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Abstract

In 1712, Gottfried Leibniz and John Bernoulli I engaged in a
friendly correspondence concerning the logarithms of negative num-
bers. The publication of this correspondence in 1745 sparked an in-
terest in the mathematical community on the topic. In this paper I will
discuss the evolution of the logarithmic concept in the time leading up
to their discussion. I will then give a synopsis of the correspondence
followed by a description of a paper by Leonhard Euler in which he
addresses the issue.

1 Evolution of the Logarithmic Concept

In order to understand the reasoning motivating the arguments made by
Leibniz and Bernoulli during their discussion of the logarithms of negative
numbers, we must first understand what the logarithm was at the time.
Presently, in many math text books, one would not be surprised to find a
chapter entitled, “The Exponential and Logarithmic Concepts.” We take
the deep connection between these two ideas for granted. Hence, one may
be surprised to learn that this connection was not explicitly stated until
the mid-eighteenth century, more than one hundred thirty years after the
introduction of the logarithm.

The logarithm was invented independently by two men, John Napier
(1550 - 1617) and Joost Bürgi (1552 - 1632), though the credit is usually
given to the former, who published his work in 1614. By the time Bürgi
published in 1620, Napier’s work was already quite popular. John Napier,
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a Scotsman from Merchiston Castle, never held any academic positions, but
rather performed mathematics as a hobby. Napier coined the term loga-
rithm which, coming from Greek, means “number of ratios” or “reckoning
number.” Napier published Mirifici Logarithmorum Canonis Descriptio in
1614. In this work, the Scotsman described his newly invented logarithm and
included tables of logarithms. The posthumously published Mirifici Logarith-
morum Canonis Constructio, of 1619, described his methods for calculating
the logarithms.

Napier’s logarithms worked as follows: he has two lines, one a line segment
of finite length (AB in Figure 1) and the other, a ray of indefinite length. A
point C is set in motion on AB with an initial speed equal to the length of
AB. Its subsequent speed is equal to CB. At the same time that this point
was set in motion, another point, C ′ is set off from A′ with the same initial
speed; however, this point maintains this same speed of the length of AB.

-
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Figure 1. Napier’s ‘flowing points’ concept of logarithm

Napier defines the logarithm of the length of CB to be the length of A′B′.
Napier’s logarithm was originally invented in order to ease calculations per-
formed by astronomers and navigators involving sines. The tables of sines
present at the time existed to seven decimal places. Hence Napier chose 107

as the length of A′B′. This yielded integral logarithms of sines. [7]
It can be shown that Napier’s logarithm, which we will denote NapLog,

can be expressed in terms of the modern natural logarithm as follows [6]:

NapLog(x) = 107 loge

(
107

x

)
(1)

Now the raison d’être of the logarithm is the following set of properties:

log(ab) = log(a) + log(b) (2)
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log
(

a

b

)
= log(a)− log(b) (3)

log(an) = n log(a) (4)

NapLog has a property similar to (2), that is:

NapLog(ab) = NapLog(a) + NapLog(b)−NapLog(1) (5)

In the summer of 1617, Henry Briggs, an English geometer who was
impressed by the logarithm traveled to Scotland to visit its inventor. A
famous account of their first encounter is as follows. When Briggs arrived,
he was taken to Napier

“where almost one quarter of an hour was spent, each be-
holding the other with admiration before one word was spoken.
At last Mr. Briggs began: ‘My Lord, I have undertaken this long
journey purposely to see your person, and to know by what engine
of wit or ingenuity you came first to think of this most excellent
help unto Astronomy, viz. the Logarithms: but My Lord, being
by you found out, I wonder nobody else found it out before, when
now being known it appears so easy.’ ” [6]

Napier and Briggs discussed the logarithm and decided it would be best
for it to have the property (2). The appendix to Napier’s 1619 work, contains
a revision of the logarithm to one which has this property.

