
ESSLLI 2010: Resource-light Morpho-syntactic Analysis of
Highly Inflected Languages

Instructors: Anna Feldman & Jirka Hana

August 9-13, 2010

Contents

Contents 1

1 Introduction 3

2 Basics of morphology 5
2.1 What is morphology? . 5
2.2 Some terminology . 5
2.3 Morphological processes . 9
2.4 Word formation: some examples . 10
2.5 Morphological types of languages . 11
2.6 Some difficulties in morpheme analysis . 12
2.7 Example: Rich Inflection – Czech and Russian 14

3 Classical Approaches to Computational Morphological Analysis 19
3.1 What is morphological analysis? . 19
3.2 Different Approaches . 20
3.3 Linguistic Approach: Finite-State Morphology 21
3.4 Engineering Approach . 23

4 Classical tagging techniques 25
4.1 What is morphological tagging? . 25
4.2 Supervised vs. Unsupervised tagging . 25
4.3 Measures of success . 26
4.4 N-gram taggers/Markov models . 26
4.5 TnT (Brants 2000) . 27
4.6 Handling sparsity . 28
4.7 Transformation-based error-driven learning (TBL) 29
4.8 Maximum Entropy . 30

1

2 CONTENTS

4.9 Memory-based tagging (MBT) . 31
4.10 Decision trees . 32
4.11 Comparison of the tagging approaches . 32

5 Tagset Design and Morphosyntactically Annotated Corpora 33
5.1 Tags and tagsets . 33
5.2 Tagset size and tagging accuracy . 37
5.3 Harmonizing tagsets across languages? . 38
5.4 Summary: Tagset design challenges . 38

6 Unsupervised and Resource-light Approaches to Computational Mor-
phology 41
6.1 Linguistica (Goldsmith 2001) . 41
6.2 Yarowsky & Wicentowski 2000 . 44
6.3 Unsupervised taggers . 46

7 Our Approach to Resource-light Morphology 49
7.1 Tagsets . 50
7.2 Corpora . 52
7.3 Experiments: An Overview . 53
7.4 Experiment 1: Direct tagging with the source-language model 53
7.5 Experiment 2: Approximating emissions with morphological analysis 53
7.6 Experiment 3: Approximating emissions with cognates 57
7.7 Experiment 4: Approximating transitions . 59
7.8 Experiment 5: Voting . 59

8 Practical aspects 65
8.1 Resources . 65
8.2 Restrictions . 66
8.3 Tagset . 66
8.4 Resources for the morphological analyzer . 67
8.5 Documentation . 67
8.6 Procedure . 68

Bibliography 71

Chapter 1

Introduction

Simplifying somewhat, morphological analysis (MA) is the process of labeling a word
with tags encoding the word’s morphological properties. For example, the English her could
be assigned two tags:

1. personal pronoun in object form (I saw her.) and

2. possessive pronoun (I saw her son.).

Morphological analysis considers words out of context; morphological tagging, on the
other hand, assigns each word a single tag based on the context the word is in. Therefore,
her would be tagged with the personal pronoun tag in the sentence I saw her and with the
possessive tag in the sentence I saw her son. Depending on the language and captured dis-
tinctions, a tagset, a set of possible tags, usually contains between several dozens to several
thousands tags. For example, there are about 40 tags in the English Penn Treebank tagset
(Marcus et al. 1993), about 4,000 in the Czech Positional tagset (Hajič 2004). Morphological
analysis and tagging may be accompanied by lemmatization, a procedure that assigns each
word its lemma (also called lexeme or base form). For example, her could be assigned the
lemma she or her.

Morphological analysis, tagging and lemmatization are essential for many Natural Language
Processing (NLP) applications, of both practical and theoretical nature. They are commonly
used in syntactic parsers, grammar checkers, speech recognition systems, web searches, ma-
chine translation, text-to-speech synthesis, etc.

Modern taggers and analyzers are very accurate. However, the standard way to create them
for a particular language requires substantial amount of expertise, time and money. A tagger
is usually trained on a large corpus (around 100,000+ words) annotated with correct tags.
Morphological analyzers usually rely on large manually created lexicons. For example, the
Czech analyzer by Hajič (2004) uses a lexicon with 300,000+ entries. As a result, most
of the world languages and dialects have no realistic prospect for morphological taggers or
analyzers created in this way.

Various techniques have been suggested to overcome this problem. The most commonly used
approaches are: (1) Unsupervised methods, (2) projection of information from one language
to another via parallel corpora (the same text in two or more languages). However these
approaches have drawbacks that often make them hard to use in practice. The accuracy of
systems developed by unsupervised or bootstrapping methods is still below the accuracy of
the supervised systems. Parallel corpora are rather rare. They are also restricted to rather
unnatural genres, such as the proceedings of the Canadian or European parliaments.

3

Chapter 2

Basics of morphology

2.1 What is morphology?

Morphology is the study of the internal structure of words.

• The first linguists were primarily morphologists.

• Well-structured lists of morphological forms of Sumerian words were attested on clay
tablets from Ancient Mesopotamia and date from around 1600 BCE; e.g.,

badu ‘he goes away’ ing̃en ‘he went’
baddun ‘I go away’ ing̃enen ‘I went’
bašidu ‘he goes away to him’ inšig̃en ‘he went to him’
bašiduun ‘I go away to him’ inšig̃enen ‘I went to him’

(Jacobsen 1974: 53-4)

• Morphology was also prominent in the writings of Pān
˙
ini (5th century BCE), and in

the Greek and Roman grammatical tradition.

• Until the 19th century, Western linguists often thought of grammar as consisting pri-
marily of rules determining word structure (because Greek and Latin, the classical
languages had fairly rich morphological patterns).

2.2 Some terminology

Words, forms, lemmas, lexemes

There are two rather different notions of ‘word’: the word as it occurs in running speech or
text and a word as it is listed in a dictionary:

• Word-form, form: A concrete word as it occurs in real speech or text. For our
purposes, word is a string of characters separated by spaces in writing.

• Lemma: A distinguished form from a set of morphologically related forms, chosen by
convention (e.g., nominative singular for nouns, infinitive for verbs) to represent that
set. Also called the canonical/base/dictionary/citation form. For every form, there is
a corresponding lemma.

5

6 CHAPTER 2. BASICS OF MORPHOLOGY

• Lexeme: An abstract entity, a dictionary word; it can be thought of as a set of
word-forms. Every form belongs to one lexeme, referred to by its lemma.

For example, in English, steal, stole, steals, stealing are forms of the same lexeme
steal; steal is traditionally used as the lemma denoting this lexeme.

• Paradigm: The set of word-forms that belong to a single lexeme. We will get back to
this notion later in the course. As an example, the paradigm of the Latin noun lexeme
insula ‘island’ is given below:

(1) The paradigm of the Latin insula ‘island’

singular plural
nominative insula insulae
accusative insulam insulas
genitive insulae insularum
dative insulae insulis
ablative insula insulis

Complications with terminology. The terminology is not universally accepted, for example:

• lemma and lexeme are often used interchangeably

• sometimes lemma is used to denote all forms related by derivation (see below).

• Paradigm can stand for the following:

1. Set of forms of one lexeme

2. A particular way of inflecting a class of lexemes (e.g. plural is formed by adding
-s).

3. Mixture of the previous two: Set of forms of an arbitrary chosen lexeme, showing
the way a certain set of lexemes is inflected.

Note: In our further discussion, we use lemma and lexeme interchangeably, and we use
them both as an arbitrary chosen representative form standing for forms related by the same
paradigm.

Morpheme, Morph, Allomorph

• Morphemes are the smallest meaningful constituents of words; e.g., in books, both the
suffix -s and the root book represent a morpheme. Words are composed of morphemes
(one or more).

sing-er-s, home-work, moon-light, un-kind-ly, talk-s, ten-th, flipp-ed, de-nation-al-iz-
ation

• Morph. The term morpheme is used both to refer to an abstract entity and its concrete
realization(s) in speech or writing. When it is needed to maintain the signified and
signifier distinction, the term morph is used to refer to the concrete entity, while the
term morpheme is reserved for the abstract entity only.

• Allomorphs are variants of the same morpheme, i.e., morphs corresponding to the
same morpheme, they have the same function but different forms. Unlike the synonyms
they usually cannot be replaced one by the other.

2.2. SOME TERMINOLOGY 7

(2) a. indefinite article: an orange – a building

b. plural morpheme: cat-s [s] – dog-s [z] – judg-es [@z]

c. opposite: un-happy – in-comprehensive – im-possible – ir-rational

The order of morphemes/morphs matters:

talk-ed 6= *ed-talk, re-write 6= *write-re, un-kind-ly 6= *kind-un-ly

It is not always obvious how to separate a word into morphemes. For example, consider
the cranberry-type morphemes. These are a type of bound morphemes that cannot be
assigned a meaning or a grammatical function. The cran is unrelated to the etymology
of the word cranberry (crane (the bird) + berry). Similarly, mul exists only in mulberry.
Other complications, namely zero-morphemes and empty morphemes, are mentioned below
(see §2.6).

Bound × Free Morphemes

• Bound – cannot appear as a word by itself.

-s (dog-s), -ly (quick-ly), -ed (walk-ed)

• Free – can appear as a word by itself; often can combine with other morphemes too.

house (house-s), walk (walk-ed), of, the, or

Past tense morpheme is a bound morpheme in English (-ed) but a free morpheme in Man-
darine Chinese (le)

(3) a. Ta
He

chi
eat

le
past

fan.
meal.

‘He ate the meal.’

b. Ta
He

chi
eat

fan
meal

le.
past.

‘He ate the meal.’

Root × Affix

• Root – nucleus of the word that affixes attach too.

In English, most of the roots are free. In some languages that is less common (Lithua-
nian: Billas Clintonas).

Some words (compounds) contain more than one root: home-work

• Affix – a morpheme that is not a root; it is always bound

– suffix: follows the root

English: -ful in event-ful, talk-ing, quick-ly, neighbor-hood
Russian: -a in ruk-a ‘hand’

8 CHAPTER 2. BASICS OF MORPHOLOGY

– prefix: precedes the root

English: un- in unhappy, pre-existing, re-view
Classical Nahuatl: no-cal ‘my house’

– infix: occurs inside the root

English: very rare: abso-bloody-lutely
Khmer: -b- in lbeun ‘speed’ from leun ‘fast’;
Tagalog: -um- in s-um-ulat ‘write’

The places in the stem where infixing can occur are quite restricted: either in the
second or prefinal position, where various units are counted – syllables, moras,
consonants, vowels, etc. Hoeksema and Janda:212 (11)

– circumfix: occurs on both sides of the root

Tuwali Ifugao baddang ‘help’, ka-baddang-an ‘helpfulness’, *ka-baddang, *baddang-
an;
Dutch: berg ‘mountain’ ge-berg-te, ‘mountains’ , *geberg, *bergte vogel ‘bird’, ge-
vogel-te ‘poultry’, *gevogel, *vogelte

Suffixing is more frequent than prefixing and far more frequent than infixing/circumfixing
(Greenberg 1957; Hawkins and Gilligan 1988; Sapir 1921). It is important that the asym-
metry holds not only when simply counting languages, which is always problematic, but
also in diverse statistical measures. Hawkins and Gilligan (1988) suggest a number of uni-
versals capturing the correlation between affix position in morphology and head position in
syntax. The correlation is significantly skewed towards preference of suffixes. For example,
postpositional and head-final languages use suffixes and no prefixes; while prepositional and
head-initial languages use not only prefixes, as expected, but also suffixes. Moreover, there
are many languages that use exclusively suffixes and not prefixes (e.g., Basque, Finnish), but
there are very few that use only prefixes and no suffixes (e.g., Thai, but in derivation, not in
inflection). There have been several attempts to explain the suffix-prefix asymmetry, using
processing arguments (Cutler et al. 1985; Hawkins and Gilligan 1988), historical arguments
(Givón 1979) , and combinations of both (Hall 1988) (see Hana and Culicover 2008 for an
overview).

Content × Functional

• Content morphemes – carry some semantic content
car, -able, un-

• Functional morphemes – provide grammatical information
the, and, -s (plural), -s (3rd sg)

Inflection × Derivation

There are two rather different kinds of morphological relationship among words, for which
two technical terms are commonly used:

2.3. MORPHOLOGICAL PROCESSES 9

• Inflection: creates new forms of the same lexeme.

E.g., bring, brought, brings, bringing are inflected forms of the lexeme bring.

• Derivation: creates new lexemes

E.g., logic, logical, illogical, illogicality, logician, etc. are derived from logic, but they
all are different lexemes now.

• Ending – inflectional suffix

• Stem – word without its inflectional affixes = root plus all derivational affixes.

Derivation tends to affects the meaning of the word, while inflection tends to affect only
its syntactic function. Also, derivation tends to be more irregular – there are more gaps,
the meaning is more idiosyncratic and less compositional. However, the boundary between
derivation and inflection is often fuzzy and unclear.

2.3 Morphological processes

• Concatenation (adding continuous affixes) – the most common process

Often, there are phonological changes on morpheme boundaries.

• Reduplication – part of the word or the entire word is doubled:

– Tagalog: basa ‘read’ – ba-basa ‘will read’; sulat ‘write’ – su-sulat ‘will write’

– Afrikaans: amper ‘nearly’ – amper-amper ‘very nearly’; dik ‘thick’ – dik-dik ‘very
thick’

– Indonesian: oraN ‘man’ – oraN-oraN ‘all sorts of men’ (Cf. orangutan)

– Samoan:
alofa ‘loveSg’ a-lo-lofa ‘lovePl’
galue ‘workSg’ ga-lu-lue ‘workPl’
la:poPa ‘to be largeSg’ la:-po-poPa ‘to be largePl’
tamoPe ‘runSg’ ta-mo-moPe ‘runPl’

– English: humpty-dumpty

– American English (borrowed from Yiddish): baby-schmaby, pizza-schmizza

• Templates – both the roots and affixes are discontinuous. Only Semitic lgs (Arabic,
Hebrew).

Root (3 or 4 consonants, e.g., l-m-d – ‘learn’) is interleaved with a (mostly) vocalic
pattern

– Hebrew:
lomed ‘learnmasc’ shotek ‘be-quietpres.masc’
lamad ‘learnedmasc.sg.3rd’ shatak ‘was-quietmasc.sg.3rd’
limed ‘taughtmasc.sg.3rd’ shitek ‘made-sb-to-be-quietmasc.sg.3rd’
lumad ‘was-taughtmasc.sg.3rd’ shutak ‘was-made-to-be-quietmasc.sg.3rd’

• Suppletion – ‘irregular’ relation between the words. Hopefully quite rare.

10 CHAPTER 2. BASICS OF MORPHOLOGY

– Czech: být ‘to be’ – jsem ‘am’, j́ıt ‘to go’ – šla ‘wentfem.sg, dobrý ‘good’ – lepš́ı
‘better’

– English: be – am – is – was, go – went, good – better

• Morpheme internal changes (apophony, ablaut) – the word changes internally

– English: sing – sang – sung, man – men, goose – geese (not productive anymore)

– German: Mann ‘man’ – Männ-chen ‘small man’, Hund ‘dog’ – Hünd-chen ‘small
dog’

– Czech: kráva ‘cownom’ – krav ‘cowsgen’, nés-t ‘to carry’ – nes-u ‘I am carrying’
– nos-́ım ‘I carry’

• Subtraction (Deletion): some material is deleted to create another form

– Papago (a native American language in Arizona) imperfective → perfective

him ‘walkingimperf ’ → hi ‘walkingperf ’
hihim ‘walkingpl.imperf ’ → hihi ‘walkingpl.perf ’

– French, feminine adjective → masculine adj. (much less clear)

grande [grÃd] ‘bigf ’ → grand [grÃ] ‘bigm’
fausse [fos] ‘falsef ’ → faux [fo] ‘falsem’

2.4 Word formation: some examples

• Affixation – words are formed by adding affixes.

– V + -able → Adj: predict-able

– V + -er → N: sing-er

– un + A → A: un-productive

– A + -en → V: deep-en, thick-en

• Compounding – words are formed by combining two or more words.

– Adj + Adj → Adj: bitter-sweet

– N + N → N: rain-bow

– V + N → V: pick-pocket

– P + V → V: over-do

• Acronyms – like abbreviations, but acts as a normal word
laser – light amplification by simulated emission of radiation
radar – radio detecting and ranging

• Blending – parts of two different words are combined

– breakfast + lunch → brunch

– smoke + fog → smog

– motor + hotel → motel

• Clipping – longer words are shortened

– doctor, professional, laboratory, advertisement, dormitory, examination

– bicycle (bike)

– refrigerator

2.5. MORPHOLOGICAL TYPES OF LANGUAGES 11

2.5 Morphological types of languages

Morphology is not equally prominent in all languages. What one language expresses morpho-
logically may be expressed by different means in another language. For example, to express
the aspect, English uses certain syntactic structures, such as

(4) a. John wrote (AE)/ has written a letter. (the action is complete)

b. John was writing a letter (process).

Other languages, such as Russian, for example, use a prefix to express similar meaning, for
example:

(5) a. John napisal pis’mo. (the action is complete)

b. John pisal pis’mo. (process).

There are two basic morphological types of language structure:

• Analytic languages – have only free morphemes, sentences are sequences of single-
morpheme words.

(6) Vietnamese:

khi
when

tôi
I

ąên
come

nhà
house

ba$n
friend

tôi,
I,

chúng
PLURAL

tôi
I

bat
begin

dǎù
do

làm
lesson

bài

When I came to my friend’s house, we began to do lessons.

• Synthetic – both free and bound morphemes. Affixes are added to roots.

Has further subtypes:

– Agglutinating – each morpheme has a single function, it is easy to separate
them.

E.g., Uralic lgs (Estonian, Finnish, Hungarian), Turkish, Basque, Dravidian lgs
(Tamil, Kannada, Telugu), Esperanto

Turkish:
singular plural

nom. ev ev-ler ‘house’
gen. ev-in ev-ler-in
dat. ev-e ev-ler-e
acc. ev-i ev-ler-i
loc. ev-de ev-ler-de
ins. ev-den ev-ler-den

– Fusional – like agglutinating, but affixes tend to “fuse together”, one affix has
more than one function.

E.g., Indo-European: Germanic (English, German, . . .), Romance languages (French,
Spanish, . . .), Slavic (Russian, Czech, Polish, . . .), Greek, Semitic, Sami (Skolt
Sami, . . .)

For example,

∗ Czech matk-a ‘mother’ – a means the word is a noun, feminine, singular,
nominative.

