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Abstract. Arratia, Bollobás and Sorkin introduced the interlace polynomials in [3, 4, 5]. These
invariants generalize to arbitrary graphs some special properties of the Euler circuits of 2-in, 2-out
digraphs. Among many other results, [3, 4, 5] contain explicit formulas for the interlace polynomials
of certain types of graphs, including paths; it is natural to wonder whether or not it is possible
to extend these formulas to larger classes of graphs. In the present note we give a combinatorial
description of the interlace polynomials of arbitrary trees and forests.

1. Introduction

A problem involving counting 2-in 2-out digraphs with a fixed number of Euler circuits (which
grew out of DNA sequencing by hybridization [2]) led Arratia, Bollobás and Sorkin to introduce
a family of new graph polynomials, the interlace polynomials [3, 4, 5]. While many papers have
appeared related to the interlace polynomials, as with other graph polynomials, much is left to
prove. The goal of this paper is to introduce a particular type of independent set of vertices in a
forest, and to prove that the interlace polynomial of a forest is essentially a generating function for
these independent sets.

We follow [5] for general notation and terminology, though we restrict our attention to simple
graphs. If a and b are distinct vertices of a simple graph G then the pivot Gab [3, 4, 5, 6] is obtained
from G by toggling adjacencies {u, v} such that u, v /∈ {a, b}, u is adjacent to a, v is adjacent to
b, and either u is not adjacent to b or v is not adjacent to a. In other words, we partition the
vertices in NG(a) ∪ NG(b) into three sets according to whether they are adjacent only to a, only
to b or to both. Gab is then the graph formed by toggling all edges between these sets. In [3], the
one-variable interlace polynomial of a graph was introduced. It was defined recursively using the
pivot operation.

Definition 1. The (vertex-nullity) interlace polynomial of a graph G, denoted qN , is defined by

qN (G) =

{
qN (G− a) + qN (Gab − b), if ab ∈ E(G),

yn, if G = En.

With this definition, it took considerable effort to prove that qN was well-defined. In [5], a
two-variable generalization of the vertex-nullity interlace polynomial was introduced. If S ⊆ V (G)
then G[S] is the subgraph of G induced by S; r(G[S]) and n(G[S]) are the rank and nullity of the
adjacency matrix of G[S], considered over GF (2).

Definition 2. The two-variable interlace polynomial of a graph G is

q(G) =
∑

S⊆V (G)

(x− 1)r(G[S])(y − 1)n(G[S]).

Using this definition, well-definedness is trivial. Also, it was shown in [5] that qN (G) is simply
q(G) evaluated at x = 2. Further, the following recursion was shown to be true when ab ∈ E(G).

q(G) = q(G− a) + q(Gab − b) + ((x2 − 1)− 1)q(Gab − a− b).
1
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This reduces to the recursion in Defintion 1 when x = 2.
We use standard terminology regarding trees. A tree T is rooted by choosing a root vertex

r ∈ V (T ). Each non-root vertex v ∈ V (T ) then has a unique neighbor p(v) whose distance from r
is less than the distance from r to v. This unique neighbor p(v) is the parent of v, and the elements
of p−1({p(v)}) are the children of p(v); the children of p(v) other than v itself are siblings of v. A
rooted tree T is ordered by assigning an order to the set of children of each parent vertex; non-root
vertices may then have earlier siblings and later siblings. An ordered tree has a natural embedding
in the plane, with r the uppermost vertex and the children of each parent vertex below the parent,
ordered from left to right. If T is an ordered tree then its underlying tree is the ordinary unrooted
tree obtained by forgetting the choices of root and child-orders in T.

A subset of V (T ) that contains no adjacent pairs is independent, and a set of vertices dominates
a vertex v if it contains v or contains some neighbor of v. The independent sets in which we are
interested are defined as follows.

Definition 3. An earlier sibling cover (or es cover) in an ordered tree T is an independent set I
that dominates r and has the property that for every non-root vertex v ∈ I, every earlier sibling of
v is dominated by I.

Definition 4. For integers s and t the es number cs,t(T ) is the number of es covers I in T with
|I| = s and |p(I − {r})| = t; that is, cs,t(T ) is the number of s-element es covers in T whose
non-root elements have precisely t different parents.

In Section 2 we show even though the es numbers are defined for ordered trees, they are actually
independent of the choices of a root and of orders of the children of parent vertices.

Theorem 1. If T and T ′ are ordered trees whose underlying unrooted trees are isomorphic, then
cs,t(T ) = cs,t(T

′) for all s, t ∈ Z.

In Section 3 we show that the es numbers give a combinatorial description of the interlace
polynomials of trees.

Theorem 2. If T is a tree then the two-variable interlace polynomial of T is

q(T ) =
∑
s,t

cs,t(T ) · ys−t(y − 1 + (x− 1)2)t.