At this point, logarithms were seen as a one to one correspondence be-
tween a geometric and an arithmetic progression. The geometric progression
being represented by the point with changing velocity and its logarithm, the
arithmetic progression represented by the point with constant velocity. Mod-
ern exponential notation had not yet been established and the exponential
concept had not yet been developed, so there was no connection between
logarithms and exponents at this point.

In the seventeenth century, the graphical representation of the logarithm
in both rectangular and polar coordinates became popular. Descartes, Tori-
celli, Gregory and John Bernoulli all worked with the logarithmic curve in
rectangular coordinates. In 1638, Descartes first described the logarithmic
spiral in a letter to Mersenne. He did not though mention the logarithm at
all in this letter. [1]

A Belgian mathematician named Gregory St. Vincent published, in mul-
tiple books, his Opus Geometricum (a work in which he claimed to have
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squared the circle). In one of the books of 1647, he says that if vertical
lines are drawn from the hyperbola to the horizontal axis such that the ar-
eas of each of the quadrilaterals are equal, then the distance between the
vertical lines form a geometric progression. St. Vincent in this description,
like Descartes in his discussion of the spiral, does not mention logarithms
at all. One of his students, Alfons Anton de Sarasa, was the first to state
this fact using logarithms. Since logarithms were thought of as a one to one
correspondence between arithmetic and geometric progressions, this was a
fairly natural step to take. [1]

Another interesting result involving logarithms came in 1668 when Nico-
laus Mercator published his booklet, Logarithmotechnia. One may recall
that

log(1 + a) = a− a2

2
+

a3

3
− · · · (6)

is often referred to as the Mercator series. In this booklet, Mercator divides
out 1/(1 + a) into the series 1−a+a2−a3 + . . . and then gives an description
of what we know as

∫
xndx = xn+1/(n + 1). He then integrates the terms of

the series for 1/(1 + a) and gives a few numerical values for the areas of the
quadrilaterals formed under the hyperbola. He does not, however, explicitly
state the formula (6). Some say that this is because many mathematicians
of the time preferred specific results over general formulas. Wallis was the
first to state Mercator’s result in symbolic form. [1]

2 Controversy Over the Logarithms of Neg-

ative Numbers

Presently in mathematics, we use different domains all the time depending
on the situation. We are careful to state exactly which sets we are working
with for every problem. In the early eighteenth century, it was not so clear
that this could be done. Mathematicians often had the view that either a
concept worked for everything or for nothing at all.

The fact that certain concepts did not extend easily to negative and
imaginary numbers is seen in the way that some referred to these numbers.
Negative numbers were sometimes called false or defective numbers while
imaginary numbers were sometimes called impossible numbers. [2]

The extension of the logarithm to negative and imaginary numbers would
be a controversy which would last for more than a century. The German
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co-inventor of calculus, Gottfried Leibniz (1646 - 1716) and a member of
the famous Swiss Bernoulli family, John Bernoulli I (1667 - 1748) would be
amongst the first to discuss the topic. Even with the contemporary doubts
about the validity of negative and imaginary numbers, Leibniz and Bernoulli
each worked with them. In 1702, Bernoulli reached the result that

arctan(x) =
1

2i
log

(
1 + ix

1− ix

)
.

Letting x = 1, we have that

log(i) = i
π

2

While at the time, this result was seen merely as a novelty, we will see later
that one man did not think so lowly of it.

Leibniz and Bernoulli were good friends who corresponded often about
many topics. In Leibniz’s controversy with Isaac Newton, concerning the
invention of the calculus, Bernoulli would be one of Leibniz’s most ardent
supporters. However, they did not agree on everything as can be seen in a
series of letters from March 16, 1712 to July 29, 1713. In this correspon-
dence consisting of 12 letters back and forth, the two have a friendly debate
concerning their beliefs on the logarithms of negative numbers.