12 CHAPTER 2. BASICS OF MORPHOLOGY

∗ In Serbian/Croatian nouns the number and case is expressed by one suffix:
singular plural

nominative ovc-a ovc-e ‘ovca ‘sheep’
genitive ovc-e ovac-a
dative ovc-i ovc-ama
accusative ovc-u ovc-e
vocative ovc-o ovc-e
instrumental ovc-om ovc-ama

Clearly, it is not possible to isolate separate singular or plural or nominative
or accusative (etc.) morphemes.

– Polysynthetic: extremely complex, many roots and affixes combine together,
often one word corresponds to a whole sentence in other languages.

angyaghllangyugtuq – ’he wants to acquire a big boat’ (Eskimo)
palyamunurringkutjamunurtu – ’s/he definitely did not become bad’ (W Aus.)
Sora

English has many analytic properties (future morpheme will, perfective morpheme have, etc.
are separate words) and many synthetic properties (plural (-s), etc. are bound morphemes).

The distinction between analytic and (poly)synthetic languages is not a bipartition or a
tripartition, but a continuum, ranging from the most radically isolating to the most highly
polysynthetic languages. It is possible to determine the position of a language on this
continuum by computing its degree of synthesis, i.e., the ratio of morphemes per word in
a random text sample of the language. Table 2.5 gives the degree of synthesis for a small
selection of languages. This table is taken from (Haspelmath 2002).

Language Ration of morphemes per word
Greenlandic Eskimo 3.72
Sanskrit 2.59
Swahili 2.55
Old English 2.12
Lezgian 1.93
German 1.92
Modern English 1.68
Vietnamese 1.06

Table 2.1: The degree of synthesis of some languages

2.6 Some difficulties in morpheme analysis

Zero morpheme

Another phenomenon that causes problems for splitting words into morphemes, is the exis-
tence of forms in which a morphological meaning corresponds to no overt formal element;
this is generally called zero morpheme. Here are several examples:

2.6. SOME DIFFICULTIES IN MORPHEME ANALYSIS 13

• Coptic:
ǰo-i ‘my head’
ǰo-k ‘your (masc.) head’
ǰo ‘your (fem.) head’
ǰo-f ‘his head’
ǰo-s ‘her head’

• Finnish:
oli-n ‘I was’
oli-t ‘you were’
oli ‘he/she was’
oli-mme ‘we were’
oli-tte ‘you (pl.) were’
oli-vat ‘they were’

Some morphologists have worked with the requirement that the segmentation of words into
morphemes must be exhaustive and all meanings must be assigned to a morpheme. If one
adopts this requirement, then one is forced to posit zero morphemes here that have a meaning,
but no form (for Finnish oli would really have the structure oli-Ø, where the morpheme Ø
stands for the third person singular). But the requirement is not necessary, and alternatively
one could say, for instance, that Finnish has no marker for the third person singular in verbs.

Empty morphemes

The opposite of zero morphemes can also be found: apparent cases of morphemes that have
form but no meaning, called empty morphemes. For example, in Lezgian all nominal case-
forms except for the absolutive case (i.e., the most basic case) contain a suffix that follows
the noun stem and precedes the case suffix:

• Four of Lezgian’s sixteen cases:

absolutive sew fil Rahim
genitive sew-re-n fil-di-n Rahim-a-n
dative sew-re-z fil-di-z Rahim-a-z
subessive sew-re-k fil-di-k Rahim-a-k

‘bear’ ‘elephant’ (male name)

This suffix, called the oblique stem suffix in Lezgian grammar, has no meaning, but it must
be posited if we want to have an elegant description. With the notion of an empty morpheme
we can say that different nouns select different suppletive oblique stem suffixes, but that the
actual case suffixes that are affixed to the oblique stem are uniform for all nouns.

What is an alternative analysis?

Clitics

Clitics are units that are transitional between words and affixes, having some properties of
words and some properties of affixes, for example:

• Unlike words:

14 CHAPTER 2. BASICS OF MORPHOLOGY

– Placement of clitics is more restricted.

– Cannot stand in isolation.

– Cannot bear contrastive stress.

– etc.

• Unlike affixes, clitics:

– Are less selective to which word (their host) they attach, e.g. host’s part-of-speech
may play no role.

– Phonological processes that occur across morpheme boundary do not occur across
host-clitic boundary.

– etc.

The exact mix of these properties varies considerably across languages. The way clitics
are spelled varies considerably not only across languages but also within a single language.
Clitics are written as affixes of their host, sometimes are separated by punctuation (e.g.,
possessive ’s in English) and sometimes are written as separate words. For more details
see (Anderson 1993; Franks and King 2000; Hana 2007; Klavans 1982; Zwicky 1977) and
references therein.

2.7 Example: Rich Inflection – Czech and Russian

Table 2.2 shows an example of two parallel non paradigms from Czech and Russian. In
both languages, nominal categories (adjectives, nouns, pronouns) inflect for gender, num-
ber, case. Both languages have 3 genders (masculine, feminine, neuter) and two numbers
(Czech has also some remnants of dual number). They share 6 cases with roughly the same
meaning (nominative, genitive, dative, accusative, local, instrumental). In addition, Czech
has vocative and Russian has two secondary cases: second genitive and second locative. In
both languages, nouns are grouped into declension classes. Numerals use declensional strate-
gies which range from near indeclinability to adjective-like declension. Neither language has
articles; (in)definiteness is expressed using other means, e.g., word order.

Morphology in both languages exhibits

• a high number of fusion – several morphemic categories whose values are combined in
clusters, each of which is expressed by a single ending (e.g., number, gender, and case
with nouns or adjectives, or tense, number, and person with finite verbs), and

• a high degree of ambiguity of the endings. See Tables 2.3 and 2.4 for examples.1.

• a relatively common synonymy of the endings.

Simply put, in a fusional language like Russian or Czech, a paradigm is a set of endings
with their tags, e.g., 0 – noun singular, s – noun plural. The endings are added to stems
producing word forms characterized by those tags, e.g., cat – noun singular, cats – noun
plural. However, life is not easy, and the concatenation is often accompanied by various
more or less complicated phonological/graphemic processes affecting the stem, the ending or
both, e.g., potato-es, countri-es, kniv-es, etc.

1Abbreviations of morphological categories (e.g., FS1 – feminine singular nominative, P4 – plural ac-
cusative) are based on Hajič (2004) tagset (see §5.1)

2.7. EXAMPLE: RICH INFLECTION – CZECH AND RUSSIAN 15

Czech Russian Gloss
sg.
nom žen-a ženščin-a ‘woman’
gen žen-y ženščin-y
dat žen-ě ženščin-e
acc žen-u ženščin-u
voc žen-o –
loc žen-ě ženščin-e
ins žen-ou ženščin-oj/ou
pl.
nom žen-y ženščin-y
gen žen ženščin
dat žen-ám ženščin-am
acc žen-y ženščin
voc žen-y –
loc žen-ách ženščin-ax
ins žen-ami ženščin-ami

Table 2.2: Czech and Russian noun declension

Table 2.3: Homonymy of the a ending in Czech

form lemma gloss category
měst-a město town NS2 noun neut sg gen

NP1 (5) noun neut pl nom (voc)
NP4 noun neut pl acc

tém-a téma theme NS1 (5) noun neut sg nom (voc)
NS4 noun neut sg acc

žen-a žena woman FS1 noun fem sg nom
pán-a pán man MS2 noun masc anim sg gen

MS4 noun masc anim sg acc
ostrov-a ostrov island IS2 noun masc inanim sg gen
předsed-a předseda president MS1 noun masc anim sg nom
vidě-l-a vidět see verb past fem sg

verb past neut pl
vidě-n-a verb passive fem sg

verb passive neut pl
vid-a verb transgressive masc sg
dv-a dv-a two numeral masc sg nom

numeral masc sg acc

Table 2.4: Ending -e and noun cases in Czech

case form lemma gender gloss
nom kuř-e kuře neuter chicken
gen muž-e muž masc.anim. man
dat mouš-e moucha feminine fly
acc muž-e muž masc.anim. man
voc pan-e pán masc.anim. mister
loc mouš-e moucha feminine fly
inst – –

16 CHAPTER 2. BASICS OF MORPHOLOGY

Agreement in Czech and Russian Adjectives and possessives agree in gender, number
and case with the noun they modify. In Russian, gender agreement is only in singular. Main
verbs agree in person and number with their subjects. Past participles agree with subject in
number and gender (again, in Russian gender agreement is only in singular).

(7) a. [Czech]

Byl
wasmasc.past

jasný,
brightmasc.sg.nom

studený
coldmasc.sg.nom

dubnový
Aprilmasc.sg.nom

den
daymasc.sg.nom

a
and

hodiny
clocksfem.pl.nom

odb́ıjely
strokefem.pl.past

třináctou.
thirteenthfem.sg.acc

b. [Russian]

Byl
wasmasc.past

jasnyj,
brightmasc.sg.nom

xolodnyj
coldmasc.sg.nom

aprel’skij
Aprilmasc.sg.nom

den’
daymasc.sg.nom

i
and

časy
clockspl.nom

probili
strokepl.past

trinadtsat’.
thirteenacc

‘It was a bright cold day in April, and the clocks were striking thirteen.’ [from
Orwell’s ‘1984’]

Word order Both Czech and Russian are free-word-order languages. Syntactic relations
within a sentence are expressed by inflection and the order of constituents is determined
mainly by pragmatic constraints. The theme (roughly old information) usually precedes the
rheme (roughly new information). There are, however, certain rigid word order combinations,
such as noun modifiers, clitics (in Czech), and negation (in Russian).

Morphologically rich language always have a relatively free word order because the gram-
matical functions can be expressed in morphology rather than by a position in a sentence.

Czech noun paradigms

Table 2.5: Examples of the žena paradigm nouns

woman owl draft goat iceberg vapor fly
S1 žen-a sov-a skic-a koz-a kr-a pár-a mouch-a
S2 žen-y sov-y skic-i koz-y kr-y pár-y mouch-y
S3 žen-ě sov-ě skic-e koz-e kř-e pář-e mouš-e
S4 žen-u sov-u skic-u koz-u kr-u pár-u mouch-u
S5 žen-o sov-o skic-o koz-o kr-o pár-o mouch-o
S6 žen-ě sov-ě skic-e koz-e kř-e pář-e mouš-e
S7 žen-ou sov-ou skic-ou koz-ou kr-ou pár-ou mouch-ou

P1 žen-y sov-y skic-i koz-y kr-y pár-y mouch-y
P2 žen-0 sov-0 skic-0 koz-0 ker-0 par-0 much-0
P3 žen-ám sov-ám skic-ám koz-ám kr-ám pár-ám mouch-ám
P4 žen-y sov-y skic-i koz-y kr-y pár-y mouch-y
P5 žen-y sov-y skic-i koz-y kr-y pár-y mouch-y
P6 žen-ách sov-ách skic-ách koz-ách kr-ách pár-ách mouch-ách
P7 žen-ami sov-ami skic-ami koz-ami kr-ami pár-ami mouch-ami

2.7. EXAMPLE: RICH INFLECTION – CZECH AND RUSSIAN 17

As a more complex illustration, consider several examples of Czech nouns belonging to the
žena ‘woman’ paradigm, a relatively ‘well-behaved’ paradigm of feminine nouns, in Table
2.5. Without going too deeply into linguistics, we can see several complications:

1. Ending variation: žen-ě, sov-ě vs. burz-e, kř-e, pář-e; žen-y vs. skic-i.

a) The dative and local sg. ending is -ě after alveolar stops (d, t, n) and labials (b,
p, m, v, f). It is -e otherwise.

b) Czech spelling rules require the ending -y to be spelled as -i after certain conso-
nants, in this case: c, č, ď, ň, š. The pronunciation is the same ([I]).

2. Palatalization of the stem final consonant: kr-a – kř-e, mouch-a – mouš-e.

The -ě/e ending affects the preceding consonant: ch [x] → š, g/h → z, k → c, r → ř.

3. Epenthesis: kr-a – ker.

Sometimes, there is an epenthesis (insertion of -e-) in genitive plural. This usually
happens when the noun ends with particular consonants. There are certain tendencies,
but in the end it is just a property of the lexeme; cf. občank-a – občanek ‘she-citizen,
id-card’ vs. bank-a – bank ‘bank’ (both end with nk, but one epenthesises and the other
not). Some nouns allow both possibilities, e.g., jacht-a – jachet/jacht ‘yacht’

4. Stem internal vowel shortening: pár-a – par.

Often the vowels á, ı́, ou shorten into a, i/ě, u in gen. pl. and sometimes also in
dat., loc. and ins. pl. If the vowel is followed by multiple consonants in nom. sg,
the shortening usually does not happen. In many cases there are both short and long
variants (pár-a – par – pár-ám/par-ám, pár-ách/par-ách, pár-ami/par-ami ‘vapor’),
usually stylistically different.

It would be possible to discuss in a similar manner all the Czech noun paradigms. Depending
on how you count, there are roughly 13 basic paradigms – 4 neuter, 3 feminine and 6 mas-
culine; plus there are nouns with adjectival declension (another 2 paradigms). In addition,
there are many subparadigms and subsubparadigms, all of which involves a great amount of
irregularity and variation on the one hand and a great amount of homonymy on the other
(see Table 2.3). Also, some forms have official and colloquial variants. For a more detailed
discussion, see for example (Fronek 1999; Karĺık et al. 1996).

Also note that in Czech, there is a significant difference in morphology and the lexicon
between the standard and colloquial levels of Czech. The automatic morphological analysis of
such a language is especially challenging since the same word can have several morphological
forms, depending on the language level. It also means that a tagset of Czech (assuming
it captures this feature) is significantly larger than tagset of another Slavic language, with
otherwise comparable morphology.

Chapter 3

Classical Approaches to
Computational Morphological Analysis

The discussion in this section is largely based on (Roark and Sproat 2007) and (Goldsmith
2010).

3.1 What is morphological analysis?

Suppose you are studying Russian. You come across an unfamiliar form: pǐsu and you want
to know what it means. You already know the verb pisal ‘write.3P.sg.imperf.active.indicative’
and you guess that the unfamiliar form should be related to the one you already know.

• pǐsu: ‘write’, 1st person, singular, imperfect, active, present, indicative

• pǐsu: pǐs-u (s becomes š) → decomposition

• pǐsu: lemma: pisat’ → lemmatization = the task of relating a given form to a
canonical form.

Applications What are the applications of morphological analysis?

• parsing/chunking (used in machine translation, grammar correction, etc.)

• Search and information retrieval. One usually searches for a lexeme not for a particular
form.

• For applications, such as text-to-speech synthesis, we may be also interested in the
analysis of a word into its parts.

For example, in order to determine which syllable of a given instance of the Russian
word snega should be stressed, one must know the morphological properties of that
instance — the genitive singular form of the word is stressed on the first syllable, while
the nominative plural form is stressed on the second:

snèga.Noun.Gen.Masc.Singular ‘snow’ vs. snegà.Noun.Nom-Acc.Plural ‘snows’.

• spell checking

Formally, lemmatization can be viewed as a combination of decomposition followed by nor-
malization to the lemmatized form.

19

20
CHAPTER 3. CLASSICAL APPROACHES TO COMPUTATIONAL

MORPHOLOGICAL ANALYSIS

Complications Morphological analysis is difficult. Some potential problems include:

• Stem internal (non-concatenative) alternations: e.g., the German Stuhl → Stühle,
Vater → Väter.

• Irregularities: e.g., the Russian plural forms, e.g., kniga→ knigi, stol → stoly , but
kofe → kofe; or the English, goose → geese, sheep → sheep.

• Phonological/graphemic alternations

• Homonymy: e.g., English -s marks both 3rd person singular of verbs and plural of
nouns; Czech -a (see Table 2.3).

Thus, morphological analysis can be viewed as a function that assigns a set of lemmas (base
forms), each with a set of tags, to a form:

(8) MA: form → set(lemma × set(tag))

ženou → { (žena ‘woman’, {noun fem sing inst }),
(hnát ‘hurry’, {verb pres pl 3rd }) }

ženy → { (žena ‘woman’, {noun fem sing gen,
noun fem pl nom,
noun fem pl acc,
noun fem pl voc }) }

Note: In this chapter, we focus on inflection expressed by suffixes, leaving other types of
morphological systems (templates, reduplication, etc) aside.

3.2 Different Approaches

There are two different ways to address phonological/graphemic variations and complex
paradigm systems when designing a morphological analyzer:

• A linguistic approach. Such a system employs a phonological component accompanying
the simple concatenative process of attaching an ending. This implies a smaller set
of paradigms and morphemes. Two-level morphology (Koskenniemi 1983a, 1984) is
an example of such a system and (Skoumalová 1997) is an example for Czech. The
problem is that implementing morphology of a language in such a system requires a lot
of linguistic work and expertise. For many languages, the linguistic knowledge is not
precise enough. Moreover, it is usually not straightforward to translate even a precisely
formulated linguistic description of a morphology into the representation recognized
by such system.

In Czech, the forms of the noun kra ‘icebergFS1’, kře ‘icebergFS36’, ker ‘icebergFP2’
etc. (see Table 2.5) would be analyzed as involving the stem kr, the endings -a, -ě
and -0 and phonological/graphemic alternations. Forms of the noun žena ‘womanFS1’
(ženě ‘FS36’, žen ‘FP2’, etc.) would belong to the same paradigm as kra.

3.3. LINGUISTIC APPROACH: FINITE-STATE MORPHOLOGY 21

• An engineering approach. Such a system does not have a phonological component,
or the component is very rudimentary. Phonological changes and irregularities are
factored into endings and a higher number of paradigms. This implies that the terms
stem and ending have slightly different meanings than they traditionally do. A stem
is the part of the word that does not change within its paradigm, and the ending is
the part of the word that follows such a stem.

Examples of such an approach are (Hajič 2004) for Czech and (Mikheev and Liubushk-
ina 1995) for Russian. The previous version of our system (Hana et al. 2004) also
belongs to this category. The advantages of such a system are its high speed, simple
implementation and straightforward morphology specification. The problems are a
very high number of paradigms (several hundreds in the case of Czech) and impossibil-
ity to capture even the simplest and most regular phonological changes and so predict
the behavior of new lexemes.

For example, the English noun paradigm above (0 – s) would be captured as several
other paradigms including, 0 – s, 0 – es, y – ies, f – ves.