Theorem 2 implies Theorem 1, so strictly speaking the proof of Theorem 1 in Section 2 is logically
unnecessary. We offer the proof anyway because it is self-contained and lends some insight into the
combinatorial significance of earlier sibling covers, without reference to the interlace polynomial.

Further, we note that setting x = 2 in Theorem 2 implies that the vertex-nullity polynomial is
a generating function for es covers in trees.

Corollary 3. Let T be a tree, and for each integer s let cs(T ) be the number of s-element es covers
in T , i.e., cs(T ) =

∑
t cs,t(T ). Then

qN (T ) =
∑
s

cs(T )ys.

It should be noted that a different description of sets for which qN is a generating function was
found in [1] when the trees considered are caterpillars.

Although we focus our attention on trees, the definitions and results above extend directly to
forests. An es cover in a forest F is simply a set of vertices I such that for each component tree
T of F , I ∩ V (T ) is an es cover in T . (The definition requires the components of F to be ordered
individually.) As q is multiplicative on disjoint unions, the formula of Theorem 2 extends directly
to forests.
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2. Earlier sibling covers

In this section we prove Theorem 1 by showing that the es numbers of an ordered tree are
invariant under two operations: (a) moving the root along an edge, and (b) switching the positions
of two consecutive siblings in the ordering. Using multiple applications of these two operations, we
can obtain any ordered tree with a given underlying tree from any other.

(a) We assume that the vertices of T are ordered v1, v2, . . . , vn, with root r = v1. Suppose that
the children of v1 are v2, v3, . . . , vj in order, and those of v2 are vj+1, vj+2, . . . , vk in order. Let T ′

be the ordered tree obtained from T by designating v2 as the root rather than v1, designating v1 as
the earliest child of v2, and leaving all other child-orders alone (see Figure 1). This is well-defined
because the fact that v1 and v2 are neighbors guarantees that all other vertices have the same
children in T ′ as in T .

v1

v2
v3 v4

. . .
vj

vj+1 vj+2 vk
. . .

v2

→ v1
vj+1 vj+2 vk

. . .

v3 v4 vj
. . .

Figure 1. Moving the root down an edge

We claim that the earlier sibling covers in T are exactly the es covers in T ′. To this end, let I
be an es cover in T . Firstly, since T ′ has the same underlying tree as T , I must be independent in
T ′. Secondly, if I contains v1, then I dominates v2. If I does not contain v1, then it must contain
one of its children and, by the ordering condition, thus must dominate v2 (the first child). In either
case, I dominates the root in T ′. Lastly, we must show that I satisfies the ordering condition in
T ′. For any vertex v other than v1 and v2, the ordering of the children of v is the same in T and
T ′; hence the ordering property for children of v in T ′ follows immediately from the same property
in T. Since the children of v1 in T ′ are a subset of those in T , the ordering property for children of
v1 in T ′ is also immediate. For the children of v2 in T ′, the ordering property in T guarantees that
if some child of v2, say vi, is in I, then vi′ is dominated by I whenever j + 1 ≤ i′ < i. Also, v1 is
dominated by I since it is the root of T . Thus, the ordering property holds everywhere in T ′ and
so I is an es cover in T ′. Further, doing this operation again we get T back, so the es covers in T
are exactly those of T ′.

The fact that T and T ′ have the same es covers is not sufficient for Theorem 1, because a given es
cover may be counted in different es numbers in the two ordered trees. For instance {v1} is counted
in c1,0(T ) and c1,1(T

′), because v1 has no parent in T but v1 is a child of v2 in T ′. The only vertices
with different parents in T and T ′ are v1 and v2, so the only es covers that are counted in different
es numbers in T and T ′ are those that contain one of v1, v2 and none of v3, ..., vk. If I is such an es
cover then I∆{v1, v2} is also, and if I is counted in cs,t(T ) and cs,t′(T

′) then I∆{v1, v2} is counted
in cs,t′(T ) and cs,t(T

′). As I ↔ I∆{v1, v2} is a one-to-one correspondence between the es covers I
with I ∩ {v1, ..., vk} = {v1} and those with I ∩ {v1, ..., vk} = {v2}, Theorem 1 is satisfied.

(b) Now we must show that if we interchange the ordering of two children of some vertex in T ,
say vi, then the es numbers remain unchanged. Let the children of vi be ordered vj , vj+1, . . . , v`.
Consider vk for any k ∈ {j, . . . , `− 1}. We claim that the number of es covers remains unchanged
if we order the children of x as vj , . . . , vk+1, vk, . . . , v`, leaving all other child-orders the same, to
form an ordered tree T ′ (See Figure 2). Let I be an es cover in T and let vm be the maximal child
of vi that is in I. Note that if vm does not exist, i.e., there are no children of vi in I, then I is
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vi
...

vj vk vk+1
v`. . . . . . →

vi
...

vj
vk+1

vk v`. . . . . .

