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Econometrica, Vol. 39, No. 5 (September, 1971)
CONGESTION TOLLS FOR COMMERCIAL AIRPORTS

By RoLLA EDWARD PARKk!

This paper discusses the role of congestion tolls in increasing the efficiency of use of
commercial airports, in terms of a simple model of air transportation. In contrast to previ-
ous discussions, users and producers of transportation service (passengers and airlines)
are explicitly distinguished. In the first version of the model, ticket prices are assumed—
unrealistically—to be flexible and competitively determined; then perfect optimality is
attainable by imposing an appropriate toll either on airlines or on passengers. In the more
realistic second version of the model, ticket price is fixed above the competitive level. In the
absence of a toll, there are two inefficiencies: the level of transportation is non-optimal,
and it is produced inefficiently, using partially loaded airplanes. An appropriate toll on
airlines can do much to correct both of these inefficiencies, and is always superior to the best
toll on passengers.

PREVIOUS DISCUSSIONS of congestion tolls? as a means of optimizing the use of given
transportation facilities have not distinguished between the user and the producer
of transportation services.> The usual example has been road transportation by
private automobile, a case in which there is no need for such a distinction. But the
distinction may be relevant in other cases. One such case is air transportation, the
focus of recent interest because of lengthy airplane delays at several major airports.
In arriving at an optimal congestion toll for this case, it may be important to dis-
tinguish between airlines and their passengers. In particular, does it matter on
whom the toll is imposed?

I shall explore this question, and more generally, the role of congestion tolls at
commercial airports, with the help of a simple model of air transportation. In the
first version of the model, ticket prices are assumed—unrealistically—to be flexible
and competitively determined. In that case, as one would expect, the toll may be
applied indifferently to airlines or to passengers. In a second, more realistic version
of the model, ticket prices are assumed to be fixed at something above the competi-
tive level ; competition among airlines is based on schedules, not price. With ticket
price fixed, perfect optimality is not always attainable; all one can hope for in
general is the choice of a toll that will effect a second-best allocation.* And then
it does make a difference whether the toll is collected from airlines or from passen-
gers.

Both versions of the model incorporate many simplifying assumptions. All
variables are continuous. There is only a single destination. Trafficis homogeneous ;

11 should like to thank Stephen Carroll and the referees for their comments. Any views expressed
in this paper are my own. They should not be interpreted as reflecting the views of The RAND Corpora-
tion or the official opinion or policy of any of its governmental or private research sponsors.

2 See, for example, Beckmann, McGuire, and Winsten [1], Strotz [8], and Vickrey [9].

3 The distinction has, of course, been made in other contexts. A referee cites Buchanan [2] and
Knight [5].

4 See Marchand [7] for derivation of the optimal congestion toll in another sort of imperfect environ-
ment.
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684 ROLLA EDWARD PARK

only airlines use the airport, not “general aviation.”® Variations in demand over
time are disregarded. But the simplified model does yield considerable insight into
the role of congestion tolls in more complex and realistic situations, as discussed
in the concluding section.

1. THE OPTIMUM

In the model, the total value, V, of transportation provided per unit time, is a
function of the number of passengers, N, and the level of delay, D:

(1) V=V({N,D), Vy>0, Vyw<0, Vp<0, Vpy<0?

That is, the value of an additional trip is positive but smaller the more trips are
taken ; an increase in delay reduces value, and more greatly reduces value the more
trips are affected.

Delay is an increasing function of the number of flights, n:

) D = D(n), D' >0, D" > 0.
The cost per flight, c, is an increasing function of delay:
(3) ¢ = (D), ¢ >0, c¢" = 0.

It is convenient to have a symbol for total cost, so I define

4 C = nc.

Note that cost is assumed not to depend on the number of passengers, but only on
the number of flights.

For an optimum, we seek values of N and n to maximize the surplus, S, of the
value of transportation over the cost of providing it, subject to the constraint
that the number of passengers per flight cannot exceed the fixed airplane size, 4.
That is, maximize

)] S = V[N, D(n)] — nc[D(n)]
subject to

primal constraint dual variable
(6) A—N/n=0, o.
Kuhn-Tucker conditions for a maximum? are

dual constraint primal variable
N Vy —a/n<0, N,
8) VpD' — nc'D' — ¢ + aN/n* <0, n,

5 General aviation, consisting primarily of relatively small aircraft, is a category that includes air
taxis and business and private planes.