In Czech, the forms of the noun kra ‘icebergFS1’ would be analyzed as involving the
stem k followed by the endings -ra, -ře and -er. Forms of the nouns žena ‘womanFS1’
and kra would belong to two different paradigms.

3.3 Linguistic Approach: Finite-State Morphology

Finite-state morphology aims at analyzing morphology within the computational power of
finite-state automata. It is by far the most popular approach in the field. Finite-state
approaches to morphology provide ways of analyzing surface forms by appealing to the
notion of a finite-state transducer which in turn mimics an ordered set of rewrite rules. The
finite state approaches to morphology were stimulate by the work of (Johnson 1972; Kaplan
and Kay 1981; Koskenniemi 1983b) and was extensively discussed in (Beesley and Karttunen
2003).

What is finite state technology?

The notion of finite state automaton (often abbreviated as FSA) was first presented in
(Kleene 1956). An FSA is a kind of directed graph: a directed graph is by definition a finite
set of nodes N, along with a set of edges E, where an edge is an ordered pair of nodes. Nodes
in an FSA are often called states. For a directed graph to be an FSA, it must be endowed
with three additional properties:

• It must have a distinguished node identified as its start state;

• it must have a set of one or more stopping (or accepting) states;

• and it must have a set of labels, L, with each edge associated with exactly one label
in L.

While L cannot in general be null, it may contain the null string as one of its members.

22
CHAPTER 3. CLASSICAL APPROACHES TO COMPUTATIONAL

MORPHOLOGICAL ANALYSIS

For example, the morphs of a given language will be members of L, as will be descriptions
of grammatical feature specifications, such as 1st person or past-tense. We are typically
interested in the set of paths through the graph, and the strings associated with each such
path.

A path in a given FSA is defined as a sequence of nodes selected from N , in which the first
node in the sequence is the starting state of the FSA, the last node in the sequence is one of
the stopping states of the FSA, and each pair of successive nodes (ni, ni+1) in the sequence
corresponds to an edge ej of the FSA. We associate a string S with a path p simply by
concatenating all of the labels of the edges corresponding to the successive pairs of nodes
comprising p.

If we take a grammar of a language to be a formal device which identifies a set of grammatical
strings of symbols, then an FSA is a grammar, because it can be used to identify the set of
strings that correspond to all paths through it. Given a string S in L, we can identify all
paths through the FSA that generate S.

Finite state transducers (FSTs)

Finite state morphologies employ a generalization of the finite-state automaton called a finite
state transducer, or FST, following work by (Johnson 1972). An FST differs from an FSA in
that an FST has two sets of labels (or in principle even more), one called underlying labels,
LU, and one called surface labels, LS, and each edge is associated with a pair of labels (lU, lS),
the first chosen from the underlying labels, and the second from the surface labels. In fact,
an FST can be thought of as two (or even more) FSAs which share the same nodes, edges,
starting states and stopping states, but which differ with regard to the labels associated
with each edge, and we only care about looking at pairs of identical paths through these
two FSAs. FST allows us to think about pairs of parallel paths through otherwise identical
FSAs as if they were just a single path through a single directed graph.

FSTs and morphology

A large part of the work on computational morphology has involved the use of finite-state
devices, including the development of computational tools and infrastructure. Finite state
methods have been used to handle both the strictly morphological and morphotactic, on
the one hand, and the morphophonology and graphotactics on the other. By extending
the notion of finite state automaton to that of finite state transducer, it is possible to not
only generate the correct surface morphemes, but also create a device that can map surface
sequences of letters (or phones) to abstract morphosyntactic features such as number and
tense.

Computational morphology has also applied the notion of finite state transducer to deal
with the problem of accounting for regularities of various sorts concerning alternative ways
of realizing morphemes. For example, both the English nominal suffix marking plural and
the English verbal suffix marking 3rd person singular is normally realized as s, but both are
regularly realized as es after a range of stems which end in s, sh, ch, and z. These aspects
are called morphotactics and phonology, respectively. Two methods have been developed in
considerable detail for the implementation of these two aspects within the context of finite
state devices. One, often called two level morphology, is based on an architecture in which

3.4. ENGINEERING APPROACH 23

a set of constraints are expressed as finite-state transducers that apply in parallel to an
underlying and a surface representation. Informally speaking, each such transducer acts like
a constraint on possible differences that are permitted between the underlying and the surface
labels, and as such, any paired underlying/surface string must satisfy all transducers. The
other approach involves not a parallel set of finite-state transducers, but rather a cascaded
set of finite-state transducers, which can be compiled into a single transducer. A history of
this work, with an account of the relationship between these approaches, can be found in
(Karttunen and Beesley Saarijärvi, Finland) and in (Karttunen 1993).

Two-level morphology

Two level morphology was first proposed by (Koskenniemi 1983a). Two-level morphology
represents a word as a correspondence between a lexical level, which represents a simple
concatenation of morphemes making up a word, and the surface level, which represents
the actual spelling of the final word. Morphological analysis is implemented by building
mapping rules that map letter sequences like cats on the surface level into morpheme and
features sequences like cat +N +PL on the lexical level. Here is an example. Imagine that
the formation of the plural form of shelf could be broken up into successive stages: shelf, shelf
+s, shelv +s, shelves. Here, we see the suffixation of the plural es happening first, followed
by the change of f to v, followed in turn by the insertion of e. In contrast, finite-state
automata offer a way of dealing with the central phenomena of morphology without recourse
to such a step-by-step derivation: hence the term two-level morphology, which employs only
two levels: one in which morphosyntactic features and lexical roots are specified, and one
which matches the spelled (or pronounced) form of the word.

(Koskenniemi 1983a)’s approach does not depend on a rule compiler, composition or any
other finite-state algorithm. Rules can be thought of as statements that directly constrain
the surface realization of lexical strings. The rules are applied in parallel.

Two-level morphology is based on three ideas:

1. Rules are symbol-to-symbol constraints that are applied in parallel, not sequentially
like rewrite rules.

2. The constraints can refer to the lexical context, to the surface context, or to both
contexts at the same time.

3. Lexical lookup and morphological analysis are performed in tandem.

We will provide a more detailed example in class.

3.4 Engineering Approach

An example of the engineering approach is the work by Mikheev and Liubushkina. (Mikheev
and Liubushkina 1995)’s main objective is an efficient computational recognition of morpho-
syntactic features of words and the generation of words according to requested morpho-
syntactic features. The authors develop a template-oriented word paradigm model. Paradigm
formation rules are bottom-up (word specific) and word formation units are segments of
words rather than proper morphemes. Such an approach has many advantages: the ap-
proach handles uniformly both general cases and exceptions and requires simple data struc-
tures and control mechanisms which can be implemented as a finite state automaton. The
morphological processor is fully implemented for a 1,500,000 word token (38,000 stems)

24
CHAPTER 3. CLASSICAL APPROACHES TO COMPUTATIONAL

MORPHOLOGICAL ANALYSIS

corpus and provides morpho-syntactic features and stress positions. Special dictionary man-
agement tools are built for browsing, debugging and extension of the lexicon. The first 5,000
paradigms entered explicitly into the system provide about 400 paradigmatic classes1 which
are able to cover more than 80% of the lexicon. Though Mikheev and Liubushkina 1995’s
approach does not use extensive resources, the system still relies on a dictionary of frequent
words with 4,000 stems which correspond to 9,500 lexemes (about 120,000 word tokens).

1Here a paradigmatic class corresponds to the concept of a paradigm used in our work, i.e. a set of
endings which is the realization of all paradigmatic variations for the lexeme.

Chapter 4

Classical tagging techniques

4.1 What is morphological tagging?

Part-of-speech (POS) tagging is the task of labeling each word in a sentence with its appro-
priate POS information. Morphological tagging is very similar. It is a process of labeling
words in a text with their appropriate detailed morphological information.

4.2 Supervised vs. Unsupervised tagging

There are many approaches to automated POS tagging. One of the first distinctions which
can be made among POS taggers is in terms of the degree of automation of the training
and tagging process. The terms commonly applied to this distinction are supervised vs.
unsupervised.

• Supervised taggers typically rely on pretagged corpora to serve as the basis for creating
any tools to be used throughout the tagging process, such as the tagger dictionary, the
word/tag frequencies, the tag sequence probabilities and/or the rule set.

• Unsupervised models, on the other hand, are those which do not require a pretagged
corpus but instead use sophisticated computational methods to automatically induce
word groupings (i.e., tagsets) and, based on those automatic groupings, to either calcu-
late the probabilistic information needed by stochastic taggers or to induce the context
rules needed by rule-based systems.

Each of these approaches has its pros and cons.

• It is known that supervised POS taggers tend to perform best when both trained and
used on the same genre of text. The unfortunate reality is that pretagged corpora are
not readily available for the many language and genres which one might wish to tag.

• Unsupervised tagging addresses the need to tag previously untagged genres and lan-
guages in light of the fact that hand tagging of training data is a costly and time-
consuming process. There are, however, drawbacks to fully unsupervised POS tag-
ging. The word clusterings (i.e., automatically derived tagsets) which tend to result
from these methods are very coarse, i.e., one loses the fine distinctions found in the
carefully designed tag sets used in the supervised methods.

25

26 CHAPTER 4. CLASSICAL TAGGING TECHNIQUES

In this chapter, we focus on supervised taggers. Unsupervised taggers are discussed in §6.

All of the taggers discussed here use the surrounding local context (typically, a window of
two or three words and/or tags) to determine the proper tag for a given corpus position.

4.3 Measures of success

The following measures are typically used for evaluating the performance of a tagger:

(9) Precision =
Correctly-Tagged-Tokens

Tokens-generated
Precision measures the percentage of system-provided tags that were correct.

Recall =
Correctly-Tagged-Tokens

Tokens-in-data
Recall measures the percentage of tags actually present in the input that were
correctly identified by the system.

F-measure = 2 ∗ Precision∗Recall
Precision+Recall

The F-measure (Rijsbergen 1979) provides a way to combine these two measures
into a single metric.

4.4 N-gram taggers/Markov models

N-gram taggers (Brants 2000; Church 1988; DeRose 1988; Weischedel et al. 1993) limit the
class of models considered to n − 1th order Markov models. Recall that a Markov model
(MM) is a doubly stochastic process defined over a set of hidden states {si ∈ S} and a set
of output symbols {wj ∈W}. There are two sets of probabilities involved.

• Transition probabilities control the movement from state to state. They have the form
P (sk|sk−1 . . . sk−n+1), which encodes the assumption that only the previous n states
are relevant to the current prediction.

• Emission probabilities control the emission of output symbols from the hidden states.
They have the form P (wk|sk), encoding the fact that only the identity of the current
state feeds into the decision about what to emit.

In an HMM-based part-of-speech tagger, the hidden states are identified with part-of-speech
labels, while the output symbols are identified either with individual words or with equiv-
alence classes over these words (the latter option is taken by, for example (Cutting et al.
1992), because of the desire to reduce the data sparsity problem).

Taken together with a distribution over the initial state s0 , the emission and transition
probabilities provide a kth order Markov model of the tagging process.

P (s0 . . . sk, w0 . . . wk) = P (s0)

k∏
i=0P (wi|si)P (si+1|si . . . si−k+1)

This defines the joint probability of a tag sequence s0 . . . sk and a word sequence w0 . . . wk.

4.5. TNT (BRANTS 2000) 27

For actual tagging, one must find the best possible path through the Markov model of states
and transitions, based on the transition and emission probabilities. However, in practice, this
is extremely costly, as multiple ambiguous words mean that there will be a rapid growth in
the number of transitions between states. To overcome this, the Viterbi algorithm (Viterbi
1967) is commonly used. The main observation made by the Viterbi algorithm is that for any
state, there is only one most likely path to that state. Therefore, if several paths converge
at a particular state, instead of recalculating them all when calculating the transitions from
this state to the next, less likely paths can be discarded, and only the most likely ones are
used for calculations. So, instead of calculating the costs for all paths, at each state only the
k-best paths are kept.

The terms Visible Markov model (VMM) and Hidden Markov models (HMM) are sometimes
confused. In the case of the supervised training the formalism is really a mixed formalism.
In training a VMM is constructed, but then it is treated as an HMM when it is put to use
for tagging new corpora.

One major problem with standard n-gram models is that they must be trained from some
corpus, and because any particular training corpus is finite, some perfectly acceptable n-
grams are bound to be missing from it. That means that the n-gram matrix is sparse; it is
bound to have a very large number of cases of putative zero-probability n-grams that should
really have some non-zero probability. In addition, this maximum-likelihood estimation
method produces poor estimates when the counts are non-zero but still small. The n-grams
cannot use long-distance context. Thus, they always tend to underestimate the probability
of strings that happen not to have occurred nearby in the training corpus. There are some
techniques that can be used to assign a non-zero probability to unseen possibilities. Such
procedures are called “smoothing” (e.g., (Chen and Goodman 1996)).

4.5 TnT (Brants 2000)

Trigrams’n’Tags (TnT) is a statistical Markov model tagging approach, developed by (Brants
2000). Contrary to the claims found in the literature about Markov model POS tagging,
TnT performs as well as other current approaches, such as Maximum Entropy (see §4.8).
One comparison has even shown that TnT performs significantly better than the Maximum
Entropy model for the tested corpora (see (Brants 2000)). This section describes this tagger
in more detail, since the experiments that are discussed in the subsequent chapter use this
particular classifier.

The tagger is based on a trigram Markov model. The states of the model represent tags,
outputs represent the words. Transition probabilities depend on the states, and thus on pairs
of tags. Output (emission) probabilities only depend on the most recent category.

So, explicitly, for a given sequence of words w1, ...wT of length T , the following is calculated:

(10) argmaxt1,...tT [
T∏
i=1P (ti|ti−1, ti−2)P (wi|ti)]P (tT+1|tT)

t1, ...tT are elements of the tagset, the additional tags t−1, t0, and tT+1 are beginning of
sequence and end of sequence markers. As Brants mentions, using these additional tags, even
if they stem from rudimentary processing of punctuation marks, slightly improves tagging
results. This is different from formulas presented in other publications, which just stop with
a “loose end” at the last word. If sentence boundaries are not marked in the input, TnT
adds these tags if it encounters one of [.!?;] as a token.

28 CHAPTER 4. CLASSICAL TAGGING TECHNIQUES

Transitions and output probabilities are estimated from a tagged corpus, using maximum
likelihood probabilities, derived from the relative frequencies.

4.6 Handling sparsity

As has been described above, trigram probabilities generated from a corpus usually cannot
directly be used because of the sparsity problem. This means that there are not enough
instances for each trigram to reliably estimate the probability. Setting a probability to
zero because the corresponding trigram never occurred in the corpus is undesired, since it
causes the probability of a complete sequence to be set to zero, making it impossible to rank
different sequences containing a zero probability. The smoothing paradigm that brings the
best results in TnT is linear interpolation of unigrams, bigrams, and trigrams. A trigram
probability is estimated this way:

(11) P (t3|t1, t2) = λ1P̂ (t3) + λ2P̂ (t3|t2) + λ3P̂ (t3|t1, t2)

P̂ are maximum likelihood estimates of the probabilities, and λ1 + λ2 + λ3 = 1, so P again
represents probability distributions.

(Brants 2000) uses the context-independent variant of linear interpolation, where the val-
ues of the λs do not depend on the particular trigram; that yields better results than the
context-dependent variant. The values of the λs are estimated by deleted interpolation.
This technique successfully removes each trigram from the training corpus and estimates
best values for the λs from all other n-grams in the corpus. Given the frequency counts
for unigrams, bigrams, and trigrams, the weights can be very efficiently determined with a
processing time that is linear in the number of different trigrams.

Special features

• Suffix analysis for handling unknown words

To handle unknown words (Brants 2000) uses Samuelsson’s 1993 suffix analysis, which
seems to work best for inflected languages. Tag probabilities are set according to the
word’s ending. Suffixes are strong predictors for word classes (e.g., 98% of the words
in the Penn Treebank corpus ending in -able are adjectives and the rest are nouns).

The probability distribution for a particular suffix is generated from all words in the
training set that share the same suffix of some predefined maximum length. The term
suffix, as used in TnT (as well as in the work described in this book), means ‘final
sequence of characters of a word’ which is not necessarily a linguistically meaningful
suffix.

• Capitalization

Additional information which is used in TnT is capitalization. Tags are usually not in-
formative about capitalization, but probability distributions of tags around capitalized
words are different from those not capitalized. The effect is large for languages such
as English or Russian, and smaller for German, which capitalizes all nouns. (Brants
2000) uses flag ci that is true if wi is a capitalized word and false otherwise. These flags
are added to the contextual probability distributions. Instead of P (t3|t1, t2), (Brants
2000) uses P (t3, c3|t1, c1, t2, c2). This is equivalent to doubling the size of the tagset
and using different tags depending on the capitalization.

4.7. TRANSFORMATION-BASED ERROR-DRIVEN LEARNING (TBL) 29

• Reducing the processing time

The processing time of the Viterbi algorithm is reduced by introducing a beam search.
Each state that receives a δ value smaller than the largest δ divided by some threshold
value θ is excluded from further processing. While the Viterbi algorithm is guaranteed
to find the sequence of states with the highest probability, this is no longer true when
beam search is added. However, as (Brants 2000) reports, for practical purposes and
the right choice of θ, there is virtually no difference between the algorithm with and
without a beam.

4.7 Transformation-based error-driven learning (TBL)

Transformation-based error-driven learning (TBL) (Brill 1995) is a technique which attempts
to automatically derive rules for classification from the training corpus. The advantage
over statistically-based tagging is that the rules are more linguistic and, thus, more easily
interpretable. The supervised TBL employs not only a small, annotated corpus but also
a large unannotated corpus. A set of allowable lexical and contextual transformations is
predetermined by templates operating on word forms and word tokens, respectively. A
general lexical/contextual template has the form: “for a given word, change tag A to tag B
if precondition C is true”. An example of a specific rule from instantiated template, cited
in (Brill 1995), is “change the tagging of a word from noun to verb if the previous word
is tagged as a modal”. The set of allowable transformations used in (Brill 1995) permits
tags to be changed depending on the previous (following) three tags and on the previous
(following) two word forms, but other conditions, including wider contexts, could equally
well be specified.

There are three main steps in the TBL training process:

1. From the annotated corpus, a lexicon is built specifying the most likely tag for a
given word. Unknown words are tagged with the most frequently occurring tag in the
annotated corpus.

2. Lexical transformations are learned to guess the most likely tag for the unknown words
(i.e., words not covered by the lexicon).

