterexample. Suppose that x ∈ S, but
x /∈ V (T0). Since x ∈ S, there exist u, v ∈ L such that ux, vx ∈ E(G). Note that ux, vx /∈ E(T0)
since x /∈ V (T0). Further, note that since there are no edges of G between vertices in L, uv /∈ E(G).

Construct a new graph G′ from G by deleting both ux and vx from E(G) and adding uv.
Note that this operation may disconnect x from the rest of the graph, and if this is the case, we
let V (G′) = V (G) \ x. Then |V (G′)| ≤ |V (G)| = n. Further, note that A0 ⊂ V (G′) because
it is not possible for x to be in A0 and not in T0. By our construction, δG′(A0) = k. Also,
|E(G′)| = |E(G)| − 1, and so G′ cannot be a counterexample to the theorem. Thus, there exists

a tree T ′ in G′ such that V (T ′) ⊃ A0 and ∆T ′(A0) ≤ d |V (G′)|−1
k e ≤

⌈
n−1
k

⌉
. If T ′ does not contain

the edge uv, then T ′ is a subgraph of G which satisfies the conditions of the theorem. If T ′ does
contain uv, then we can remove uv from T ′ and add ux and vx to get a subtree T̄ of G. The
degrees of u and v have not changed in this process and the degree of x, while it has gone up by
two, does not effect ∆T̄ (A0) since x /∈ A0. In either case, we have contradicted our choice of G as
a counterexample. �

We will now begin our series of claims which will help in our count of vertices in V (G) \ V (T).
To each vertex in S, we will attempt to associate unique vertices in V (G) \ V (T). We begin by
showing that every vertex of S has large tree degree.

Claim 2. For any s ∈ S, dT0(s) ≥ ∆− 1 ≥
⌈
n−1
k

⌉
.

Proof. Let s ∈ S. We know by Claim 1 that s ∈ T0. Suppose that the claim is false, i.e.,
dT0(s) < ∆− 1. Let ` be the unique predecessor of s in L. Since s ∈ S, there is another vertex in
L, say v, such that vs ∈ E(G). Note that this edge cannot be in T0, or there would be a cycle in
T0. But, then, we add vs to T0 and delete the first edge on the path in T0 from v to x0 and we have
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decreased the number of edges in some T0〈x0, N
i〉, a contradiction to the way T0 was chosen. We

also note that this process does not create new vertices of degree ∆ since dT0(s) < ∆ − 1. Thus,
the claim is proved. �

We would like to show that to each s ∈ S, we can associate ∆− 1 unique vertices (not in U). If
this were possible, these vertices would be the image of the packet of s under our map. In order to

do this, we need a claim that gives the structure of T0[N̂ ].

Claim 3. For any s ∈ S, s cannot be the predecessor in T0 of any x ∈ N̂ .

Proof. Suppose not so that x ∈ N̂ is an ancestor of s ∈ S. We note that x cannot be adjacent

in T0 to any ` ∈ L since s is a predecessor of x. Since x ∈ N̂ , x is adjacent in G to some v ∈ L. We
claim that by adding vx to T0 and deleting sx, we reach a contradiction to our choice of T0. To
that end, let T ′ be the resulting tree. Note that G′ does not necessarily meet the requirements of
Lemma 1. However, T ′ is still in T min

x0
since dT0(v) < ∆−1, and so in adding vx we do not create a

vertex of degree ∆. Also, we have decreased the degree of s. If dT ′(s) = ∆−1, we have contradicted
the minimization of the number of vertices of degree ∆. On the other hand, if dT ′(s) = ∆ − 2,
then we may argue similarly to the proof of Claim 2 and reach a contradiction to the construction
of T. Namely, since s ∈ S, it is adjacent in G − T0 to some y ∈ L that is not its predecessor. By
adding ys to T ′ and deleting the first edge on the path from y to x0 in T ′, we have contradicted
the minimality of T0〈x0, N

i〉 for some i. In either case, we have reached a contradiction. Thus, s
cannot in fact be the predecessor of x and the claim is proved. �

Note that Claim 3 implies that two closed T0-neighborhoods of vertices in S can intersect in at
most one vertex. This allows us to find our desired partition of vertices in V (G) \ V (T). We shall
now show that we can make this partition so that each vertex s ∈ S has at least ∆ − 1 vertices
in V (G) \ (V (T) ∪ U) uniquely associated with it. Of course, in doing this, we must be careful to
avoid vertices of U .

Claim 4. There are at least (∆− 1)|S| vertices in V (G) \ (V (T) ∪ U).

Proof. We begin by noting that the closed T0-neighborhood of a vertex v, denoted N̄T0(v), is
simply {v}∪NT0(v). We will show that a subset of ∪v∈SN̄T0(v) will do for the Claim. Firstly, note
that the subgraph of T0 induced by ∪v∈SN̄T0(v) is a forest. It may not be connected as two closed
T0-neighborhoods may be connected through other parts of T0. Let q be the number of components
of this forest. Then, we note that the number of vertices of this forest is q larger than the number
of edges. However, each vertex of S has T0-degree of at least ∆− 1, by Claim 2, and further that
the number of edges in the forest must be at least (∆− 1)|S| since none of these edges are between
members of S, by Claim 3. Thus, we see that the number of vertices of this forest must be at least
(∆−1)|S|+q. However, for each component of this forest, we may lose one vertex as it may already
be counted. Note that the first vertex in the path in T0 from x0 in each component of our forest

may be in either U , and thus already associated with another vertex in N̂ , in L and thus already
accounted for in our count or in another closed T0 neighborhood of a predecessor in S. However,
we then see that we still have (∆− 1)|S| vertices in V (G) \ (V (T)∪U), completing the proof of the
claim. �

Now we must bound the size of S. Since by Claim 4, for each vertex of S we get at least
∆− 1 ≥ d(n− 1)/ke unique vertices, we find that

n ≥ 1 + ∆ + |S|(∆− 1)

≥ 1 +

⌈
n− 1

k

⌉
+ 1 + |S|

⌈
n− 1

k

⌉
.
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Consequently,

|S| ≤ n− d(n− 1)/ke − 2

d(n− 1)/ke

≤ nk − (n− 1)− 2k

n− 1

=

(
n− 2

n− 1

)
k − 1

≤ k − 1. (3)

We know that each vertex of S is associated with ∆ − 1 ≥
⌈
n−1
k

⌉
unique vertices by Claim 4.

However, each vertex of S could be adjacent to all of L and thus incident to |L| ≥ ∆ edges in

G[L, N̂ ]. Let |L| =
⌈
n−1
k

⌉
+ l and note that l ≥ 1 since |L| ≥ ∆ ≥

⌈
n−1
k

⌉
+ 1. For each s ∈ S, the

size of the image of the packet of s could be l less than the size of the packet, since we can only
guarantee ∆− 1 unique vertices associated with each s ∈ S. However, each vertex in L has k − 1

edges to N̂ , giving us the factor we need. Thus, we see that |V (G) \ V (T)| ≥ (k − 1)|L| − |S|l.
Using this and the fact that |S| ≤ k − 1, we see, in fact,

n ≥ |V (T)|+ |V (G) \ V (T)|
≥ 1 + |L|+ (k − 1)|L| − |S|l
= 1 + k|L| − |S|l

= 1 + k

(⌈
n− 1

k

⌉
+ l

)
− (k − 1)l

≥ 1 + n− 1 + kl − kl + l

= n+ l,

which, since l ≥ 1, gives the desired contradiction and completes the proof.
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