6 ¥y denotes dV/dN, Vyy denotes 82V/ON?, etc.

7 D' denotes dD/dn, D" denotes d?D/dn?, etc.

8 Kuhn and Tucker [6].
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and either each constraint holds as an equality, or the corresponding variable is
zero. Throughout this paper, the Kuhn-Tucker conditions are both necessary and
sufficient for a maximum.®

Because N and n are positive in any interesting case, we take (7) and (8) to be
equalities. From (7), « = nVy, the value imputed to a marginal increase in airplane
size. Since a > 0, (6) must hold as an equality ; rather obviously, efficiency requires
that planes fly fully loaded.

Eliminating o from (7) and (8), we have

) Vy = %(— VoD’ + nc'D' + ¢)

which, together with (6) as an equality, determines optimal values of N and n.
Then (5) gives maximal S. I shall denote these particular values of the variables by
appending the section number as a subscript, that is, by N, n,, and S, . The other
variables are determined by (1) through (4). As the need arises, I shall use subscript
1 to denote their optimal values as well.

Note that an allocation is completely determined by specifying N and n, or
equivalently, by specifying N and N/n. Optimal conditions (6) as an equality and
(9) may be readily interpreted in the latter terms. Condition (6) requires that what-
ever level of transportation is provided should be provided efficiently, i.e., should
make use of fully loaded planes; N/n = A. Condition (9) then determines the
efficient level of transportation, N = N, .

Figure 1 shows the optimum graphically. The curves V(N, D,), V(N,D,)...
show value as a function of N for specified constant levels of delay. Not all points
on these curves are attainable. Maximal attainable value for any particular
number of passengers results from minimal delay, which in turn results from using
the minimal number of (full) airplanes needed to carry that many passengers.
The curve V(4)'° represents this upper limit on attainable value. Similarly, the
lowest attainable cost of transporting N passengers is attained using N/4 planes;
the minimal cost curve is shown as C(4).'! Obviously, the maximal surplus occurs
where the maximal value and minimal cost curves are farthest apart, at N 12

2. FLEXIBLE TICKET PRICE, NO TOLL

In the absence of a congestion toll, the competitive equilibrium is not an optim-
um. Competition among airlines reduces profits to zero (or to a “normal” level in-
cluded in the definition of ¢). Denoting ticket price by p, the zero profit condition is

(10) nc = pN.

° Enthoven [4, pp. 389-390].

10 Shorthand label for the graph of V[N, D(N/A)].

1 Shorthand for (N/A) - c[D(N/A)].

12 The geometry provides an alternative route to optimal condition (9). Along V(A4), V = V[N, D(n)]
and n = N/A4. Taking total differentials, dV = Vy dN + V,D’dn and dn = dN/A. Substituting for dn
and dividing through by dN, we find the slope of V(4) to be dV/dN = Vy + (1/4)V,D'. In a similar
manner, we find the slope of C(A) to be dC/dN = (1/4)(c + nc'D’). Equating dV/dN and dC/dN yields
).
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V (N, D)

FIGURE 1

The marginal passenger values his trip at Vy. For equilibrium in the passenger
market,

11 Vx = .

With flexible ticket price, competition assures that whatever level of transporta-
tion service is provided, is provided efficiently in the sense that airplanes fly fully
loaded. For otherwise, one airline could lower the ticket price infinitesimally, attract
a full planeload of passengers, and make a profit. Competitive airlines would
follow suit until the profit opportunity was eliminated when all planes were full.
Thus (6) holds as an equality. In Figure 1, value and cost are somewhere on V(4)
and C(A).
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But competition does not assure that the optimal level of transportation is
provided. From (10) and (11), we have Vy = nc/N, violating condition (9) for an
optimum. In fact, a larger than optimal level of transportation is provided because
each airline ignores the costs that a marginal flight imposes on others. At N,, we
have from (9), using (1), (2), and (3), that V;; > nc/N. In Figure 1, increasing N
decreases Vy along V(A4),'® and increases nc/N along C(4),'* until equality is
reached at N, > N,.