3. Contextual transformations are learned to improve tagging accuracy.

The learning procedure is carried out over several iterations. During each iteration, the
result of each transformation (i.e., an instantiation of a template) is compared to the truth
and the transformation that causes the greatest error reduction is chosen. If there is no such
transformation or if the error reduction is smaller than a specified threshold, the learning
process is halted. The complexity of learning the cues is O(L * Ntrain * R), where L is the
number of prespecified templates, Ntrain is the size in words of training data and R is the
number of possible template instances. The complexity of the tagging of test data is O(T
* Ntest), where T is the number of transformations and Ntest is the test data size. This
rule-based tagger trained on 600K of English text has a tagging accuracy of 96.9%.

Current approaches to TBL rely crucially on preselecting all and only the relevant templates
for transformations. Failure to satisfy this condition will result in overtraining or under-
performance.

30 CHAPTER 4. CLASSICAL TAGGING TECHNIQUES

4.8 Maximum Entropy

A third supervised learning approach is the Maximum Entropy (MaxEnt) tagger (Ratna-
parkhi 1996), which uses a probabilistic model basically defined as

(12) p(h, t) = πµ
k∏
j=1α

fj(h,t)
j ,

where h is a context from the set of possible words and tag contexts (i.e., so-called “histo-
ries”), t is a tag from the set of possible tags, π is a normalization constant, {µ, α1, α2, ..., αk}
are the positive model parameters and {f1, f2, ..., fk} is a set of yes/no features (i.e.,
f i(h, t) ∈ {0, 1}).
Each parameter αi (the so-called feature-weight) corresponds to the exactly one feature f i,
and features operate over the events (context, tag). For a current word, the set of specific
contexts is limited to the current word, the preceding two words together with their tags,
and the following two words. The positive model parameters are chosen to maximize the
likelihood of the training data. An f i is true (or equals 1) if a particular linguistic condition
is met.

Features which are determined to be important to the task are constrained to have the same
expected value in the model as in the training data. That is, consistency with the training
data is maintained by asserting this equality holds, as shown in (13), where Ef j is the

expected value of f in the model and Ẽf j is the empirical expected value of f in the training
sample.

(13) Ef j = Ẽf j

The features used in (Ratnaparkhi 1996) are derived from templates, similar to those in Brill
1995. For example, three templates are shown in (14), where wi is the i’th word, ti is the
i’th tag, and X and T refer to values to be filled in.

(14) 1. X is a suffix of wi, |X| ≤ 4 & ti = T

2. ti−1 = X & ti = T

3. wi+1 = X & ti = T

A feature f will be equal to one when the condition is met and zero otherwise. A feature
has access to any word or tag in the history (h) of a given tag, as shown in (15).

(15) hi = {wi, wi+1, wi+2, wi−1, wi−2, ti−1, ti−2}

So, for example, a feature might be as in (16).

(16) f j(hi, ti) =

{
1 if suffix(wi) = “ing” & ti = VBG
0 otherwise

}
To set the features, the model will go through the training corpus asking yes/no questions
about each item in h for a given tag t. From this, a tag obtains a given probability of being
correct, based on its history.

When tagging a text, the joint probability of a tag t and its history h, i.e. p(h, t), should
be found. The joint probability is partly determined by the so-called active features, those
features which have a value of one. The way the features determine the joint probability is
by the constraint mentioned earlier, where the expected value for a feature f in the model
must be equal to the empirical expected value for the feature. And the expected values are
sums over the joint probabilities, as shown in (17), where H is the set of possible histories
(word and tag contexts) and T is the set of possible tags. Thus, because p(h, t) and f j(h, t)
are involved in calculating Ef , the value of p(h, t) is constrained by the value of f j(h, t).

4.9. MEMORY-BASED TAGGING (MBT) 31

(17) 1. Ef j =
∑

h∈H,t∈T p(h, t)f j(h, t)

2. Ẽf j =
∑

i=1
np̃(hi, ti)f j(hi, ti)

This model can also be interpreted under the Maximum Entropy formalism, in which the
goal is to maximize the entropy of a distribution subject to certain constraints. Here, the
entropy of the distribution p is defined as follows:

(18) H(p) = −
∑

h∈H,t∈T p(h, t) log p(h, t)

During the test step, the tagging procedure gives for each word a list of Y highest probability
sequences up to and including that word. The algorithm is a beam search in that for
the current word, only the Y highest probability sequences up to that point are kept. In
calculating sequence probabilities, the algorithm considers every tag for a word, unless it has
access to a tag dictionary, in which case, it only considers the tags given for a word in the
dictionary. Using this model, (Ratnaparkhi 1996) obtains an accuracy of 96.43% on English
test data.

The complexity of the searching procedure for MaxEnt is O(N test ∗T ∗F ∗Y) where N test is
the test data size (number of words), T is the number of meaningful tags, F is the average
number of features that are active for the given event (h, t) and Y is explained above. The
cost of parameter estimation is O(N train ∗ T ∗F), where T , F are defined above and N train

is the training data size, in words.

4.9 Memory-based tagging (MBT)

In the memory-based approach to POS tagging (Daelemans et al. 1996; Daelemans et al.
1999) a set of example cases is kept in memory. Each example case consists of a word
with preceding and following context, as well as the corresponding category for that word
in that context. Thus, training is simply a matter of selecting the size of the context and
storing these cases. A new sentence is tagged by selecting for each word in that sentence the
most similar case(s) in memory, and extrapolating the categories of the words from these
“nearest neighbors”. During testing, the distance between each test pattern (i.e., word plus
context information) and all training patterns present in memory is computed. A tag from
the “closest” training pattern is assigned to the given word in the test data. When a word
is not found in the lexicon, its lexical representation is computed on the basis of its form, its
context is determined, and the resulting pattern is disambiguated using extrapolation from
the most similar cases in an unknown words case base. In each case, the output is a “best
guess” of the category for the word in its current context.

Memory-based tagging requires a large training corpus in order to extract a lexicon. For each
word the number of times it occurs with each category is recorded. For the task of tagging
English, (Daelemans et al. 1996) generate the lexicon based on a 2-million-word training set
and test the tagger on 200K test words, getting an score of 96.4%. For tagging Dutch, they
use a training corpus of nearly 600K words and test on 100K words from another corpus,
obtaining an accuracy of 95.7%. The English tagset used in the experiments contains about
40 tags, whereas the Dutch tagset has 13 tags.

32 CHAPTER 4. CLASSICAL TAGGING TECHNIQUES

4.10 Decision trees

(Schmid 1994) develops another technique – a probabilistic decision tree tagger known as
TreeTagger. TreeTagger is a Markov model tagger which makes use of a decision tree to get
more reliable estimates for contextual parameters. So, the determining context for deciding
on a tag is the space of the previous n tags (n=2, in the case of a second order Markov
model). The methods differ, however, in the way the transition probability p(tn|tn−2tn−1)
is estimated. N-gram taggers often estimate the probability using the maximum likelihood
principle, as mentioned above. Unlike those approaches, TreeTagger constructs a binary-
branching decision tree. The binary tree is built recursively from a training set of trigrams.
The nodes of the tree correspond to questions (or tests) about the previous one or two
tags. The branches correspond to either a yes or no answer. For instance, a node might be
tag−2=DET? which asks whether the tag two previous positions away is a determiner. By
following the path down to the terminal elements of the tree, one can determine what the
most likely tag is. That is, the terminal elements are sets of (tag, probability) pairs.

To construct the tree, all possible tests are compared to determine which tests should be
assigned to which nodes. The criterion used to compare the tests is the amount of information
gained about the third tag by performing each test. Each node should divide the data
maximally into two subsets (i.e., should ask the question which provides the most information
about a tagging decision). To do this, a metric of information gain is used. The information
gain is maximized, which, in turn, minimizes the average amount of information still needed
after the decision is made.

Once a decision tree is constructed, it can be used to derive transition probabilities for a
given state in a Markov model. As with other probabilistic classifiers utilizing a Markov
model, the Viterbi algorithm is used to find the best sequence of tags. With this, and with
training the model on 2M words and testing it on 1K words, (Schmid 1994) obtains 96.36%
accuracy using the Penn Treebank tagset.

4.11 Comparison of the tagging approaches

• For any given word, only a few tags are possible, a list of which can be found either in
a dictionary or through a morphological analysis of the word.

• When a word has several possible tags, the correct tag can generally be chosen from
the local context, using contextual rules that define the valid sequences of tags. These
rules may be given different priorities so that a selection can be made even when several
rules apply.

Chapter 5

Tagset Design and
Morphosyntactically Annotated
Corpora

5.1 Tags and tagsets

• (Morphological) tag is a symbol encoding (morphological) properties of a word.

• Tagset is a set of tags.

The size of a tagset depends on a particular application as well as on language properties.

1. Penn tagset: about 40 tags; VBD – verb in past tense

2. Czech positional tagset: about 4000 tags; VpNS---XR-AA--- (verb, participle, neuter,
singular, any person, past tense, active, affirmative)

Types of tagsets

There are many ways to classify morphological tagsets. For our purposes, we distinguish the
following three types:

1. atomic (flat in Cloeren 1993) – tags are atomic symbols without any formal internal
structure (e.g., the Penn TreeBank tagset, Marcus et al. 1993).

2. structured – tags can be decomposed into subtags each tagging a particular feature.

a) compact – e.g., Multext-East (Erjavec 2004, 2009, 2010) or Czech Compact
tagsets (Hajič 2004).

b) positional – e.g., Czech Positional tagset (Hajič 2004)

33

34
CHAPTER 5. TAGSET DESIGN AND MORPHOSYNTACTICALLY ANNOTATED

CORPORA

Atomic Tagset: An example

The Penn Treebank Tagset, described in Marcus et al. 1993, is an example of an atomic
system. The Penn Treebank, a corpus of over 4.5 million words of American English, was
annotated with this tagset (1989–1992).

The following part-of-speech tags are used in the corpus:

Table 5.1: tbl:ts:penn

CC Coord. conjunction RB Adverb
CD Cardinal number RBR Adverb, comparative
DT Determiner RBS Adverb, superlative
EX Existential there RP Particle
FW Foreign word SYM Symbol
IN Prep. / subord. conj. TO to
JJ Adjective UH Interjection
JJR Adjective, comparative VB Verb, base form
JJS Adjective, superlative VBD Verb, past tense
LS List item marker VBG Verb, gerund / present part.
MD Modal VBN Verb, past part.
NN Noun, singular or mass VBP Verb, non-3rd p. sg. pres.
NNS Noun, plural VBZ Verb, 3rd p. sg. pres.
NP Proper noun, singular WDT Wh-determiner
NPS Proper noun, plural WP Wh-pronoun
PDT Predeterminer WP Possessive wh-pronoun
POS Possessive ending WRB Wh-adverb
PRP Personal pronoun , Comma
PRP$ Possessive pronoun . Sentence-final punctuation

While even in this tagset, some structure could be found (JJ vs. JJR vs. JJS), it is rather
ad-hoc and very limited.

Structured tagsets

Any tagset capturing morphological features of richly inflected languages is necessarily large.
A natural way to make them manageable is to use a structured system. In such a system,
a tag is a composition of tags each coming from a much smaller and simpler atomic tagset
tagging a particular morpho-syntactic property (e.g., gender or tense).

1. Positional tagsets

• Tags are sequences of values encoding individual morphological features.

• All tags have the same length, encoding all the features distinguished by the
tagset.

• Features not applicable for a particular word have a N/A value.

• E.g., AAFS4----2A---- (Czech Positional Tagset) encodes adjective (A), feminine
gender (F), singular (S), accusative (4), comparative (2).

2. Compact tagset

5.1. TAGS AND TAGSETS 35

• Tags are sequences of values encoding individual morphological features.

• In a compact tagset, the N/A values are left out.

• E.g., AFS42A (Czech Compact Tagset) encodes adjective (A), feminine gender (F),
singular (S), accusative (4), comparative (2).

For large tagsets, a structured system has many practical benefits:

1. Learnability: It is much easier to link traditional linguistic categories to the corre-
sponding structured tag than to an unstructured atomic tag. While it takes some time
to learn the positions and the associated values of the Czech Positional Tagset, for
most people, it is still far easier than learning the corresponding 4000+ tags as atomic
symbols.

2. Systematic description: The morphological descriptions are more systematic. In each
system, the attribute positions are (roughly) determined by either POS or SubPOS.
Thus, for example, knowing that a token is a common noun (NN) automatically provides
information that the gender, number, and case positions should have values.

3. Decomposability: The fact that the tag can be decomposed into individual components
has been used in various applications. For instance, the tagger of (Hajič and Hladká
1998), for a long time the best Czech tagger, operates on the subtag level.

4. Systematic evaluation: The evaluation of tagging results can be done in a more sys-
tematic way. Each category can be evaluated separately on each morphological feature.
Not only is it easy to see on which POS the tagger performs the best/worst, but it
is also possible to determine which individual morphological features cause the most
problems.

It is also worth noting that it is trivial to view a structured tagset as an atomic tagset (e.g.,
by assigning a unique natural number to each tag), while the opposite is not true.

Structured tagsets: Examples

MULTEXT-East Tagset

• Originates from EU MULTEXT (Ide and Véronis 1994)

• Multext-East V.1 developed resources for 6 CEE languages as well as for English
(the “hub” language)

• Multext-East V. 4 (Erjavec 2010): 13 languages: English, Romanian, Russian, Czech,
Slovene, Resian, Croatian, Serbian, Macedonian, Bulgarian, Persian, Finno-Ugric, Es-
tonian, Hungarian.

• Multext specifications are interpreted as feature structures, where a feature-structure
consists of a set of attribute-value pairs, e.g., there exists, for Nouns, an attribute Type,
which can have the values common or proper. A morpho-syntactic description (MSD)
(=tag) corresponds to a fully specified feature structure.

• Compact:

– Positions’ interpretations vary across different parts of speech. For instance, for
nouns, position 2 is Gender, whereas for verbs, position 2 is VForm, whose mean-
ing roughly corresponds to the mood.

36
CHAPTER 5. TAGSET DESIGN AND MORPHOSYNTACTICALLY ANNOTATED

CORPORA

– e.g., Ncmsn (noun, common, masculine, singular, nominative); Ncmsa--n (noun,
common, masculine, singular, accusative, indefinite, no clitic, inanimate. A num-
ber of Slavic languages are sensitive to animacy, i.e., nouns decline differently
depending on their animacy. So, in the former (compact) tag, the animacy spec-
ification is irrelevant and therefore, is omitted.

CLiC-TALP

• CLiC-TALP (Civit 2000) tagsets were developed for Spanish and Catalan.

• The Spanish CLiC-TALP system is a structured system, where the attribute positions
are determined by POS.

• The tagset distinguishes 13 parts of speech (POS) categories.

• It also makes more fine-grained morphological distinctions for mood, tense, person,
gender, number, etc., for the relevant categories.

• Tag size: 285.

• E.g., AQ0CS0 ‘rentable’ (adjective, qualitative, inapplicable case, common gender, sin-
gular, not a participle).

• Uses the ambiguous 0 value for a number of attributes – It can sometimes mean ”non-
applicable” and sometimes ”null”.

Czech PDT

One of the good representative of the positional tag system is the Prague Dependency Tree-
bank (PDT) Tagset (http://ufal.mff.cuni.cz/pdt). Its basic features, as outlined above,
are:

1. The first position specifies POS.

2. The second position specifies Detailed POS (SubPOS).

3. SubPOS uniquely determines POS.

4. SubPOS generally determines which positions are specified (with very few exceptions).

5. The - value meaning N/A or not-specified is possible for all positions except the first
two (POS and SubPOS).

Thus, unlike what we find in the Multext-East tagsets, the position of a particular at-
tribute is the same regardless of the POS. If it is inappropriate for a particular POS (or more
precisely SubPOS), it simply has a N/A value (-).

The Czech tagset uses a rather large number of wildcards, i.e., values that cover more than
one atomic value. For example, consider gender, as Figure 5.1 shows there are four atomic
values, and six wildcard values, covering not only various sets of the atomic values (e.g., Z
= {M,I,N) , but in one case also their combination with number values (QW = {FS,NP}).
On the other hand, there are some values appropriate for a single word. For example, a tag
with subPOS value E, whose only member is the relative pronoun což, which corresponds to
the English which in subordinate clauses.

It is worth noting, that the values of detailed part of speech do not always encode the same
level of detail. If the values are seen as a separate tagset, it is an atomic tagset which could be

5.2. TAGSET SIZE AND TAGGING ACCURACY 37

Table 5.2: Positional Tag System for Czech

Position Abbr Name Description Example vidělo ‘saw’
1 p POS part of speech V verb
2 s SubPOS detailed part of speech p past participle
3 g gender gender N neuter
4 n number number S singular
5 c case case -- n/a
6 f possgender possessor’s gender -- n/a
7 m possnumber possessor’s number -- n/a
8 e person person X any
9 t tense tense R past tense

10 d grade degree of comparison -- n/a
11 a negation negation A affirmative
12 v voice voice A active voice
13 reserve1 unused -- n/a
14 reserve2 unused -- n/a
15 i var variant, register -- basic variant

Atomic values:
F feminine
I masculine inanimate
M masculine animate
N neuter

Wildcard values:
X M, I, F, N any of the basic four genders
H F, N feminine or neuter
T I, F masculine inanimate or feminine (plural only)
Y M, I masculine (either animate or inanimate)
Z M, I, N not feminine (i.e., masculine animate/inanimate or neuter)

Q feminine (with singular only) or neuter (with plural only)

Figure 5.1: Atomic and wildcard gender values

naturally expressed as a structured tagset having two positions expressing two levels of detail.
For example, there is no single value encoding personal pronouns. Instead, there are three
values encoding three different types of personal pronouns: P (regular personal pronoun), H
(clitical personal pronoun), and 5 (personal pronoun in prepositional form). Similarly, there
are eight values corresponding to relative pronouns, four to generic numerals, etc.

5.2 Tagset size and tagging accuracy

• Tagsets for highly inflected languages are typically far bigger that those for English.

• It might seem obvious that the size of a tagset would be negatively correlated with
tagging accuracy: for a smaller tagset, there are fewer choices to be made, thus there
is less opportunity for an error.

• Elworthy (1995) shows, this is not true.

38
CHAPTER 5. TAGSET DESIGN AND MORPHOSYNTACTICALLY ANNOTATED

CORPORA

Let’s assume a language where determiners agree with nouns in number, determiners
are non-ambiguous for number while nouns sometimes are. Consider two tagsets:
one containing four tags, singular determiner, plural determiner, singular noun, plural
nouns; and another containing three tags, determiner, singular noun, plural noun. A
bigram tagger will get better accuracy when using the larger tagset: Since determiners
are non-ambiguous, a determiner is tagged correctly and it in turn determines the
correct tag for the noun. In the smaller tagset, the determiner is also tagged correctly;
however, the tag does not provide any information to help in tagging the noun.