The discussion started with a paper by Leibniz of 1712 in which he writes
about a subject that mathematicians and philosophers of the time were writ-
ing about. The ratios 1:-1 and -1:1 were problematic. If the two ratios were
the same, then the greater would be to the less the same as the less is to
the greater. In this time, when one took a logarithm, it was thought to be
the logarithm of the “measure of a ratio.” So Leibniz states in this paper
that a ratio can be considered imaginary or impossible if it has no logarithm.
He says that log(−1/1) = log(−1) − log(1) and that log(−1) does not exist
because then 1

2
log(−1) = log(i) which he considered absurd. Notice that

Leibniz uses the word imaginary to mean both non-existent and
√
−1. This

double meaning will come into play later. Before the publication of this pa-
per, Leibniz described this argument in a letter to Bernoulli which would be
the first of their correspondence regarding this topic.

Bernoulli responded that since dx
x

= −dx
−x

, by integration we have that
log(x) = log(−x). So he claims that the logarithmic curve has two sym-
metric branches, similar to the hyperbola. Leibniz responds to this by
saying that the differentiation rule for log(x) does not apply to log(−x).
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In his response he also mentions that log(−2) does not exist because then
1
2
log(−2) = log(

√
−2) which he again considers absurd.

Bernoulli responds to this claim by denying that 1
2
log(−2) = log(

√
−2)

even though 1
2
log(2) = log(

√
2). He says that

√
2 is a mean proportional

between 1 and 2 , but
√
−2 is not a mean proportional between -1 and

-2. So he says that just as log(
√

1× 2) = 1
2
log(2), we also have that

log(
√
−1×−2) = 1

2
log(−2).

Leibniz states his definition which is that “Logarithms are numbers in
arithmetic progression, corresponding to numbers in geometric progression,
of which one number may be 1 and another may be any positive number.” So
he says assume log(1) = 0 and log(2) = 1. He says that then that a negative
number would never be a part of the geometric series described by these
relations. He also argues that if log(

√
2) existed, then 1

2
log(−2) = log(

√
2)

because
√
−2 is the mean proportional between +1 and -2 and this would

mean that log(
√
−2) = (log(1) + log(−2)) : 2 = 1

2
log(−2).

Bernoulli responds to this by saying that he agrees that positive and neg-
ative numbers would not arise in the same geometric series but that negative
numbers “determine their own peculiar series starting with -1, instead of
+1”[2] and with this series, the logarithmic properties of negative numbers
are the same as positive numbers. Bernoulli then proceeds to give a geo-
metric argument, as he would often do. He draws the two branches of the
hyperbola and then constructs two branches of the logarithmic curve by us-
ing proportional areas under the hyperbola. Bernoulli’s argument involves
passing across the asymptotes of the hyperbola, and uses the assumption
that ∞−∞ = 0.

Leibniz responds that given 2c = x, if x = 1, then c = 0 and if x = 2, then
c = 1. But if x = -1, then there is no c which satisfies the property. Bernoulli
responds that these assumptions are arbitrary. He says that when c = 0, let x
= -1. With this assumption he says we can obtain any negative x. In Leibniz’s
reply, he claims that his assumptions are more natural than Bernoulli’s and
he goes on to support this claim by pointing out contradictions that arise
from Bernoulli’s assumptions. If 20 = −1 then 1, -1 and i all have the
same logarithm. Also, unless 2c is many valued, then 20 is equal to 1, -1,√
−1, 4

√
−1, 8

√
−1 and so forth. He also points out that if xc = −2 then

x2c = +4, but Bernoulli himself agreed that positive and negative numbers
would not show up in the same geometric series.

In Bernoulli’s reply he refutes all of Leibniz’s contradictions. He once
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again claims that the half of a logarithm is not necessarily the logarithm of
the square root by appealing to mean proportionals . He denies that 20 is
equal to -1, 1,

√
−1, 4

√
−1, 8

√
−1 . . . because his system only implies that 20

is equal to
√
−1×−1,

√
−1×−1×−1×−1 etc.

In the second to last letter of this correspondence, Leibniz says, “I have
no time to disprove your objections to my doctrine which makes log(i) impos-

sible, the double of impossibles impossible, log(n) the double of log(
√

(n)).
If you assume logarithms in which this is not so, that is nothing to me.” In
the final letter of July 29, 1713, Bernoulli says that Leibniz did not deny that
his assumptions were arbitrary and so everything Bernoulli had been saying
about log(−n) was true.