Conditions (10), (11), and (6) as an equality determine competitive equilibrium
values of the variables, N, > N, n, = N,/4, and p,. Equation (5) then gives
S, <8§;.

3. FLEXIBLE TICKET PRICE, TOLL ON AIRLINES

One way to bring about an optimal level of transportation would be to impose
a congestion toll, or flight fee, of F per flight on the airlines. In this case, the zero
profit condition becomes

(12) nc + nF = pN.

To find the appropriate value of F, one may solve the following constrained maxi-
mization problem : maximize

) S = V[N, D(n)] — nc[D(n)]
subject to

primal constraint dual variable
(12) nc[D(n)] + nF — pN =0, T,
1)  W-p=0, i,
6) A— N/n>=0, o.
The Kuhn-Tucker conditions are

dual constraint primal variable
13) Vv — np + uVyy — a/n =0, N,
(14) VpD' — ¢ — n¢'D’ + nc + nnc'D’ + nF + uVypD’

+ aN/n? =0, n,

(15) —naN —u=0, P,
(16) wn = 0, F,

with equality holding in each case because all primal variables are presumptively
positive.
13 0n V(A), d(Vy) = VyndN + VypD'dn and dn = dN/A, so d(Vy)/dN = Vyy + VypD'/A < 0 by (1)

and (2).
4 On C(A), d(nc/N)/dN = (1/A)c'D'(1/4) > 0 by (2) and (3).
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The constraints can be solved for the optimal toll, F. Using all except (6), we
find

(17)  F= —V,D' + nc'D'.

This expression for F is precisely what previous discussions of congestion tolls
would lead one to expect. The first term represents the reduction in value to passen-
gers of transportation services due to increased delay caused by a marginal flight.
The second term represents the increased operating cost imposed on all other
flights by a marginal flight. Thus the optimal toll is simply the delay costs imposed
on all others—airlines and passengers—by a marginal flight.'>

With flexible ticket price, the appropriate toll results in perfect optimality.
Competition and flexible ticket price assure that planes fly fully loaded, so (6)
holds as an equality. We thus have four equations, (6), (12), (11), and (17), to
determine equilibrium values N, n;, p5,and F5. Since (12), (11), and (17) imply
optimal condition (9), N3 = N, and ny = N,/4; hence S, = §,.

4. FLEXIBLE TICKET PRICE, TOLL ON PASSENGERS

Alternatively, one might try to encourage an optimal level of transportation by
imposing a congestion toll or head tax, H, on passengers. Then the condition for
passenger market equilibrium becomes

(18)  Vy=p+ H.

The problem then is to maximize (5) subject to (10), (18), and (6).

The Kuhn-Tucker conditions again make it possible to solve for the optimal
head tax; we find
19 H= %(— VoD’ + nc'D)).

That is, the expression for optimal toll on passengers simply divides the optimal
toll per flight given by (17) equally among the passengers per flight.

Again, perfect optimality is attained. Competition and flexible ticket price assure
that (6) is an equality. Conditions (6), (10), (18), and (19) determine equilibrium
values N,,n,, p,, and H,. Conditions (10), (18), and (19) imply (9), so N, = N,,
n, = N,/A;hence S, = §,.1¢

With flexible ticket price, it does not matter whether the toll is imposed on air-
lines or on passengers. If it is imposed on airlines, competitive ticket price adjust-
ments pass it on to passengers, who end up paying the same in either case; p; = p,
+ H,.'7 Also, airline revenue net of any flight fee is the same in either case;
p3A — F3 = p,A.'%

!5 1 assume for simplicity that each airline is small enough so that the delay it imposes on its own
flights is negligible, compared with the delay it imposes on others.

16 One also notes that perfect optimality is attainable using any combination of flight fee and head
tax such that (N/n)H + F = —V,D’ + nc'D'.

7 From (11) and (18), because (Vy); = (Vy)s.

'® From (12) and (10) using (6) as an equality, because N; = N, and n; = n,.
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5. FIXED TICKET PRICE, NO TOLL

More realistically, we recognize that adjustments to airline ticket prices are at
best a sticky business, and we investigate the situation in which the ticket price is
fixed at something above the competitive level. Airlines still compete in this version
of the model, but they compete solely through schedules. That is, they add flights
until load factors are forced down to break-even levels.