5.3 Harmonizing tagsets across languages?

• Pros:

– Harmonized tagsets make it easier to develop multilingual applications or to eval-
uate language technology tools across several languages.

– Interesting from a language-typological perspective as well because standardized
tagsets allow for a quick and efficient comparison of language properties.

– Convenient for researchers working with corpora in multiple languages – they do
not need to learn a new tagset for each language.

• Cons:

– Various grammatical categories and their values might have different interpreta-
tions in different languages.

For example, the notion of definiteness is expressed differently in various lan-
guages. In English, definiteness is expressed using the definite determiners; in
Romanian, in turn, definite clitics attach to the end of nouns; in Lithuanian, in
turn, morphologically expressed definiteness exists only in pronominal adjectives.

Another example is the category of plural. In Russian and Slovenian, for example,
the plural value does not mean the same thing: in the former, there is only singular
vs. plural dichotomy, in the latter, however, there is also the dual grammatical
number, which is a separate form of every noun used when there are only two
such items.

5.4 Summary: Tagset design challenges

We have discussed a number of tag systems and outlined several important consideration
when designing a tagset. These included questions like

• Tagset size: computationally tractable? Linguistically adequate?

• Atomic or Structural? If Structural, compact or positional?

• What linguistic properties are relevant?

– For instance, the Czech tagset mixes the morpho-syntactic annotation with what
might be called dictionary information, e.g., the gender of information for nouns
is included in the tag.

5.4. SUMMARY: TAGSET DESIGN CHALLENGES 39

– The Czech tagset sometimes combines several morphological categories into one.

– The Czech tagset sometimes creates many additional categories, whose members
are singletons:

E.g., verbs, cardinal numerals and certain pronouns have the value H for gender,
if they are either feminine or neuter; or participles, nominal forms of adjectives
and verbs are tagged as Q for the gender position, if they are feminine (singular)
or neuter (plural).

On the other hand, there is a subpos value E, whose only member is the rela-
tive pronoun což, which corresponds to the English which in subordinate clauses.
Other relative pronouns belong to other separate categories, such as J (=relative
pronouns not after a preposition) and 9 (=relative pronouns after a preposition).

• Should the system be standardized and be easily adaptable for other languages?

Chapter 6

Unsupervised and Resource-light
Approaches to Computational
Morphology

Recently, there has been an increased interest in statistical modeling of morphology and of
morphological induction and in particular the unsupervised or lightly supervised induction
of morphology from raw text corpora. This work, while impressive, is still not at the stage
where one can induce a morphological analyzer such as Koskenniemi’s system for Finnish
(see §3.3) The statistical approaches address the issue of finding simple relations between
morphologically related words, involving one or two affixes.

Before we proceed further, we want to note that even though we do try to compare various
morphological analyzers, the task is subjective. There are many corpora where each word
is annotated with the lemma and tag appropriate in a given context. Such corpora are
suitable for evaluating taggers. However, for the evaluation of morphological analyzers, the
annotation should contain all morphologically plausible analyses regardless of context. And
there are not many corpora like that.

The discussion below is partly based on (Roark and Sproat 2007).

6.1 Linguistica (Goldsmith 2001)

One of the most cited systems for automatic unsupervised morphological acquisition is Lin-
guistica. The system is available online: http://linguistica.uchicago.edu/.

• The goal of the algorithm is to learn affixation alternations;

• The system starts with an unannotated corpus of text of a language and derives a set
of signatures along with words that belong to those signatures;

– Signatures are sets of suffixes that are used with a given set of stems. See Table
6.1 for examples.

– Signatures are NOT paradigms: 1) They can contain both derivational and in-
flectional affixes; 2) the set is not complete (e.g., the -ed is missing), but it might
show up in other signatures.

41

42
CHAPTER 6. UNSUPERVISED AND RESOURCE-LIGHT APPROACHES TO

COMPUTATIONAL MORPHOLOGY

– Going from signatures to paradigms is not trivial. The system is not capable
of handling some alternations, such as blow/blew since the method only handles
suffixation and does not consider any phonological/graphemic alternations. Thus
ending/suffix is the part of the word than changes and may include part of the
previous morpheme. In this respect, the system is similar to (Hajič 2004) discussed
in §3.

Table 6.1: Example of signatures

NULL.ed.ing betray, betrayed, betraying
NULL.ed.ing.s remain, remained, remaining, remains
NULL.s cow, cows
e.ed.ing.es notice, noticed, noticing, notices

Deriving signatures

• Step 1: Derive candidate signatures and signature-class membership.

• Step 2: Evaluate the candidate.

Step 1: Candidate generation

Word segmentation

• Generate a list of potential affixes:

– Start at the right edge of each word in the corpus,

– Collect the set of possible suffixes up to length six,

– For each of these suffixes, compute the following metric (where Nk is the total
number of k-grams):
freq(n1,n2...nk)

Nk
log freq(n1,n2...nk)∏

1
kfreq(ni)

• The first 100 top ranking candidates are chosen on the basis of a Boltzmann distribu-
tion; and words in the corpus are segmented according to these candidates.

• Suffixes that are not optimal for at least one word are discarded.

• Output: a set of stems and associated suffixes including the null suffix. The alpha-
betized list of suffixes associated with each stem constitutes the signature for that
stem.

• Simple filtering: remove all signatures associated only with one stem or only with one
suffix. See examples in Table 6.1.

Step 2: Candidate evaluation

• Not all suggested signatures are useful. They need to be evaluated.

• Evaluate candidates using minimum description length (MDL; Rissanen 1989); see also
Kazakov 1997; Marcken 1995):

6.1. LINGUISTICA (GOLDSMITH 2001) 43

– MDL is based on the insight that a grammar can be used to compress a corpus;
the better the morphological description is, the better the compression is. MDL
considers sum of the size of the grammar and of the size of the compressed corpus.
This is a standard measure in text compression: a good compression algorithm is
one that minimizes the size of the compressed text plus the size of the model that
is used to encode and decode that text.

• The compressed length of the model – the morphology – is given by:

λ < T > +λ < F > +λ < Σ >

where, λ < T > represents the length (in bits) of a list of pointers to ¡T¿ stems,
where T is the set of stems, and the notation <> reoresents the cardinality of that set.
λ < F > and λ < Σ > represent the equivalent pointer-list lengths for suffixes and
signatures, respectively.

– That’s how these expressions are calculated:

λ < T >= Σt∈T (log(26) ∗ length(t) + log [W]
[t]),

where [W] is the number of word tokens in the corpus and [t] is the number of
tokens of the paticular t. The log(26) term assumes an alphabet of 26 letters.

λ < F >= Σf∈suffixes(log(26) ∗ length(f) + log [WA]
[f]),

where [WA] is the number of tokens of morphologically analyzed word, and [f] is
the number of tokens of the suffix f .

λ < Σ >= Σσ∈Σlog
[W]
[σ] ,

where Σ is the set of signatures.

The compressed length of the corpus in terms of the morphological model is
calculated in the following way:

Σw∈W [w][log [W]
[σ(w)] + log [σ(w)]

[stem(w)] + log [σ(w)]
[suffix(w)∈σ(w)]]

Assuming the maximum likelihood estimate for probabilities:

Σw∈W [w][−log(P (σ(w)))− log(P (stem(w)|σ(w)))− log(P (suffix(w)|σ(w)))]

Evaluation Goldsmith tested his method on English, French, Italian, Spanish, and Latin.
Having no gold standard against which to compare, he evaluated the results subjectively,
classifying the analyses into the categories good, wrong analysis, failed to analyze, spurious
analysis. For English, for example, the results were 82.9% in the good category, with 5.2%
wrong, 3.6% failure, and 8.3% spurious.

Problems

• Analyzes only suffixes (can be generalized to prefixes as well). Handling stem-internal
changes would require significant overhaul.

• All phonological/graphemic changes accompanying inflection, must be factored into
suffixes: e.g., Russian plakat’ (cry.INF) and plačet (cry.Pres.3P); It would be also
hard to tell that hated should not be analyzed as hat+ed.

• Ignores syntax and semantics. It has been demonstrated that syntactic and semantic
information does indeed help with the acquisition of morphology. Without semantic
information, it would be hard to tell that ally should not be analyzed as all+y. For
example, (Schone and Jurafsky 2000) use semantic, orthographic, and syntactic in-
formation derived from unannotated corpora to arrive at an analysis of inflectional
morphology.

44
CHAPTER 6. UNSUPERVISED AND RESOURCE-LIGHT APPROACHES TO

COMPUTATIONAL MORPHOLOGY

6.2 Yarowsky & Wicentowski 2000

Yarowsky and Wicentowski (2000) present an algorithm for a resource-light induction of in-
flectional paradigms (suffixal and irregular). They test their approach on induction of English
present-past verb pairs. They discover forms of the same paradigm in a large unannotated
corpus using a combination of four similarity measures:

1. expected frequency distributions,

2. context,

3. weighted Levenshtein distance,

4. an iteratively bootstrapped model of affixation and stem-change probabilities.

They divide this task into three separate steps:

1. Estimate a probabilistic alignment between inflected forms and base forms in a given
language.

2. Train a supervised morphological analysis learner on a weighted subset of these aligned
pairs.

3. Use the result in Step 2 as either a stand-alone analyzer or a probabilistic scoring
component to iteratively refine the alignment in Step 1.

The morphological induction assumes the following available resources:

1. List of inflectional categories, each with canonical suffixes.

2. A large unannotated text corpus.

3. A list of the candidate noun, verb, and adjective base forms (typically obtainable from
a dictionary)

4. A rough mechanism for identifying the candidate parts of speech of the remaining
vocabulary, not based on morphological analysis (e.g., .

5. A list of consonants and vowels.

6. Optionally, a list of common function words.

7. Optionally, various distance/similarity tables generated by the same algorithm on pre-
viously studied languages can be useful as seed information, especially if these lan-
guages are closely related.

Alignment by frequency similarity. This measure assumes two forms belong to the
same lemma, when their relative frequency fits the expected distribution. The distribution
of irregular forms is approximated by the distribution of regular forms.

This measure worked well for verbal tense, but it would have to be modified to handle
categories where one can expect multimodal distribution. For example, consider the number
of nouns: the distribution is different for count nouns, mass nouns, plurale-tantum nouns,
etc.

6.2. YAROWSKY & WICENTOWSKI 2000 45

Alignment by context similarity. This measure is based on the idea that inflectional
forms of the same lemma have similar selectional preferences (mostly much closer than even
synonyms). For example, related verbs tend to occur with similar subjects/objects. To min-
imize needed training resources, Yarowsky and Wicentowski 2000 identify the positions of
head-noun objects and subjects of verbs using a set of simple regular expressions. The au-
thors notice that such expressions extract significant noise and fail to match many legitimate
contexts, but because they are applied to a large monolingual corpus, the partial coverage
is tolerable.

This measure worked well for verbs, but the question is how it would perform for other
parts-of-speech, where the subcategorization requirements are much less strict?

Alignment by weighted Levenshtein distance. This similarity measure considers over-
all stem edit distance using a weighted Levenshtein measure (Levenshtein 1966). One im-
portant feature of this distance measure is that the edit costs for vowels and consonants are
not the same. The motivation for the difference in costs stems from the assumption that
in morphological systems worldwide, vowels and vowel clusters tend to change more often
during inflection than consonants. Rather than treating all string edits as equal, four values
are used: V for vowels, V+ for vowel clusters, C for consonants, and C+ for consonant
clusters. They are initially set to relatively arbitrary assignments reflecting their respective
tendencies towards mutability, and then are iteratively re-estimated. A table from a similar
language can also be used to set the initial edit costs. Even though this approach is shown
to work for several languages , there is no linguistic research that supports this claim.

Alignment by a generative probabilistic model. This alignment is done with morpho-
logical transformation probabilities. The goal is to generalize the inflection-root alignments
via a generative probabilistic model. At each iteration of the algorithm, the probabilistic
mapping function is trained on the table output of the previous iteration (i.e., on the root-
inflection pairs with optional POS tags, confidence scores, and stem change+suffix analysis).
Each training example is weighted with its alignment confidence, and mappings which have
low confidence are filtered out.

Of the four measures, no single model is sufficiently effective on its own. Therefore, tradi-
tional classifier combination techniques are applied to merge scores of the four models.

Problems Applying the method developed by Yarowsky and Wicentowski 2000 to lan-
guages used in the current context raises a number of problems.

• The suffix-focused transformational model is not sufficient for languages such as Rus-
sian that exhibit prefixal morphology.1

• Most of the difficult substance of the lemmatization problem is often captured in
Yarowsky and Wicentowski’s 2000 work by a large root+POS↔inflection mapping ta-
ble and a simple transducer to handle residual forms. Unfortunately, such an approach
is not directly applicable to highly inflected languages, such as Czech or Russian, where
sparse data becomes an issue.

• (Yarowsky and Wicentowski 2000) use the Cucerzan and Yarowsky’s 2002 bootstrap-
ping approximation of tag probability distributions. Their algorithm starts with a
small annotated corpus. For French, for example, the initial training data was 18,000

1The morphological analyzer used in the experiments in subsequent chapters does not handle prefixes
either, except for the negative ne- and the superlative nai-.

46
CHAPTER 6. UNSUPERVISED AND RESOURCE-LIGHT APPROACHES TO

COMPUTATIONAL MORPHOLOGY

tokens. Here, the goal is to develop a portable system which will use much smaller,
if any, training corpus of the target language. Moreover, manually creating an an-
notated corpus that uses such fine-grained morpho-syntactic descriptions is extremely
time-consuming.

Even though the algorithm described by (Yarowsky and Wicentowski 2000) cannot be used
directly because of the issues outlined above, their ideas, to a large extent, inspired the
current work. The main goal here is to produce detailed morphological resources for a
variety of languages without relying on large quantities of annotated training data. Similarly
to their work, our work relies on a subset of manually encoded knowledge, instead of applying
completely unsupervised methods.

6.3 Unsupervised taggers

As mentioned above, the problem with using supervised models for tagging resource-poor
languages is that supervised models assume the existence of a labeled training corpus. Un-
supervised models do not make this assumption, which makes them more applicable to the
task of morpho-syntactic tagging resource-poor languages.

Unsupervised models generally rely on the presence of a dictionary, or lexicon, which contains
the possible parts of speech for a given word type. This list of parts of speech may be ordered
or unordered and in the former case may contain probabilities. For each word token in the
corpus, the parts of speech in the dictionary for that word type are considered as possibilities
in tagging.

Markov models

MM taggers work well when there is a large, tagged training set. MMs can be used without
a corpus to train on, too. In the unsupervised case, the MM approach (Cutting et al. 1992;
Jelinek 1985; Merialdo 1994) still has three major components: 1) an initial (probability)
vector, 2) a transition (probability) matrix, and 3) an emission (probability) matrix. Each
of these components are iteratively estimated until the process converges. For tagging, the
Viterbi algorithm is used, as described in §4.4.

The difference between Visible MM (VMM) tagging (i.e., supervised) and Hidden MM
(HMM) tagging (i.e., unsupervised) is in how the model is trained. Since no pre-tagged
corpus is available, the probabilities have to be estimated in some other way. To do this the
initial parameters of the model are set based on a dictionary that lists all possible tags for
each word.

There are two steps in HMM training — expectation (estimation) and maximization, which
alternate during the training process, thus giving the Expectation Maximization (EM) algo-
rithm2. Basically, first the parameters of the model are estimated — the initial, transition,
and emission probabilities — and then the Viterbi algorithm is used to determine which
estimation maximizes the probability of a sequence of tags. This sequence of tags is then
used to reestimate the parameters.

2The Baum-Welch or Forward-Backward algorithm, which is used for HMM training, is a special case
of general EM.

6.3. UNSUPERVISED TAGGERS 47

When the probability of traversing an arc from ti to ti+1 is estimated. Both forward prob-
abilities (probability of the sequence of tags leading up to ti) and backward probabilities
(probability of the sequence of tags following ti+1) are examined. During the expectation
phase, a forward pass over the data is made to (re)-estimate the forward probabilities and a
backward pass for backward probability (re)-estimation. This multi-directional information
gives a better estimate of the probability of traversing an arc than can be obtained using
forward probabilities alone.

With an unsupervised HMM tagger, Cutting et al. 1992 are able to obtain accuracies of up
to 96% for English, on par with other current technologies. This raises the question whether
such an approach could be used for other languages.

Transformation-based learning (TBL)

In the supervised transformation-based learning (TBL), a corpus is used for scoring the
outcome of applying transformations in order to find the best transformation in each iteration
of learning. In the unsupervised case, this scoring function must be found without a manually
tagged corpus. To adapt to a new scoring function, Brill 1995, 1999 redefines all three
components of the TBL model.

The unsupervised TBL learner begins with an unannotated text corpus, and a dictionary
listing words and the allowable part of speech tags for each word. The initial state annotator
tags each word in the corpus with a list of all allowable tags.

Since now instead of sets of tags, one tag per word is used, the transformation templates
must also be changed. Instead of being templates which change one tag to another, they
select a tag from the set of tags. That is, they change a word’s tagging from a set of tags
to a single tag. A template for such transformations is as outlined in (19). The context C
can be defined as before, although Brill 1999 limits the context to the previous (following)
word/tag.

(19) Change the tag of a word from χ to Y in context C.

where χ is a set of two or more tags and Y is a single tag, such that Y ∈ χ.

When using supervised TBL to train a POS tagger, the scoring function is just the tagging
accuracy that results from applying a transformation. With unsupervised learning, the
learner does not have a gold standard training corpus with which accuracy can be measured.
Instead, the information from the distribution of unambiguous words is used to find reliable
disambiguating contexts.

In each learning iteration, the score of a transformation is computed based on the current
tagging of the training set. As stated above, each word in the training set is initially tagged
with all tags allowed for that word, as indicated in the dictionary. In later learning iterations,
the training set is transformed as a result of applying previously learned transformations.

To calculate the score for a transformation rule, as described in (19), Brill computes (20) for
each tag Z ∈ χ,Z 6= Y .