... ... ... ... ... ... ... ...
T T ′

Figure 2. Swapping the ordering of two vertices

certainly an es cover in T ′. If m > k, then both vk and vk+1 are dominated by I in both T and T ′.
Thus, I is an es cover in T ′. If m < k, then neither vk nor vk+1 is in I, and so I is an es cover in
T ′. If m = k + 1, then vk is dominated by I, and so is either in I or adjacent to an element of I.
If vk ∈ I then when we switch vk and vk+1, vk becomes the maximal child of vi in I and all earlier
children are still dominated. If vk /∈ I, but is dominated by I, then vk+1 becomes the maximal
child of vi in I in T ′, and I is still an es cover. Finally, we must deal with the case when m = k.
If vk+1 is dominated by I, then I is still an es cover in T ′. However, it may be the case that vk+1

is not dominated by I, and thus I is not an es cover in T ′. But since vk+1 is not dominated by I,
none of its neighbors is in I and thus I4{vk, vk+1} is an independent set in T ′. Moreover, in T ′,
vk+1 is the latest child of vi in I and all earlier children are dominated in I since I is an es cover
in T . Further, I4{vk, vk+1} is not an es cover in T since vk+1 ∈ I but vk is not dominated by I.
Hence, the number of es covers in T ′ is at least the number in T . But, applying this switch again,
we get T back and so the number of es covers in T equals the number of es covers in T ′.

Note further that as T and T ′ have the same root, they have the same parent-vertex function.
Consequently, if I is an es cover in both T and T ′ then it is counted in the same es number in T
and T ′. Also, if I is an es cover in T but not T ′ and I is counted in cs,t(T ) then I4{vk, vk+1} is
counted in cs,t(T

′).

3. Weighted interlace polynomials

It will be convenient to use the weighted version of the interlace polynomial introduced in [7].
Consider a graph G with vertex weights, i.e., functions α and β mapping V (G) into some commu-
tative ring R.

Definition 5. If G is a vertex-weighted graph then the weighted interlace polynomial of G is

qW (G) =
∑

S⊆V (G)

(
∏
v∈S

α(v))(
∏
v 6∈S

β(v))(x− 1)r(G[S])(y − 1)n(G[S]).

The weighted interlace polynomial has several useful properties. For instance, qW is multi-
plicative on disjoint unions, as is the original unweighted interlace polynomial. A more surprising
property of the weighted interlace polynomial is a novel recursive description. As we are interested
in trees here, we give only the recursion for simple graphs; a more general result appears in [7].
Recall that Gab denotes the pivot of G with respect to the edge ab.

Proposition 4. If G is a vertex-weighted simple graph then qW (G) may be calculated recursively
using these two properties.

(1) If a and b are loopless neighbors in G then

qW (G) = β(a)qW (G− a) + α(a)qW ((Gab − b)′),



ON THE INTERLACE POLYNOMIALS OF FORESTS 5

where (Gab − b)′ is obtained from Gab − b by changing the weights of a to α′(a) = β(b) and
β′(a) = α(b)(x− 1)2.

(2) If En has no edges then

qW (En) =
∏

v∈V (En)

(α(v)(y − 1) + β(v)) .

Theorem 2 may be summarized by saying that the definition of q(T ) can be organized into sub-
totals corresponding to earlier sibling covers. These sub-totals are organized according to the total
weight of an es cover, defined as follows.

Definition 6. Let T be an ordered tree with vertex-weights, and let I be an es cover in T . Let

Ir = {v ∈ I : either v = r or I contains a later sibling of v},
Il = {v ∈ I : v 6= r and I contains no later sibling of v}, and

I ′c = {v 6∈ I : I contains a child of v}

For each vertex v define the I-weight wI(v) as follows:

wI(v) =


β(v) + α(v)(y − 1) if v ∈ Ir
α(v) ·

(
(y − 1)β(p(v)) + (x− 1)2α(p(v))

)
if v ∈ Il

1 if v ∈ I ′c
β(v) if v /∈ I and v /∈ I ′c.

The product ∏
v∈V (T )

wI(v)

is the total weight of I in T , denoted wT (I).

Before we state our main result, we note that the es covers in a tree that is not a star arise
from es covers in subtrees. If T ′ is a subtree of T that contains the root then we presume that
the children of each parent vertex in T ′ are ordered by restricting the order of the children of that
vertex in T . With this convention, it is easy to verify the following.

Lemma 1. Let T be an ordered tree with a leaf ` such that p(`) 6= r 6= `, all the siblings of ` are
leaves, and ` has no later siblings. Then

{es covers I in T with ` 6∈ I} = {es covers in T − `}

and

{es covers I in T with ` ∈ I}
= {unions p−1({p(`)}) ∪ I with I an es cover in T − p(`)− p−1({p(`)})}.