From this correspondence we can see that there was a great need for a
new definition of logarithms. Merely referring to a correspondence between
a geometric and an arithmetic series was not sufficient. Leibniz believed that
+1 had to be a member of the series, whereas Bernoulli felt that -1 was just
as valid. Leibniz seemed to value the properties (2, 3, 4 described on page
3 of this paper) of the logarithm whereas Bernoulli seemed more concerned
with extending the logarithmic concept to negative numbers, even if it meant
that these properties were no longer valid.

This correspondence was published in 1745, which is when the topic of
logarithms of negative numbers began to gain interest in the mathematical
community. While nothing was resolved by the debate between Leibniz and
Bernoulli, it did manage to spark the curiosity of one of Bernoulli’s students,
Leonhard Euler.

3 Euler Addresses the Debate

Leonhard Euler (1707-1783), the prolific Swiss mathematician gained an in-
terest in the topic of logarithms of negative numbers early in his life. When
Euler was just 20 years old, he corresponded by letter with his teacher John
Bernoulli on the subject. In this correspondence describes his arguments
both for Bernoulli’s position and against it. Bernoulli still held the same
view that log(n) = log(−n).

As mentioned earlier, the union of the logarithmic and exponential con-
cepts had not yet taken place in a rigorous and widely accepted fashion.
Often times, John Wallis is accredited with this connection. In his Algebra
of 1685 he points out that in the two progressions crucial to the logarithm
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(arithmetic and geometric), the numbers in the arithmetic progression are
really referring to exponents in the geometric series. Math historian Florian
Cajori says, though, that “Wallis does not come out, resolutely, with the
modern definition of a logarithm, and use it.”[2]

In William Gardiner’s Tables of Logarithms of 1742, he writes, “The
common logarithm of a number is the Index of that power of 10 which is
equal to the number.” Only a few years after this, Euler would also define
logarithms in terms of exponents in his Introductio in Analysin written in
1745 and published in 1748.

Between 1745 and 1749, Euler both corresponded with other mathemati-
cians and wrote paper on the nature of logarithms and negative numbers.
His main correspondence on the topic was with the Frenchman, Jean le Rond
D’Alembert (1717-1783). D’Alembert held the view of John Bernoulli and
Euler tried to convince him otherwise. Euler and D’Alembert would later
have a falling out, but this correspondence took place when they were still
on good terms with each other.

Euler wrote two articles concerning the logarithms of negative numbers.
The first, Sur les logarithmes was written in 1747 but for some reason was
not published until 1862. The second paper, De la controverse entre Messrs.
Leibniz et Bernoulli sur les logarithmes des nombres negatifs et imaginaires,
which I will describe here, was written in 1749 and published in 1751.

In this paper of 1749, Euler begins by describing the position of Bernoulli.
He retells some of Bernoulli’s specific arguments from the correspondence. He
then says that the strongest argument for Bernoulli’s position is the follow-
ing which requires the acceptance of one of the natural laws of logarithms;
namely, that log(an) = n log(a). Since (−a)2 = a2, then their logarithms
are equal, so log(−a)2 = log(a2), so then 2 log(−a) = 2 log(a) and hence
log(−a) = log(a), which is exactly the position of Bernoulli. Although this is
a strong argument for the position of Bernoulli, it would seem that Bernoulli
himself would not have made this case. In his letter of June 7, 1713 to
Leibniz, Bernoulli says that “Twice log(−n) is not log n2.” [2]

He then proceeds to give objections to the arguments for Bernoulli’s po-
sition. Recall that in Bernoulli’s first letter of the correspondence, he claims
that since dx

x
= −dx

−x
, by integration we can conclude that log(x) = log(−x).

Leibniz refuted this by claiming that the differentiation rule for log(x) does
not hold for log(−x). Euler first points out that Leibniz’s argument was not
supported by any valid reason and that if his claim were true, it would over-
turn all that was known about the differential properties of the logarithm.
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He then says that a much better argument against this argument would be
Bernoulli’s disregard for the integration constant. Indeed, by ignoring the
fact that the integrals mentioned above would differ by a constant, Bernoulli
inherently assumed that log(−1) = 0, which is the logarithm at the heart of
the debate.