(20) freq(Y)/freq(Z) ∗ incontext(Z,C),

where freq(Y) is the number of occurrences of words unambiguously tagged with tag Y in
the corpus, freq(Z) is the number of occurrences of words unambiguously tagged with tag Z

48
CHAPTER 6. UNSUPERVISED AND RESOURCE-LIGHT APPROACHES TO

COMPUTATIONAL MORPHOLOGY

in the corpus, and the incontext(Z,C) is the number of times a word unambiguously tagged
with tag Z occurs in context C in the training corpus. To produce a score, first let R be
defined as in (21). Then the score for the transformation in (19) is as in (22).

(21) R = argmax Z freq(Y)/freq(Z) ∗ incontext(Z,C)

(22) incontext(Y,C)− freq(Y)/freq(R) ∗ incontext(R,C)

To further explain what the scoring function in (22) does, first consider that a good trans-
formation for removing the tag ambiguity of a word is one for which one of the possible tags
appears much more frequently. This is measured here by unambiguously tagged words in
the context, after adjusting for the differences in relative frequency between different tags
(i.e., freq(Y)/freq(R)). So, the comparison is made between how often Y unambiguously
appears in a given context C and the number of unambiguous instances of the most likely
tag R in the same context, where R ∈ χ,R 6= Y . The tag is changed from χ to Y , if Y is the
best choice. That is, the learner will accept a transformation for a given learning iteration
if the transformation maximizes the function in (22).

Chapter 7

Our Approach to Resource-light
Morphology

In this section we address the development of taggers for resource-poor languages. We
describe a rapid, low-cost approach to the development of taggers by exploring the possibility
of approximating resources of one language by resources of a related language. Our approach
takes the middle road between knowledge-free approaches and those that require extensive
manually created resources. We believe that for many languages and applications, neither
of these extreme approaches is warranted. The knowledge-free approach lacks precision and
the knowledge-intensive approach is usually too costly.

Our main assumption is that a model for the target language can be approximated by
language models from one or more related source languages and that inclusion of a limited
amount of high-impact and/or low-cost manual resources is greatly beneficial and desirable.
Our research has already given positive and promising results (especially Feldman and Hana
2010, but also Feldman 2006; Feldman et al. 2006; Hana et al. 2004; Hana 2008; Hana et al.
2006).

For expository reasons, below, we most concentrate on the Russian-Czech pair. We have
successfully tested our approach by creating taggers for other languages as well (e.g., Por-
tuguese and Catalan). We use TnT (Brants 2000), a second order Markov Model tagger. The
language model of such a tagger consists of emission probabilities (corresponding to a lexi-
con with usage frequency information) and transition probabilities (roughly corresponding to
syntax rules with strong emphasis on local word-order). We approximate the target-language
emissions by combining the emissions from the (modified) source language corpus with in-
formation from the output of our resource-light analyzer (Hana 2008). The target-language
transitions are approximated by the source language transitions (Feldman and Hana 2010).
We also need to account for the fact that the two languages have different (although often
related) tagsets. Below, we describe our approach in more detail.

We experimented with several language pairs.

• Russian via Czech

• Catalan via Spanish

• Portuguese via Spanish

Below we mostly concentrate on Russian via Czech, but we do mention the other language
pairs and the result of the experiments.

49

50 CHAPTER 7. OUR APPROACH TO RESOURCE-LIGHT MORPHOLOGY

7.1 Tagsets

For all languages in the experiments, we used positional tagsets. The advantages of positional
tagsets were outlined in Chapter 5.

All tagsets follow the basic design features of the Czech positional tagset (Hajič 2004):

1. The first position specifies POS.

2. The second position specifies Detailed POS (SubPOS).

3. SubPOS uniquely determines POS.

4. SubPOS generally determines which positions are specified (with very few exceptions).

5. The - value meaning N/A or not-specified is possible for all positions except the first
two (POS and SubPOS).

Czech

In the Czech positional tag system, every tag is represented as a string of 15 symbols, each
corresponding to one morphological category. See §5.1 for more details.

Russian

The Russian tagset (Hana and Feldman 2010) we use was developed on the basis of the
Czech positional tagset. The tagsets encode similar set of morphological categories in the
same order and in most cases do so using the same symbols. However, there are some
differences. Many of them are a consequence of linguistic differences between the languages.
For example, Russian has neither vocative nor dual, nor does it have auxiliary or pronominal
clitics; and the difference between colloquial and official Russian is not as systematic and
profound as in Czech. Table 7.1 compares the number of values for individual positions.

The Russian tagset also uses far fewer wildcards (symbols representing a set of atomic values).
Even though wildcards might lead to better tagging performance, we intentionally avoid
them. The reason is that they provide less information about the word, which might be
needed for linguistic analysis or an NLP application. In addition, it is trivial to translate
atomic values to wildcards if needed.

The Russian tagset contains only wildcards covering all atomic values (denoted by X for all
applicable positions). There are no wildcards covering a subset of atomic values. Forms
that would be tagged with a tag containing a partial wildcard in Czech are regarded as
ambiguous.

For example, where the Czech tagset uses Z (all genders except feminine), our Russian
tagset uses M (masculine) or N (neuter) depending on the context. Thus, Czech tomto
‘thismasc/neut.loc’ is tagged as PDZS6---------- in v tomto domě ‘in this housemasc’ and v
tomto mı́stě ‘in this placeneut’, while Russian ètom ‘thismasc/neut.loc’ is tagged as PDMXS6----------
in v ètom dome ‘in this housemasc’ and PDNXS6---------- in v ètom meste ‘in this placeneut’.

7.1. TAGSETS 51

Table 7.1: Comparison with the Czech Positional Tagset

Rus Cze Abbr Name No. of values
Czech Russian

1 1 p Part of Speech 12 12
2 2 s SubPOS (Detailed Part of Speech) 69 43
3 3 g Gender 11 4
4 y Animacy 6 4
5 4 n Number 9 4
6 5 c Case 5 8
7 6 f Possessor’s Gender 5 5
8 7 m Possessor’s Number 3 3
9 8 e Person 5 5

10 r Reflexivity 3
11 9 t Tense 5 5
12 b Verbal aspect 4
13 10 d Degree of comparison 4 4
14 11 a Negation 3 3
15 12 v Voice 3 3

13 Not used 1
14 Not used 1

16 15 i Variant, Abbreviation 10 8

Romance tagsets

We used positional tags for the Romance languages as well. For Spanish and Catalan we
translated the structured tags, provided by the CLiC-TALP project (http://clic.ub.edu/
en/what-is-clic) into our positional system. The Portuguese tagset was developed from
scratch. The reader interested in the details of the Slavic and Romance tagsets is referred
to Feldman and Hana 2010.

Table 7.2: Overview and comparison of the Romance tagsets

Pos Description Abbr. No. of values
Spanish Portuguese Catalan

1 POS p 14 14 14
2 SubPOS – detailed POS s 29 30 29
3 Gender g 6 6 6
4 Number n 5 5 5
5 Case c 6 6 6
6 Possessor’s Number m 4 4 4
7 Form o 3 3 3
8 Person e 5 5 5
9 Tense t 7 8 7

10 Mood m 7 7 7
11 Participle r 3 3 3

52 CHAPTER 7. OUR APPROACH TO RESOURCE-LIGHT MORPHOLOGY

Table 7.3: Overview of the tagsets we use

Language size # of tags in # of positions
1,893word-corpus

Czech 4,251 216 13 (+2 not used)
Russian 1,063 179 13 (+2 not used)
Spanish 282 109 11
Catalan 289 88 11
Portuguese 259 73 11

7.2 Corpora

Since we wanted to stay within the resource-light paradigm, we intentionally avoided the use
of parallel corpora or target-language annotated corpora. For Russian, Czech, and Catalan,
we used a small annotated development corpus (Dev) of around 2K tokens to tune our
tools. For Portuguese, unfortunately, such a corpus was not available to us. To evaluate the
performance of the system, we always tried to obtain the largest test corpus available.

We used the following corpora for each target language (Czech, Russian, Catalan, and Por-
tuguese):

1. Dev – annotated corpus, about 2K (intentionally small).

For development testing, testing of hypotheses and for tuning the parameters of our
tools; not available for Portuguese.

2. Test – annotated corpus, preferably large.

For final testing.

3. Raw – raw unannotated corpus, no limit on size.

Used in cognate detection (see §7.6), to acquire lexicon, to get the most frequent words.

4. Train – large annotated corpus.

Used to report statistics (not used during development); available only for Czech and
Catalan.

and the following corpora for each source language (Czech and Spanish):

1. Train – large annotated corpus.

Used to train the source language tagger (i.e., emission and transition probabilities)
and to report statistics.

2. Raw – large unannotated corpus.

Used in cognate detection, to get the most frequent words.

Table 7.4 summarizes the properties of the corpora we used in our experiments. For each
target and source language, we report the size of the training, development, and test corpora,
the sources we used, the type of the tagset, and whether a corpus was annotated manually
or automatically. Thus, for example Russian Dev and Test and Portuguese Test were
annotated manually. The term positionalized means that we translated a tagset into our
positional system.

The Russian and Portuguese corpora were annotated by us. The annotation process and
supporting tools are described in §8.6 below.

7.3. EXPERIMENTS: AN OVERVIEW 53

Table 7.4: Overview of the corpora

Language Corpus Size Source Manual/Automatic tagging Tagset
Czech (src/target) Dev 2K PDT 1.0 Manual Czech Positional

Test 125K PDT 1.0 Manual Czech Positional
Raw 39M distributed w/ PDT 1.0 N/A –
Train 1.5M PDT 1.0 Manual Czech Positional

Russian (target) Dev 1,758 Orwell’s 1984 Manual (by us) Russian Positional
Test 4,011 Orwell’s 1984 Manual (by us) Russian Positional
Raw 1M Upsalla N/A –

Spanish (src) Train 106K CLiC-TALP Automatic, manually validated positionalized CLic-TALP
Catalan (target) Dev 2K CLiC-TALP Automatic, manually validated positionalized CLic-TALP

Test 20.6K CLiC-TALP Automatic, manually validated
Raw 63M El Periodico N/A –
Train 80.5K CLiC-TALP Automatic, manually validated positionalized CLic-TALP

Portuguese (target) Test 1,893 NILC Manual (by us) modified CLic-TALP
Raw 1.2M NILC N/A

7.3 Experiments: An Overview

In the following, we only discuss one pair of languages (Russian via Czech), but similar
experiments were run for other language pairs. We treat Czech as an approximation of
Russian. In the simplest model (see §7.4), we use a Czech tagger to tag Russian directly
(modulo tagset and script mappings).

In the subsequent experiments, we improve this initial model (making sure we stay in the
labor- and knowledge-light paradigm):

1. We use the morphological analyzer (MA) from §7.5 to approximate emissions (§7.5).

2. We use an automatically acquired list of cognates to combine Czech emissions and
emissions based on the MA (§7.6).

3. We apply simple syntactic transformations to the Czech corpus (“Russifications”) to
make it more Russian-like and thus improving the acquired transitions (§7.7).

4. We train batteries of taggers on subtags to address the data sparsity problem (§7.8).

7.4 Experiment 1: Direct tagging with the source-language model

We show that the transition information acquired from the source language, Czech, is also
useful for the related target language, Russian. In this model we assume that Czech is such
a good approximation of Russian, that we can use it to tag Russian directly (modulo tagset
and script mappings).

7.5 Experiment 2: Approximating emissions with morphological
analysis

We have approximated the target-language emissions by combining information from the out-
put of our resource-light morphological analyzer and emission probabilities from the source
language corpus. In order to explain how it was done, we have to digress and describe our
resource-light morphological analyzer.

54 CHAPTER 7. OUR APPROACH TO RESOURCE-LIGHT MORPHOLOGY

Resource-light Morphological Analyzer

We have built an open, modular and fast system for morphologically analyzing fusional lan-
guages (Hana et al. 2004; Hana 2008). Our system’s precision is close to that of a supervised
system, but is far less labor-intensive.

Motivation To motivate our approach, we provide some facts about Czech nouns, assum-
ing other open classes and other fusional languages behave similarly. The statistics are based
on a subcorpus of the Prague Dependency Treebank (PDT; Bémova et al. 1999). It contains
about 220,000 noun tokens corresponding to about 24,000 lemmas. Table 7.5 break lemmas
into deciles by their frequency and compares their corpus coverage. Similar to Zipf’s law
(Zipf 1935, 1949), it makes two things apparent:

Lemma Number Corpus Cumulative Lemmas not
freq decile of tokens coverage (%) coverage (%) in tr2 (%)

10 164,643 74.1 74 0.2
9 22,515 10.1 84 6.7
8 11,041 5.0 89 22
7 6,741 3.0 92 36
6 4,728 2.1 94 48
5 3,179 1.4 96 61
4 2,365 1.1 97 65
3 2,364 1.1 98 70
2 2,364 1.1 99 75
1 2,364 1.1 100 77

Note: Each decile contains 2364 or 2365 noun lemmas.

Table 7.5: Corpus coverage by lemma frequency

• First, it is easy to get decent coverage of a text by knowing how to analyze a small
number of high frequency words – 2.4K of the most frequent lemmas (10th decile) cover
74% of noun tokens in the corpus, and 7.1K lemmas (top 3 deciles) cover nearly 90%
of all noun tokens.

• Second, it is very hard, practically impossible, even with very large lexicons to achieve
perfect coverage of a running text.

– The marginal increase in coverage drops sharply. Each of the lower 5 deciles
increases the coverage by 1% only, 74times less than the highest decile. This is
an expected consequence of the sparse data properties of natural language, but
this fact does not free us from the need to handle the phenomenon.

– Less frequent words tend to be more text specific: 60–77% of the lemmas in each
of the lower 5 deciles did not occur in another part of the PDT of the same size
– even though both corpora are very similar, having the same newspapers from
the same period as sources. Again, this is expected, but must be handled.

Structure

The design of the system allows us to combine modules into a pipeline with different levels of
precision. The general strategy is to run “sure thing” modules (those that make fewer errors

7.5. EXPERIMENT 2: APPROXIMATING EMISSIONS WITH MORPHOLOGICAL
ANALYSIS 55

and overgenerate less) before “guessing” modules that are more error-prone and given to
overgeneration. This, for example, means that modules based on manually created resources
are assumed reliable and used early in the pipeline, while those that depend on automatically
acquired resources are assumed less reliable and used only later. The current system contains
the following modules:

• Word list – a list of words, each accompanied with its possible analyses.

• Lexicon-based analyzer. In the lexicon, each lemma is associated with its paradigm
and possibly irregular stem(s).

• Guesser – analyzes words relying purely on the analysis of possible endings. In many
languages, including the Slavic languages, the situation is complicated by high in-
cidence of homonymous endings – for example the ending a has about 19 different
meanings in Czech, as Table 2.3 in §2.7 shows. The situation is even more complicated
because morpheme boundaries are not known.

The guesser can optionally use various filters using partial morphological information
about words (e.g., lemmas or form with POS only, instead of full tags). In practi-
cal settings, such partial information is usually more likely to be available than full
analyses.

• Modules for identifying abbreviations, numeric expressions, etc.

In the experiments so far, we have manually provided analyses of the most frequent words, in-
formation about paradigms and several derivational affixes (only in experiments with Czech;
used in automatic lexicon acquisition; about 10 affixes). The lexicon, list of abbreviation
etc. were automatically derived from an unannotated corpus.

Evaluation of the MA

Table 7.6 shows the results of our Czech analyzer on the evaluation data of PDT (about 125K
tokens). Our precision is only slightly worse than the current state of the art (Hajič 2004).
While the recall of our system is worse, we achieved this results with very little of manually
created and thus costly, resources – analyses of 10,000 frequent forms, list of inflectional
paradigms and rough information about 20 derivational suffixes. The system of Hajič (2004)
uses a manually created lexicon containing about 300,000 entries and a list of paradigms. It
is worth stressing that the cost of providing analysis for 10,000 forms is significantly lower
than the cost of providing 10,000 lexical entries. The table also lists results (on all tokens)
for Russian, Portuguese and Catalan.

Language Czech (nouns) Russian Portuguese Catalan

our system state of the art

size of manually lexicon 0 300K 0 0 0
provided resources word list 10K 0 1K 0 1K

paradigms + + + + +
derivations 20 ? 0 0 0

recall 96.6 98.7 93.4 98.0 95.8
ambiguity tag / word 4.0 3.8 2.8 3.4 2.6

Table 7.6: Evaluation of the morphological analyzer

56 CHAPTER 7. OUR APPROACH TO RESOURCE-LIGHT MORPHOLOGY

Figure 7.1: Schema of the Even tagger

Back to Experiment2: Using MA to approximate emissions

The Direct tagger (see §7.4) used Czech emissions to approximate Russian emissions. The
previous section suggested that this is the main culprit of its poor performance. The Czech
emissions can differ from the ideal Russian emissions in three ways:

1. A particular emitted word does not exist.

2. The set of tags associated with an emitted word is different.

3. The distribution of tags in that set is different.

The emissions almost certainly differ in all three ways. For example, as we mentioned in the
evaluation of the Direct tagger, 55% of tokens in the Russian corpus did not occur in the
Czech training corpus.

The results in Table 7.8 show that the accuracy clearly improved for all major open classes,
especially, for verbs. The much lower accuracy for nouns (54.4%) and adjectives (53.1%)
than for verbs (90.1%) is expected. In the output of the morphological analyzer that is the

7.6. EXPERIMENT 3: APPROXIMATING EMISSIONS WITH COGNATES 57

basis for the emissions, verbs have the ambiguity of 1.6 while the ambiguity for nouns and
adjectives is 4.3 and 5.7, respectively (see the last column in §7.7). Moreover, verbs have
also a higher recall.

7.6 Experiment 3: Approximating emissions with cognates

Although it is true that forms and distributions of Czech and Russian words are not the same,
they are also not completely unrelated. As any Czech speaker would agree, the knowledge
of Czech words is useful when trying to understand a text in Russian (obviously, one has to
understand the script, as most Czechs do). The reason is that many of the corresponding
Czech and Russian words are cognates, (i.e., historically they descend from the same ancestor
root or they are mere translations).

Cognate pair

We define a cognate pair as a translation pair where words from two languages share both
meaning and a similar surface form. Depending on how closely the two languages are re-
lated, they may share more or fewer cognate pairs. Linguistic intuition suggests that the
information about cognate words in Czech should help in tagging Russian. Two hypotheses
are tested in the experiments with respect to cognates:

1. Cognate pairs have similar morphological and distributional properties.

2. Cognate pairs are similar in form.

Obviously both of these assumptions are approximations because

1. Cognates could have departed in their meaning, and thus probably have different dis-
tributions. For example, consider život ‘life’ in Czech vs. život ‘belly’ in Russian, and
krásný (adj.) ‘nice’ in Czech vs. krasnyj (adj.) ‘red’ in Russian.