The following is a weighted version of Theorem 2. We use T to denote both an ordered tree and
its underlying unrooted tree.

Theorem 5. If T is an ordered tree with vertex-weights then

qW (T ) =
∑

I an es cover

wT (I).
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Proof. If V (T ) = {r} then I = {r} is the only es cover and wT (I) = β(r) + α(r)(y − 1) = qW (T ).
If V (T ) = {r, v} then I1 = {r} and I2 = {v} are the es covers in T . As wT (I1) = β(v) ·

(β(r) +α(r)(y− 1)) and wT (I2) = α(v) ·
(
(y − 1)β(r) + (x− 1)2α(r)

)
, wT (I1) +wT (I2) = β(v)β(r)

+ β(v)α(r)(y − 1) + α(v)β(r)(y − 1) + α(v)α(r)(x− 1)2; this agrees with Definition 4.
Suppose n ≥ 3 and T has only one vertex of degree ≥ 2. Let V (T ) = {v1, ..., vn} with v1 the

unique non-leaf, r ∈ {v1, v2}, and v2, ..., vn listed in the order used in the ordered tree T . A subset
S of V (T ) has rank 2 and nullity |S| − 2 if v1 ∈ S and |S| ≥ 2; otherwise S has rank 0 and nullity
|S|. The es covers of T are I1 = {v1} and Ik = {v2, . . . , vk} for 2 ≤ k ≤ n.

If r = v1 then

wT (I1) = (β(v1) + α(v1)(y − 1))
∏
i≥2

β(vi)

is the sum of the contributions of S = ∅ and S = {v1} to Definition 5, and

wT (I2) = α(v2)
(
(y − 1)β(v1) + (x− 1)2α(v1)

)∏
i>2

β(vi)

is the sum of the contributions of S = {v2} and S = {v1, v2} to Definition 5. If r = v2 then

wT (I2) = (β(v2) + α(v2)(y − 1))
∏
i 6=2

β(vi)

is the sum of the contributions of S = ∅ and S = {v2} to Definition 5, and

wT (I1) = α(v1)
(
(y − 1)β(v2) + (x− 1)2α(v2)

)∏
i>2

β(vi)

is the sum of the contributions of S = {v1} and S = {v1, v2} to Definition 5. For k > 2

wT (Ik) =

α(vk)
(
(y − 1)β(v1) + (x− 1)2α(v1)

)(k−1∏
i=2

(β(vi) + α(vi)(y − 1))

)(
n∏

i=k+1

β(vi)

)

is the sum of the contributions of those S ⊆ {v1, . . . , vk} that contain vk, regardless of whether r is
v1 or v2.

Proceeding inductively, suppose n ≥ 3 and T has more than one vertex of degree ≥ 2. T has a
vertex ` that satisfies the hypotheses of Lemma 1. Let p(`) = vp, let p−1({p(`)}) = {vi1 , . . . , vik}
with i1 < · · · < ik and vik = `, and let T̂ = T − {vp, vi1 , . . . , vik}. If I is an es cover in T and ` 6∈ I
then ` 6∈ I ′c so wT (I) = β(`)wT−vn(I). If I is an es cover in T and ` ∈ I then vi1 , . . . , vik ∈ I, with

vi1 , . . . , vik−1
∈ Ir and vik = ` ∈ Il; also vp ∈ I ′c. Î = I−{vi1 , . . . , vik} is an es cover in T̂ and wT (I)

is

α(`)
(
(y − 1)β(vp) + (x− 1)2α(vp)

)k−1∏
j=1

(
β(vij ) + α(vij )(y − 1)

)wT̂ (Î).
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Lemma 1 and the inductive hypothesis then imply that∑
wT (I) = β(`)qW (T − `)+

α(`)
(
(y − 1)β(vp) + (x− 1)2α(vp)

)k−1∏
j=1

(
β(vij ) + α(vij )(y − 1)

) qW (T̂ )

= β(`)qW (T − vn) + α(`)qW (T̂ )qW ({`}′)

k−1∏
j=1

qW ({vij})


where {`}′ is the graph with one unlooped vertex ` that has weights α′(`) = β(vp) and β′(`) =

α(vp)(x − 1)2. As qW is multiplicative on disjoint unions and T vp` − vp is the disjoint union of T̂
and the isolated vertices vi1 , . . . , vik , part (a) of Proposition 4 tells us that

∑
wT (I) = qW (T ). �

Setting α ≡ 1 and β ≡ 1 we obtain Theorem 2.

Corollary 6. If T is a tree then the (unweighted) interlace polynomial of T is

q(T ) =
∑

I an es cover

y|Ir| ·
(
y − 1 + (x− 1)2

)|Il| .
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