Euler then moves on to the argument mentioned in the paragraph pre-
ceding the last. He says that if log(−1) = log(1) = 0, then log(i) = 0 as
well. But this contradicts Bernoulli’s own finding of 1702, that log(i) = iπ

2
.

Euler was not willing to accept this. He then points out that if we accept
that log(−1) = w for some w 6= 0, then 2 log(−1) = 2w. But this implies
that log(−1) = 2w 6= 0, which no one would be willing to accept.

After this section of the article, Euler does the same thing for Leibniz’s
position: he gives arguments for it and then gives objections to these argu-
ments. The following, one of his ‘proofs’ that log(−1) 6= 0, is also a great
demonstration of his liberal usage of infinite series. He observes that

log(1 + x) = x− 1

2
x2 +

1

3
x3 − 1

4
x4 +

1

5
x5 − 1

6
x6 + · · · .

Setting x = −2, he gets that

log(−1) = −2− 1

2
· 4− 1

3
· 8− 1

4
· 16− 1

5
· 32− 1

6
· 64− · · ·

and says that this divergent series would certainly never be zero, so log(−1) 6=
0. His objection to this proof begins by looking at the geometric series

1

1 + x
= 1− x + x2 − x3 + x4 − x5 + x6 − · · · .

He then considers the cases x = −3 and x = 1 which respectively give us the
two sums
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−1

2
= 1 + 3 + 9 + 27 + 81 + 243 + · · ·

and
1

2
= 1− 1 + 1− 1 + 1− 1 + · · · .

He points out that adding these expansions term by term shows us that

0 = 2 + 2 + 10 + 26 + 82 + 242 + · · · .

so he sees no absurdity in the idea that 0 could be the sum of the series

−2− 1

2
· 4− 1

3
· 8− 1

4
· 16− 1

5
· 32− 1

6
· 64− · · · .

Euler performs these proofs and objections just to show that the great
debate between his teacher and the revered Leibniz could have continued for
a long time. He then points out that whether we accept that log(−1) = 0 or
log(−1) 6= 0 we seem to arrive at insurmountable contradictions. In typical
Euler fashion, just when all seems lost, he states that all of our problems can
be attributed to one assumption: that each number has only one logarithm.
He then goes on to prove the main theorem of the paper, that “There is
always an infinity of logarithms which belong equally to each given number.”

Euler proves this theorem using an ill defined infinitely small number. His
lack of clarity about the nature of this infinitely small number was enough to
leave many of the mathematicians of the time unconvinced of his view. Many
of them, like Bernoulli, were mainly concerned with whether the logarithmic
curve had two branches or not. Euler has not really answered that question
outright because it was somewhat irrelevant and this left many unsatisfied
with his solution.

The paper of Euler written in 1747 but not published until 1862 contained
much of the same information. However, his proof of the same theorem was
based on the formula iθ = log(cos θ + i sin θ). Cajori contends that Euler
was more convincing in this article and that had this article been published
shortly after it had been written, the controversy might not have lasted well
into the nineteenth century. [3]

After Euler’s proof of the main theorem in the 1749 paper, he goes on
to describe all the logarithms of arbitrary positive, negative and imaginary

10



numbers. When he arrives at the description of the logarithms of nega-
tive numbers, the double meaning of the word ‘imaginary’ mentioned earlier
comes into play. While Leibniz maintained that the logarithms of negative
numbers were imaginary in the non-existent sense; Euler interpreted Leib-
niz’s imaginary in the

√
−1 sense. He says, “M. Leibniz was thus correct to

maintain that the logarithms of negative numbers were imaginary.”
The is also some debate about whether Euler let his teacher John Bernoulli

know about his new discoveries concerning logarithms. He had made the
discovery as late as 1747, John Bernoulli died in 1748, but his first paper
published on the topic was in 1751. [3]
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