2. Cognates could have departed in their morphological properties. For example, tema
‘theme’, borrowed from Greek, is neuter in Czech and feminine in Russian.

3. There are false cognates — unrelated, but similar or even identical words. For example,
dělo ‘cannon’ in Czech vs. delo ‘matter, affair’ in Russian, jel [jEl] ‘drove’ in Czech vs.
el [jEl] ‘ate’ in Russian, pozor ‘attention’ vs. pozor ‘disgrace’ in Russian, ni ‘sheloc’ in
Czech vs. ni negative particle in Russian (corresponding to Czech ani).1

Nevertheless, the assumption here is that these examples are true exceptions from the rule
and that in the majority of cases, cognates will look and behave similarly. The borrowings,
counter-borrowings, and parallel developments of both Slavic and Romance languages have

1It is interesting that many unrelated languages have amazing coincidences. For example, the Russian
gora ‘mountail/hill’ and the Konda goro ‘mountain/hill’ do not seem related; or the Czech mlada ‘young’
is a false cognate with the Arabic malad ‘youth’, but coincidentally, the words have similar meanings. This
is definitely not a very frequent language phenomenon, but even though the words are not etymologically
related, finding such pairs should not hurt the performance of the system.

58 CHAPTER 7. OUR APPROACH TO RESOURCE-LIGHT MORPHOLOGY

been extensively studied (see e.g., Derksen 2008 for Slavic and Gess and Arteaga 2006 for
Romance), but this book does not provide a survey of this research.

In Feldman et al. 2005, we report the results of an experiment where 200 most frequent
nouns from the Russian development corpus are manually translated into Czech. They
constitute about 60% of all noun tokens in the development corpus. The information about
the distribution of the Czech translations is transferred into the Russian model using an
algorithm similar to the one outlined in §7.6. The performance of the tagger that uses
manual translations of these nouns improves by 10% on nouns and by 3.5% overall. The
error analysis reveals that some Czech-Russian translations do not correspond well in their
morphological properties and, therefore, create extra errors in the transfer process. However,
overall the accuracy does improve.

Obviously, if we want to stay in the resource/knowledge-light paradigm, we cannot provide
the list manually. The following section describes a language-independent algorithm for
achieving comparable results.

Identifying cognates

Our approach to cognate detection does not assume access to philological erudition, to
accurate Czech-Russian translations, or even to a sentence-aligned corpus. None of these
resources would be obtainable in a resource-poor setting. Instead we simply look for similar
words, using a modified edit distance (Levenshtein 1966) as a measure of similarity.

We use a variant of the edit distance where the cost of operations is dependent on the
arguments. In general, we assume that characters sharing certain phonetic features are closer
than characters not sharing them (we use spelling as an approximation of pronunciation –
in both Russian and Czech the relation between spelling and pronunciation is relatively
simple). Thus for example, b is closer to p than to, say, j. In addition, costs are refined
based on some well-known and common language-specific phonetic-orthographic regularities.
The non-standard distances for Czech and Russian include for example:

• Russian è and e have zero distance from Czech e.

• Czech h and g have zero distance from Russian g (in Czech, the original Slavic g was
replaced by h, in Russian it was not).

• The length of Czech vowels is ignored (in Russian, vowel length is not phonemic)

• y and i are closer to each other than other vowels (modern Czech does not distinguish
between them in pronunciation)

However, performing a detailed contrastive morpho-phonological analysis is undesirable,
since portability to other languages is a crucial feature of the system. So, some facts from
a simple grammar reference book should be enough. Ideally, optimal distances should be
calculated; however, currently we set them based on our intuition.

To speed up the computation of distances we preprocess the corpora, replacing every char-
acter that has a unique zero-distance counterpart by that counterpart. At the end of the
cognate acquisition processes, the cognates are translated back to their original spelling.
Because edit distance is affected by the number of arguments (characters) it needs to con-
sider, the edit distance measure is normalized by word length. The list of cognates includes
all Czech-Russian pairs of words whose distance is a below certain threshold. We further

7.7. EXPERIMENT 4: APPROXIMATING TRANSITIONS 59

require that the words have the same morphological features (except for the gender of nouns
and the variant as they are lexical features).

Using cognates

The list of cognates obtained by the procedure described above is used to map the Czech
emission probabilities to Russian emissions. To further explain this, assume wcze and wrus
are cognate words. Let T cze denote the tags that wcze occurs with in the Czech training
corpus. Let pcze(t) be the emission probability of tag t (t 6∈ T cze ⇒ pcze(t) = 0). Let
T rus denote tags assigned to wrus by the morphological analyzer; 1

|Trus|
is the even emission

probability. Then, assign the new emission probability p′rus(t) to every tag t ∈ T rus as is
given in (23) (followed by normalization):

(23) prus
′(t) =

{
pcze(t) + 1

|Trus|
if t ∈ T rus

0 otherwise

The results are presented in Table 7.9. For comparison, we also show the results of the Direct
(see §7.4) and Even taggers (see §7.5). In comparison with the Even tagger, the accuracy of
the Cognates tagger improves in all measures (with the exception of SubPOS of nouns and
adjectives, where it gives the same accuracy).

7.7 Experiment 4: Approximating transitions

We have experimented with simple modifications of the source corpora with the goal to make
their syntactic structure look more like the target language, thus resulting in transitions
better approximating the transitions of the target language. This resulted in a modest
improvement of tagging accuracy. However we do not plan to pursue this path any further
in the near future because the required human effort is not justified by the results. For the
languages we experimented with, the source transitions were fairly good approximations of
target transitions (e.g., Czech transitions approximated very well Russian transitions).

7.8 Experiment 5: Voting

One of the problems when tagging with a large tagset is data sparsity; with 1,000 tags there
are 1, 0003 potential trigrams. It is very unlikely that a naturally occurring corpus will
contain all the acceptable tag combinations with sufficient frequency to reliably distinguish
them from the unacceptable combinations. However, not all morphological attributes are
useful for predicting the attributes of the succeeding word (e.g., tense is not really useful for
case).

In this section, we describe an experiment originally presented in (Hana et al. 2004). To
overcome data sparsity issues, we trained a tagger on individual components of the full tag
in the hope that the reduction of the tagset of each such sub-tagger reduces data sparsity.
Unfortunately, the method did not improve the results as we had hoped. It does increase
accuracy of the less effective taggers (e.g., Even from §7.5 or a similar tagger described in

60 CHAPTER 7. OUR APPROACH TO RESOURCE-LIGHT MORPHOLOGY

Table 7.7: Evaluation of the Russian morphological analyzer

Lexicon no yes no yes
LEO no no yes yes
All Recall error: 2.9 4.3 12.7 6.6

ambiguity (tag/w) 9.7 4.4 3.3 2.8
N Recall error: 2.6 4.9 41.6 13.7

ambiguity (tag/w) 18.6 6.8 6.5 4.3
A Recall error: 6.2 7.0 8.1 7.5

ambiguity (tag/w) 21.6 10.8 3.3 5.7
V Recall error: 0.8 2.0 2.3 2.3

ambiguity (tag/w) 14.7 4.8 1.5 1.5

Table 7.8: Tagging with evenly distributed output of Russian MA

tagger name Direct Even
transitions Czech Czech
emissions Czech uniform Russian MA
All Full tag: 48.1 77.6

SubPOS 63.8 91.2
N Full tag: 37.3 54.4

SubPOS 81.1 89.6
A Full tag: 31.7 53.1

SubPOS 51.7 86.9
V Full tag: 39.9 90.1

SubPOS 48.1 95.7

Table 7.9: Tagging Russian using cognates

tagger name Direct Even Cognates
transitions Czech Czech Czech
emissions Czech even MA cognates
All Full tag: 48.1 77.6 79.5

SubPOS 63.8 91.2 92.2
N Full tag: 37.3 54.4 57.3

SubPOS 81.1 89.6 89.9
A Full tag: 31.7 53.1 54.5

SubPOS 51.7 86.9 86.9
V Full tag: 39.9 90.1 90.6

SubPOS 48.1 95.7 96.1

7.8. EXPERIMENT 5: VOTING 61

the original paper), but not of those with higher accuracy. The results are still interesting
for at least two reasons. First, it shows that a smaller tagset does not necessarily lead to an
increase of accuracy. Second, it is possible, and even likely that it is possible to modify the
basic method in a way that would indeed lead to improved results.

Tag decomposition

We focus on six positions — POS (p), SubPOS (s), gender (g), number (n), case (c), and
person (e). The selection of the slots is based on linguistic intuition. For example, because
a typical Slavic NP has the structure of (Det) A* N (NPgen) PP* (very similar to English),
it is reasonable to assume that the information about part of speech and agreement features
(gender, number, case) of previous words should help in the prediction of the same slots
of the current word. Likewise, information about part-of-speech, case and person should
assist in determining person (finite verbs agree with the subject, subjects are usually in
nominative). On the other hand, the combination of tense and case is prima facie unlikely
to be much use for prediction. Indeed, most of the expectations are confirmed in the results.

Table 7.10: Russian tagger performance trained on individual slots vs. tagger performance
trained on the full tag

full tag POS SubPOS gender number case
1 (POS) 92.2 92.0 – – – –
2 (SubPOS) 91.3 – 90.1 – – –
3 (gender) 89.9 – – 89.4 – –
4 (number) 94.1 – – – 92.1 –
5 (case) 87.2 – – – – 82.6

Table 7.11: Russian tagger performance trained on the combination of two features vs. tagger
performance trained on the full tag

Feature 1 full tag POS gender gender number case case
Feature 2 case case negation case person tense
1 (POS) 92.2 91.9 – – – – –
2 (SubPOS) 91.3 – – – – – –
3 (gender) 89.9 – 89.7 89.2 – – –
4 (number) 94.1 – – – 93.2 – –
5 (case) 87.2 85.6 85.6 – 84.7 82.9 83.3
8 (person) 99.2 – – – – 98.9 –
9 (tense) 98.6 – – – – – 98.4
11 (negation) 96.0 – – *96.3 – – –

The performance of some of the models on the Russian development corpus is summarized in
Tables 7.10, 7.11, and 7.12. All models are based on the Russified tagger (see §7.7), with the
full-tag tagger being identical to it. The numbers marked by an asterisk indicate instances
in which the sub-tagger outperforms the full-tag tagger. As can be seen, all the taggers
trained on individual positions are worse than the full-tag tagger on those positions. This
proves that a smaller tagset does not necessarily imply that tagging is easier (see Elworthy
1995, and Chapter 5 of (Feldman and Hana 2010)). Similarly, there is no improvement
from the combination of unrelated slots — case and tense or gender and negation. However,
combinations of (detailed) part-of-speech information with various agreement features (e.g.,

62 CHAPTER 7. OUR APPROACH TO RESOURCE-LIGHT MORPHOLOGY

Table 7.12: Russian tagger performance trained on the combination of three or four features
vs. tagger performance trained on the full tag

Feature 1 full tag POS POS SubPOS SubPOS SubPOS
Feature 2 gender number gender number gender
Feature 3 case case case case number
Feature 4 case
1 (POS) 92.2 91.8 *92.3 *92.4 *92.5 *92.4
2 (SubPOS) 91.3 – – 90.5 90.5 90.6
3 (gender) 89.9 89.6 – 89.6 – *90.2
4 (number) 94.1 – 94.0 – 93.8 *94.3
5 (case) 87.2 86.3 *87.3 86.7 87.1 *87.6

SubPOS, number, and case) outperform the full-tag tagger on at least some of the slots. All
of the improvements are quite modest.

Combining sub-taggers

The next step is to put the sub-tags back together to produce estimates of the correct full
tags, and to see how performance is affected. Simply combining the values offered by the
best taggers for each slot is not possible because that could yield illegal tags (e.g., nouns
in past tense). Instead, we let the taggers choose the best tag from the tags offered by the
morphological analyzer.

There are many possible formulas that could be used. We used the formula in (24):

(24) bestTag = argmaxt∈TMAval(t)

where:
1. TMA is the set of tags offered by MA
2. val(t) =

∑14
k=0Nk(t)/Nk

3. Nk(t) is the # of taggers voting for k-th slot of t
4. Nk is the total # of taggers on slot k

This formula means that the best tag is the tag that receives the highest average percentage
of votes for each of its slots. Weighting slots is also possible in the val function if certain
slots are more important than others; however we did not use this option.

We ran a number of possible sub-tagger combinations, using 1-4 taggers for each slot. Un-
fortunately, none of the resulting taggers outperformed the Russified tagger, the tagger they
are based on, on the full tag (although some did on some of the individual slots). As an
example, Table 7.13 reports the performance of a system where the three best taggers for
a particular slot vote on that slot. The better accuracy for a given criterion is marked by
an asterisk. The tagger is clearly worse than the original tagger on all tokens (77.2% vs.
80.0%).

Even though, intuitively, it seemed that the tagger decomposition approach should improve
the overall performance of the system, our experiments have shown the opposite. One of
the guesses that we can make here is that the tag decomposition was based on our linguistic
intuition and it is unclear whether such an approach is the most optimal. We suggest to
explore alternative tag decomposition techniques, such as the random decomposition used
in error-correcting output coding (Dietterich and Bakiri 1991). This could shed interesting

7.8. EXPERIMENT 5: VOTING 63

Table 7.13: Voted classifier

Russified (§7.7) sample voting tagger
All Full tag: *80.0 77.2

SubPOS 92.3 92.3
N Full tag: 57.1 57.1

SubPOS 89.3 *89.9
A Full tag: *55.9 53.8

SubPOS 86.9 86.9
V Full tag: *92.7 82.8

SubPOS 96.6 96.6

light on why the experiments described in this chapter were unsuccessful and how to further
improve the tagging performance.

Chapter 8

Practical aspects

In this section we address the problem of collection, selection and creation of resources needed
by the system described above.

8.1 Resources

The following resources must be available:

• a reference grammar book for information about paradigms and closed class words,

• a large amount of plain text for learning a lexicon, e.g. newspapers from the Internet,

• a large annotated training corpus of a related language,

• optionally, a dictionary (or a native speaker) to provide analyses of the most frequent
words,

• a non-expert (not a linguist and not a native speaker) to create the resources listed
below,

• limited access to a linguist (to make non-obvious decisions in the design of the re-
sources),

• limited access to a native speaker (to annotate a development corpus, to answer a
limited number of language specific questions).

and these resources must be created:

• a list of morphological paradigms,

• a list of closed class words with their analyses,

• optionally, a list of the most frequent forms,

• a small annotated development corpus.

For evaluation, an annotated test corpus must be also created. As this corpus is not part of
the resource-light system per se, it can (and should) be as large as possible.

65

66 CHAPTER 8. PRACTICAL ASPECTS

8.2 Restrictions

Since our goal is to create resources cheaply and fast, we intentionally limit (but not com-
pletely exclude) the inclusion of any linguist and of anybody knowing the target language.
We also limit the time of training and encoding of the basic target-language linguistic infor-
mation to a minimum.

8.3 Tagset

In traditional settings, a tagset is usually designed by a linguist, moreover a native speaker.
The constraints of a resource-light system preclude both of these qualifications. Instead, we
have standardized the process as much as possible to make it possible to have the tagset
designed by a non-expert.

Positional Tagset

All languages we work with are morphologically rich. Naturally, such languages require a
large number of tags to capture their morphological properties. An obvious way to make
it manageable is to use a structured system. In such a system, a tag is a composition
of tags each coming from a much smaller and simpler atomic tagset tagging a particular
morpho-syntactic property (e.g. gender or tense). This system has many benefits, as has
been discussed in the previous chapters, including the 1) relative easiness for a human anno-
tator to remember individual positions rather than several thousands of atomic symbols; 2)
systematic morphological description; 3) tag decomposability; and 4) systematic evaluation.

Tagset Design: Procedure

Instead of starting from scratch each time a tagset for a new language is created, we have
provided an annotated tagset template. A particular tagset can deviate from this template,
but only if there is a linguistic reason. The tagset template includes the following items:

• order of categories (POS, SubPOS, gender, animacy, number, case, ...) – not all might
be present in that language; additional categories might be needed;

• values for each category (N – nouns, C – numerals, M – masculine);

• which categories we do not distinguish, even though we could (proper vs. common
nouns);

• a fully worked out commented example (as mentioned above).

Such a template not only provides a general guidance, but also saves a lot of time, because
many of rather arbitrary decisions involved in any tagset creation are done just once (e.g.,
symbols denoting basic POS categories, should numerals be included as separate POS, etc.).
As stated, a tagset may deviate from such a template, but only if there is a specific reason
for it.

8.4. RESOURCES FOR THE MORPHOLOGICAL ANALYZER 67

8.4 Resources for the morphological analyzer

Our morphological analyzer relies on a small set of morphological paradigms and a list of
closed class and/or most frequent words.

Morphological paradigms

For each target language, we create a list of morphological paradigms. We just encode basic
facts about the target language morphology from a standard grammar textbook. On average,
the basic morphology of highly inflected languages, such as Slavic languages, are captured in
70-80 paradigms. The choices on what to cover involve a balance between precision, coverage
and effort.

A list of frequent forms

Entering a lexicon entry is very costly, both in terms of time and knowledge needed. While it
is usually easy (for a native speaker) to assign a word to one of the major paradigm groups,
it takes considerably more time to select the exact paradigm variant differing only in one or
two forms (in fact, this may be even idiolect-dependent). For example, in Czech, it is easy
to see that the word atom ‘atom’ does not decline according to the neuter paradigm město
‘town’, but it takes more time to decide to which of the hard masculine inanimate paradigms
it belongs. On the other hand, entering possible analyses for individual word forms is usually
very straightforward. Therefore, our system uses a list of manually provided analyses for the
most common forms.

Note that the process of providing the list of forms is not completely manual – the correct
analyses are selected from those suggested on the basis of the words’ endings. This can be
done relatively quickly by a native speaker or by a non-native speaker with the help of a
basic grammar book and a dictionary.

8.5 Documentation

Since the main idea of the project is to create resources quickly for an arbitrarily selected
fusional language, we cannot possibly create annotation and language encoding manuals for
each language. So, we created a manual that explains the annotation and paradigm encoding
procedure in general and describes the main attributes and possible values that a language
consultant needs to consider when working on a specific language. The manual has five
parts:

1. How to summarize the basic facts about the morphosyntax of a language;

2. How to create a tagset

3. How to encode morphosyntactic properties of the target language in paradigms;

4. How to create a list of closed class words.

68 CHAPTER 8. PRACTICAL ASPECTS

5. Corpus annotation manual

The instructions are mostly language independent (with some bias toward Indo-European
languages), but contain a lot of examples from languages we have processed so far. These
include suggestions how to analyze personal pronouns, what to do with clitics or numerals.