In the model, we simply set ticket price equal to a constant, p = p > p,. The
zero profit condition is then

(20) ne(n) = pN,
and the condition for passenger market equilibrium is
(21) VN = I;.

Conditions (20) and (21) determine equilibrium values N5 and ns, whence (5)
gives Ss. Necessarily N5 < N, ; within the feasible region on and below V(4) in
Figure 1, it is only to the left of N, that one finds Vy > (V}),.!° The value of n,
may be = n,.From (20) and (10), nscs = n,c, (and hence ny = n,)as pNs = p,N,.
That is, if passenger demand is elastic between N, and N, ns < n,;ifit is inelastic,
ns > n,.

In any case, planes fly less than fully loaded if ticket price is fixed above the
competitive level.?® If ns > n,, this follows immediately from N, < N,. If
ns < n,, from (20) and (10) p > p, implies nscs/Ns > n,c,/N,, or equivalently
Ns/ns < (N,/ny)(cs/cy). Since cs5 < ¢, if ng < n,, it follows a fortiori that Ny/ng <
N,/n, = A.

Interestingly, the surplus S with ticket price fixed above the competitive level
may be greater than the surplus S, when ticket price is flexible. Although N is not
produced efficiently, it may be closer to the optimal level of transportation N, than
is N, . The gain from the latter effect may more than offset the loss from the former.

The expression for Cj is given by (20) as a linear function of N ; with ticket price
fixed at p, total cost lies along the line pN in Figure 1. (This line lies above C(4) at
N, because pN, > p,N, = C,.) For each N, (20) determines a corresponding n,
hence D, hence V. The value curve corresponding to pN islabeled V(pN). Where pN
intersects C(4), n = N/A,so V(pN)intersects V(A). In between, n > N/A,so V(pN)
lies under V(A) as shown. Equilibrium traffic N 5(p) is found at the point on V(pN)
where Vy = p. In the figure, S5(p) > S,. But this is of course not necessarily the
case. With ticket price fixed even higher, say at p, we find S5(p) < S,.

6. FIXED TICKET PRICE, TOLL ON AIRLINES

To find the optimal flight fee to impose on airlines when ticket price is fixed at p,
maximize

©) S = V[N, D(n)] — nc[D(n)]

19 Based on (1).
20 A referee stresses that this is a consequence of my assumption that there are competing airlines.
A profit maximizing monopoly airline would fly fully loaded planes.
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subject to
primal constraint dual variable
(22) nc[D(n)] + nF — pN =0, ' T,
(23) W—-p=20, u,
(6) A—-N/n=0, o.

In (23), we must allow for the possibility of excess demand in the passenger market ;
with the optimal toll in effect, airlines may schedule fewer flights than necessary to
accommodate all passengers willing to pay p for a ticket.

The Kuhn-Tucker conditions are

dual constraint primal variable
(24) Vy — 7p + pVyy — a/n =0, N,
(14) VpD' — ¢ — nc'D' + nc + nnc’'D’ + nF + uVypD' n,
+ aN/n? =0,
(16) nn = 0, F.

We must consider two cases. In the first case, there is excess demand in the
passenger market ; (23) is an inequality. Then u = 0, so from (24), using (16), « > 0,
s0 (6) holds as an equality. Eliminating « from (24) and (14) and substituting for ¢ in
(22) gives

N
(25)  F=—VpD' +ncD ——(Vy ~ p).

As in the flexible ticket price case, this toll may be interpreted as the (net) external
cost of a marginal flight. The first two terms, as before, represent congestion costs
imposed on passengers and other airlines. In this case, though, they are partially
offset by an external benefit represented by the third term. A marginal flight would
accommodate N/n passengers, each of whom values the trip at V}, but pays a lesser
amount p for his ticket.