8.6 Procedure

The resource creation procedure involves at least two people: a native speaker who can
annotate a development corpus, and a non-native speaker who is responsible for the tagset
design, morphological paradigms, and a list of closed class words or frequent forms. Below
we describe our procedure in more detail.

Tagset and MA resources creation

We have realized that even though we do not need a native speaker, some understanding
of at least basic morphological categories the language uses is helpful. So, based on our
experience, it is better to hire a person who speaks (natively or not) a language with some
features in common. For example, for Polish, somebody knowing Russian is ideal, but even
somebody speaking German (it has genders and cases) is much better than a person speaking
only English. In addition, a person who had created resources for one language performs
much better on the next target language. Knowledge comes with practice.

The order of work is as follows:

1. The annotator is given basic training that usually includes the following: 1) brief
explanation of the purpose of the project; 2) tagset design; 3) paradigm creation.

2. The annotator summarizes the basic facts about the morphosyntax of a language,

3. The first version of the tagset is created.

4. The list of paradigms and closed-class words is compiled. During this process, the
tagset is further adjusted.

Corpus annotation

The annotators do not annotate from scratch. We first run our morphological analyzer on the
selected corpus; the annotators then disambiguate the output. We have created a support
tool (http://ufal.mff.cuni.cz/~hana/law.html) that displays the word to be annotated,
its context, the lemma and possible tags suggested by the morphological analyzer. There is
an option to insert a new lemma and a new tag if none of the suggested items is suitable.
The tags are displayed together with their natural language translation.

Naturally, we cannot expect the tagging accuracy to be 100%. There are many factors that
contribute to the performance of the model:

8.6. PROCEDURE 69

1. target language morphosyntactic complexity,

2. source-language–target-language proximity,

3. quality of the paradigms,

4. quality of the cognate pairs (that are used for approximating emissions),

5. time spent on language analysis,

6. expertise of language consultants,

7. supporting tools.

Bibliography

Anderson, Stephen R. (1993). “Wackernagel’s Revenge: Clitics, Morphology, and the Syntax
of Second Position”. In: Language 69, pp. 68–98.

Beesley, K. and L. Karttunen (2003). Finite State Morphology. CSLI Publications.
University of Chicago Press.

Bémova, Alena, Jan Hajic, Barbora Hladká, and Jarmila Panevová (1999). “Morphological
and Syntactic Tagging of the Prague Dependency Treebank”. In: Proceedings of ATALA
Workshop. Paris, France, pp. 21–29. url: http://quest.ms.mff.cuni.cz/pdt/doc/pdt-
atala.ps.

Brants, Thorsten (2000). “TnT - A Statistical Part-of-Speech Tagger”. In: Proceedings of
6th Applied Natural Language Processing Conference and North American chapter of the
Association for Computational Linguistics annual meeting (ANLP-NAACL), pp. 224–231.

Brill, Eric (1995). “Transformation-Based Error-Driven Learning and Natural Language
Processing: A Case Study in Part of Speech Tagging”. In: Computational Linguistics 21.4,
pp. 543–565.

— (1999). “A Closer Look at the Automatic Induction of Linguistic Knowledge”. In:
Learning Language in Logic, pp. 49–56.

Chen, Stanley F. and Joshua T. Goodman (1996). “An Empirical Study of Smoothing
Techniques for Language Modeling”. In: Proceedings of the 34th Annual Meeting of the
Association for Computational Linguistics (ACL). Santa Cruz, CA, pp. 310–318.

Church, Kenneth W. (1988). “A Stochastic Parts Program and Noun Phrase Parser for
Unrestricted Text”. In: Proceedings of the 2nd Conference on Applied Natural Language
Processing. Austin, Texas, pp. 136–143.

Civit, Montserrat (2000). Gúıa para la anotación morfológica del corpus CLiC-TALP
(Versión 3). Tech. rep. WP-00/06. Barcelona, Catalunya: X-Tract Working Paper. Centre
de Llenguatge i Computació (CLiC).

Cloeren, Jan (1993). “Toward A Cross-Linguistic Tagset”. In: Workshop On Very Large
Corpora: Academic And Industrial Perspectives.

Cucerzan, Silviu and David Yarowsky (2002). “Bootstrapping a Multilingual Part-of-speech
Tagger in One Person-day”. In: Proceedings of the 6th Conference on Natural Language
Learning (CoNLL). Taipei, Taiwan, pp. 132–138.

71

72 BIBLIOGRAPHY

Cutler, A., J.A. Hawkins, and G. Gilligan (1985). “The suffixing preference: a processing
explanation”. In: Linguistics 23, pp. 723–758.

Cutting, Doug, Julian Kupiec, Jan Pedersen, and Penelope Sibun (1992). “A Practical
Part-of-speech Tagger”. In: Proceedings of the Third Conference on Applied Natural
Language Processing (ANLP). Trento, Italy: Association for Computational Linguistics,
pp. 133–140.

Daelemans, W., J. Zavrel, and S. Berck (1996). “MBT: A Memory-based Part of Speech
Tagger-Generator”. In: Proceedings of the Fourth Workshop on Very Large Corpora (VLC),
pp. 14–27.

Daelemans, Walter, Antal van den Bosch, and Jakub Zavrel (1999). “Forgetting Exceptions
is Harmful in Language Learning”. In: Machine Learning 34, pp. 11–43.

Derksen, Rick (2008). Etymological Dictionary of the Slavic Inherited Lexicon. Leiden
Indo-European Etymological Dictionary Series 4. Brill Press.

DeRose, Stephen J. (1988). “Grammatical Category Disambiguation by Statistical Opti-
mization”. In: Computational Linguistics 14.1, pp. 31–39.

Dietterich, T. G. and G. Bakiri (1991). “Error-correcting Output Codes: a General Method
for Improving Multiclass Inductive Learning Programs”. In: Proceedings of the Ninth AAAI
National Conference on Artificial Intelligence. Ed. by T. L. Dean and K. McKeown. Menlo
Park, CA: AAAI Press, pp. 572–577.

Elworthy, David (1995). “Tagset Design and Inflected Languages”. In: 7th Conference of the
European Chapter of the Association for Computational Linguistics (EACL), From Texts to
Tags: Issues in Multilingual Language Analysis SIGDAT Workshop. Dublin, pp. 1–10.

Erjavec, Tomaž (2004). “Mtext-East Version 3: Multilingual Morphosyntactic Specifica-
tions, Lexicons and Corpora”. In: Proceedings of the Fourth International Conference on
Language Resources and Evaluation, LREC’04, ELRA. Paris, France, pp. 1535–1538.

— (2009). “MULTEXT-East Morphosyntactic Specifications: Towards Version 4”. In:
Proceedings of the MONDILEX Third Open Workshop. Bratislava, Slovakia.

— (2010). “MULTEXT-East Version 4: Multilingual Morphosyntactic Specifications,
Lexicons and Corpora”. In: Proceedings of the LREC 2010 Third Open Workshop. Malta.

Feldman, Anna (2006). “Portable Language Technology: A Resource-light Approach to
Morpho-syntactic Tagging”. PhD thesis. The Ohio State University.

Feldman, Anna and Jirka Hana (2010). A Resource-light Approach to Morpho-syntactic
Tagging. Ed. by Christian Mair, Charles F. Meyer, and Nelleke Oostdijk. Language and
Computers 70. Amsterdam–New York: Rodopi Press.

Feldman, Anna, Jirka Hana, and Chris Brew (2005). “Buy One, Get One Free or What to
Do When Your Linguistic Resources are Limited”. In: Proceedings of the Third Interna-
tional Seminar on Computer Treatment of Slavic and East-European Languages (Slovko).
Bratislava, Slovakia.

BIBLIOGRAPHY 73

— (2006). “Experiments in Cross-Language Morphological Annotation Transfer”. In:
Proceedings of Computational Linguistics and Intelligent Text Processing, CICLing. Lecture
Notes in Computer Science. Mexico City, Mexico: Springer-Verlag, pp. 41–50.

Franks, Steven and Tracy Holloway King (2000). A Handbook of Slavic Clitics. Oxford
University Press.

Fronek, Josef (1999). English-Czech/Czech-English Dictionary. Contains an overview of
Czech grammar. Praha: Leda.

Gess, Randall Scott and Deborah L. Arteaga (2006). Historical Romance Linguistics:
Retrospective and Perspectives. J. Benjamins.

Givón, Talmy (1979). On Understanding Grammar. New York: Academic Press.

Goldsmith, John (2010). “Segmentation and morphology”. In: The Handbook of Computa-
tional Linguistics and Natural Language Processing. Ed. by Chris Fox, Shalom Lappin, and
Alexander Clark. Vol. 14. Wiley-Blackwell.

Greenberg, Joseph H. (1957). Essays in Linguistics. Chicago: University of Chicago Press.

Hajič, Jan (2004). Disambiguation of Rich Inflection: Computational Morphology of Czech.
Prague, Czech Republic: Karolinum, Charles University Press.

Hajič, Jan and Barbora Hladká (1998). “Tagging Inflective Languages: Prediction of
Morphological Categories for a Rich, Structured Tagset”. In: Proceedings of the 36th Annual
Meeting of the Association for Computational Linguistics and 17th International Conference
on Computational Linguistics, Proceedings of the Conference (COLING-ACL). Montreal,
Canada, pp. 483–490.

Hall, Christopher J. (1988). “Integrating Diachronic and Processing Principles in Explaining
the Suffixing Preference”. In: Explaining Language Universals. Ed. by J. A. Hawkins.
Chap. 12.

Hana, Jiri (2007). “Czech Clitics in Higher Order Grammar”. PhD thesis. The Ohio State
University.

Hana, Jiri, Anna Feldman, and Chris Brew (2004). “A Resource-light Approach to Russian
Morphology: Tagging Russian using Czech resources”. In: Proceedings of Empirical Methods
for Natural Language Processing 2004 (EMNLP 2004). Ed. by Dekang Lin and Dekai
Wu. Barcelona, Spain: Association for Computational Linguistics, pp. 222–229. url:
http://www.aclweb.org/anthology-new/W/W04/W04-3229.pdf.

Hana, Jirka (2008). “Knowledge- and labor-light morphological analysis”. In: OSUWPL 58,
pp. 52–84. url: http://ling.osu.edu/~hana/biblio/hana-2008-wp-morph.pdf.

Hana, Jirka and Peter W. Culicover (2008). “Morphological Complexity Outside of
Universal Grammar”. In: OSUWPL 58, pp. 85–109. url: http://ling.osu.edu/~hana/
biblio/hana-culicover-2008.pdf.

Hana, Jirka and Anna Feldman (2010). “A Positional Tagset for Russian”. In: Proceedings of
the 7th International Conference on Language Resources and Evaluation (LREC 2010). Val-

74 BIBLIOGRAPHY

letta, Malta: European Language Resources Association, pp. 1278–1284. isbn: 2-9517408-6-7.

Hana, Jirka, Anna Feldman, Luiz Amaral, and Chris Brew (2006). “Tagging Portuguese
with a Spanish Tagger Using Cognates”. In: Proceedings of the Workshop on Cross-language
Knowledge Induction hosted in conjunction with the 11th Conference of the European
Chapter of the Association for Computational Linguistics (EACL). Trento, Italy, pp. 33–40.

Haspelmath, Martin (2002). Understanding Morphology. Understanding Language. Arnold
Publishers.

Hawkins, John A. and Gary Gilligan (1988). “Prefixing and suffixing universals in relation
to basic word order”. In: Lingua 74, pp. 219–259.

Hoeksema, Jack and Richard D. Janda (1988). “Implications of Process-morphology
for Categorial Grammar”. In: Categorial Grammars and natural Language Structrues.
Ed. by Richard T. Oehrle, Emmon Bach, and Deirdre Wheeler. Academic Press, pp. 199–247.

Ide, Nancy and Jean Véronis (1994). “Multext-East: Multilingual Text Tools and Cor-
pora”. In: Proceedings of the 15th International Conference on Computational Linguistics
(COLING). Vol. I. Kyoto, Japan, pp. 588–592.

Jelinek, Frederick (1985). “Markov Source Modeling of Text Generation”. In: Impact of
Processing Techniques on Communication. Ed. by F. K. Skwirzinski.

Johnson, Douglas C. (1972). Formal Aspects of Phonological Description. The Hague:
Mouton.

Kaplan, Ronald M. and Martin Kay (1981). “Phonological rules and finite-state transducers”.
In: Linguistic Society of America Meeting Handbook, Fifty-Sixth Annual Meeting. New York.

Karĺık, Petr, Marek Nekula, and Z. Ruśınová (1996). Př́ıručńı mluvnice češtiny [Concise
Grammar of Czech]. Praha: Nakladatelstv́ı Lidové Noviny.

Karttunen, L. and K. Beesley (Saarijärvi, Finland). “Twenty-five years of finite-state
morphology”. In: inquiries into Words, Constraints and Contexts (Festschrift in the Honour
of Kimmo Koskenniemi and his 60th Birthday. Gummerous Printing, pp. 71–83.

Karttunen, Lauri (1993). “Finite-state constraints”. In: The Last Phonological Rule.
Chicago, Illinois: University of Chicago Press.

Kazakov, Dimitar (1997). “Unsupervised learning of näıve morphology with genetic
algorithms”. In: Workshop Notes of the ECML/MLnet Workshop on Empirical Learning
of Natural Language Processing Tasks. Ed. by W. Daelemans A. van den Bosch and A.
Weijters. Prague, Czech Republic, pp. 105–112.

Klavans, Judith L. (1982). Some problems in a theory of clitics. Bloomington, IN: Indiana
University Linguistics Club.

Kleene, S. C. (1956). “Representation of events in nerve nets and finite automata”. In:
Automata Studies. Ed. by C. E. Shannon and J. McCarthy. Princeton, NJ: Princeton
University Press, pp. 3–41.

BIBLIOGRAPHY 75

Koskenniemi, Kimmo (1983a). “Two-level Model for Morphological Analysis”. In: Proceed-
ings of the 8th International Joint Conference on Artificial Intelligence (IJCAI). Karlsruhe,
Germany, pp. 683–685.

— (1983b). “Two-level morphology: a general computational model for word-form recogni-
tion and production”. PhD thesis. Helsinki: University of Helsinki.

— (1984). “A General Computational Model for Word-form Recognition and Production”.
In: Proceedings of the 10th International Conference on Computational Linguistics (COL-
ING) and 22nd Annual Meeting of the Association for Computational Linguistics (ACL).
Stanford University, California, USA, pp. 178–181.

Levenshtein (1966). “Binary codes capable of correcting deletions, insertions, and reversals”.
In: Cybernetics and Control Theory 10.8, pp. 707–710.

Marcken, Carl de (1995). “Acquiring a Lexicon from Unsegmented Speech”. In: 33rd
Annual Meeting of the Association for Computational Linguistics (ACL). Cambridge,
Massachusetts, USA, pp. 311–313.

Marcus, Mitchell, Beatrice Santorini, and Mary Ann Marcinkiewicz (1993). “Building a
large annotated corpus of English: The Penn Treebank”. In: Computational Linguistics
19.2, pp. 313–330.

Merialdo, Bernard (1994). “Tagging English Text with a Probabilistic Model”. In:
Computational Linguistics 20.2, pp. 155–171. issn: 0891-2017.

Mikheev, Andrei and Liubov Liubushkina (1995). “Russian Morphology: An Engineering
Approach”. In: Natural Language Engineering 3.1, pp. 235–260.

Ratnaparkhi, Adwait (1996). “A Maximum Entropy Part-of-speech Tagger”. In: Proceedings
of the Empirical Methods in Natual Language Processing (EMNLP) Conference. University
of Pennsylvania, Philadelphia, USA, pp. 133–142.

Rijsbergen, C. J. van (1979). Information Retrieval. Butterworths, London.

Rissanen, Jorma (1989). Stochastic Complexity in Statistical Inquiry. Singapore: World
Scientific Publishing Co.

Roark, Brian and Richard Sproat (2007). Computational Approaches to Morphology and
Syntax. Oxford University Press.

Samuelsson, Christer (1993). “Morphological Tagging Based Entirely on Bayesian In-
ference”. In: Proceedings of the 9th Nordic Conference on Computational Linguistics
(NoDaLiDa). Stockholm, Sweden.

Sapir, Edward (1921). Language, an introduction to the study of speech. New York: Harcourt.

Schmid, Helmut (1994). “Probabilistic Part-of-Speech Tagging Using Decision Trees”.
In: Proceedings of the International Conference on New Methods in Language Processing.
Manchester, UK.

76 BIBLIOGRAPHY

Schone, P. and D. Jurafsky (2000). “Knowledge-Free Induction of Morphology Using Latent
Semantic Analysis”. In: The 4th Conference on Computational Natural Language Learning
and 2nd Learning Language in Logic Workshop. Lisbon, Portugal, pp. 67–72.

Skoumalová, Hana (1997). “A Czech Morphological Lexicon”. In: Proceedings of the Third
Meeting of the ACL Special Interest Group in Computational Phonology, Madrid. ACL,
pp. 41–47. url: http://arXiv.org/abs/cmp-lg/9707020.

Viterbi, A.J. (1967). “Error Bounds for Convolutional Codes and an Asymptotically
Optimal Decoding Algorithm”. In: Institute of Electrical and Electronics Engineers (IEEE)
Transactions on Information Theory. Vol. 13, pp. 260–269.

Weischedel, R., M. Meteer, R. Schwartz, L. Ramshaw, and J. Palmucci (1993). “Coping
with Ambiguity and Unknown Words through Probabilistic Methods”. In: Computational
Linguistics 19.2, pp. 361–382.

Yarowsky, David and Richard Wicentowski (2000). “Minimally Supervised Morphological
Analysis by Multimodal Alignment”. In: Proceedings of the 38th Meeting of the Association
for Computational Linguistics (ACL), pp. 207–216.

Zipf, George K. (1935). The Psychobiology of Language. Houghton-Mifflin.

— (1949). Human Behavior and the Principle of Least-Effort. Addison-Wesley.

Zwicky, Arnold M. (1977). On Clitics. Tech. rep. Reproduced by the Indiana University
Linguistics Club. Ohio State University.