With excess demand in the passenger market, some mechanism is needed to
assure that the N4 passengers are in fact the N who place the highest value on the
trip. One possibility is a black market in which tickets are freely traded. Anotherisa
head tax equal to the difference between the market clearing ticket price p, and p.2*

If some such ticket allocating mechanism is assumed to be in operation, perfect
optimality is again attained if the toll given by (25) is in effect. Excess demand in the
passenger market assures that (6) is an equality. Substituting F from (25) in (22), we
get

) Vy = %(— VD' + nc'D’ + ¢);

21 In practice, one would expect an eventual upward adjustment of p to the market clearing level.
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with the optimal toll, competition among airlines precisely fulfills the second
condition for optimality.

This first case is illustrated in Figure 1. Starting at the competitive equilibrium
with no toll at N5(p), we can trace the equilibrium path as successively higher flight
fees are levied. As F is increased, airlines find it necessary to decrease n, decreasing
C, in order to continue to break even. At the resulting lower level of delay, more
passengers find their trip worth at least p, so N increases. As long as N remains
less than An, the passenger market is in equilibrium; V is along the positively
sloped line through V(pN) that connects points on the value curves for which
Vy = p. Continued increases in F increase V to X and decrease C to X'; at that
point, planes are full. Further increases in F continue to reduce n, and these reduc-
tions now entail proportionate reductions in N. Value ¥ moves along V(4) and C
along C(A) until the optimum is reached at N, .

In the second case, there is no excess demand in the passenger market; (23)
holds as an equality. Still, we have from (14), using (16), that « > 0,so (6) also holds
as an equality. F follows from (22) as

(6) F=pA—ec.

With this flight fee in effect, competition among airlines assures that planes fly
fully loaded ; that is, (26) and (22) imply N/n = A. The amount of transportation
provided is then determined by (23) as an equality.

This case is illustrated in Figure 1 starting at Ns(p). Successively higher tolls
reduce n and C, as N increases due to decreasing delay, until the second-best
allocation is attained at N¢(P). At that point, airplanes fly fully loaded. Further
increases in F would reduce both nand N. Since N¢(p) < Nj , this would reduce S.
In this case the optimal toll is just sufficient to result in full loads.

The first case occurs when p < p; = p, + H,. An appropriate flight fee then
results in fully loaded planes, and also restricts output to the optimal level. The
second case occurs when p > p5. The best flight fee then insures fully loaded planes,
but is powerless to expand output to the optimal level.

In summary, we have for this section Ng¢ < N, ng = Ng/A, and Sg < S;.

7. FIXED TICKET PRICE, TOLL ON PASSENGERS

Now consider the alternative of levying a toll or head tax, H, on passengers to
promote more efficient use of the airport, when ticket price is fixed at p. To find the
appropriate H, maximize

(5) S = V[N, D(n)] — nc[D(n)]
subject to
primal constraint dual variable
(20) nc[D(n)] — pN =0, T,
(27) Vy—p—H=0, U,

(6) A— N/n>0, o.
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The Kuhn-Tucker conditions are

primal
dual constraint variable
(24) VN - 7[13 + .uVNN - a/n = 07 N’
(28) VpD' — ¢ — ne'D’ + mc + nne’D’ + uVypD' + aN/n* =0, n,
(29) —u=0, H.
By (20), as argued in Section 5,4 — N/n > 0,s0 a = 0. From (24) and (28), then,
_ —VpD'
3 = =1+ ——]p.
( 0) VN Tcp ( + c + nc/D/)p

Comparing (30) and (27), and substituting from (20) for p, we find
—(n/N)VpD’
1 + (n/c)c’D”

Although it is not immediately obvious that this is the cost imposed on others
by a marginal passenger, that is once again the proper interpretation. Taking
total differentials in (5) and (20), we have

(32) dS = VydN + VpD'dn — cdn — nc’'D' dn

(¢1) H=

and

p

=————dN.
nc¢’D + ¢

(33) dn
Substituting from (33) into (32) and dividing by dN we find the change in value due
to a marginal passenger to be

ds Vp —c—nc'D' _

34 dN Vu + D +c b

In the absence of a head tax, the passenger considers only value to himself less
ticket price, ¥y — p. Deducting this from (34) leaves an external cost equal to
VpD'p/(nc’'D’ + c¢), which, upon substitution for p from (20), is seen to be precisely
the cost measured by the optimal toll.

With H in effect, we have (20), (27), and (31) to determine equilibrium values
N,,n,, and H,. These do not represent an optimum; we know from (20) that
n, > N,/A, violating one necessary condition for an optimum.

In Figure 1, we can trace the effects of successively higher tolls, starting at N(p)
with no toll in effect. Increasing H decreases N.>? Thus as H increases, C decreases

22 From (27), dH = Vyy dN + VypD' dn. Using (33), we find
aN nc’D' + ¢
dH  Vyn(nc'D' + ¢) + VapD'p’

This is negative by (1), (2), and (3).
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along pN. ¥V moves left along the value curve corresponding to the N/n implicit in
PN, that is, along V(pN). V may increase or decrease, but in any case it does not
initially decrease as fast as does C; from (34), using (21), dS/dN > 0 at Ns(p).
Further increases in H continue to reduce N and increase S until pN and V(pN) are
farthest apart at N,(p).

Exactly the same argument applies if one starts with a higher fixed ticket price at
N4(P). Thus we have in general that N; < N5, n, < N,/4,and S, < S;,.

It is apparent that, with fixed ticket price, a head tax is inferior to a flight fee as a
congestion toll. For p < p;, the appropriate flight fee results in perfect optimality,
and the appropriate head tax does not. For p > p;, neither achieves perfect
optimality, but the flight fee comes closer. F¢ leads to a level of transportation
N¢(P) > Ns(p), and assures that it is provided efficiently, with ng(p) = N4(p)/A.
H, leads to a level of transportation N,(p) < Ns(p), and leaves it inefficiently
provided, with n,(p) > N,(p)/A. Since both N¢(p) and N,(p) < N, it follows that

S7() < S¢(P)-

8. CONCLUSION

I have examined the nature and function of congestion tolls in a model that
reflects one important aspect of commercial air transport : transportation services
are produced and sold to passengers at a price fixed above the competitive level.
Airlines, competing for passengers, schedule flights until passenger loads are
forced down to break-even levels. In the absence of a toll, this involves two sorts of
inefficiencies. As in previous congestion models, the level of transportation provided
is non-optimal. In addition, it is produced inefficiently, using partially loaded
airplanes.

We have seen that an appropriate toll on airlines can do much to correct both
of these inefficiencies. It assures that planes fly fully loaded. If ticket price is not too
far above the competitive level, it results in provision of the optimal level of
transportation as well. Otherwise, it at least results in some increase in transporta-
tion to a more nearly optimal level, although perfect optimality is not attained.
In contrast, the best toll on passengers leaves transportation inefficiently provided ;
in fact, it even reduces average passenger loads.?® In the model, a toll on airlines is
always superior to a toll on passengers.

The model incorporates many simplifying assumptions in order to highlight
one important but little discussed function of congestion tolls at commercial
airports: to increase passenger loads to more efficient levels. Among the most
important assumptions are those listed at the beginning of the paper: continuous
variables, a single destination, homogeneous traffic, and no time variation in
demand.

Relaxing the assumptions of continuity and single destination softens the
requirement that airplanes fly fully loaded. For when flights are scheduled as

23 From (20), d(N/n) = (1/p)c’D'dn and dn = (p/(c + nc’'D’))dN. Thereiore d(N/n)/dN =
¢'D'/(c + nc’D’) > 0 by (2) and (3). From Footnote 22, dN/dH < 0; hence d(N/n)/dH < 0.
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discrete events to many destinations, frequency of service may be valued. Particu-
larly on low density routes, it may be efficient to fly planes that are less than fully
loaded in order to provide a satisfactory frequency of service. Casual observation
of statistics on average load factors—typically on the order of fifty per cent—
suggests, however, that the present situation is far from optimal.

If one relaxes the assumption of homogeneous traffic, congestion tolls assume
another important function. Even at the busiest commercial airports, a significant
fraction of traffic is relatively low-value general aviation. An important function of
congestion tolls is to discourage such low-value use at times when it imposes high
delay costs on others. Finally, from recognition of the existence of peaks in airport
usage, it is apparent that the optimal toll will vary over time. For an explicit
treatment of these two aspects of the problem, see Carlin and Park [3].

The RAND Corporation, Santa Monica, California
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