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Abstract. In [1] Dubhashi, Jonasson, and Ranjan study the negative dependence properties of
Srinivasan’s sampling processes (SSPs), random processes which sample sets of a fixed size with
prescribed marginals. In particular they prove that linear SSPs have conditional negative associa-
tion, by using the Feder-Mihail theorem [3] and a coupling argument. We consider a broader class
of SSPs that we call tournament SSPs (TSSPs). These have a tree-like structure and we prove
that they have conditional negative association. Our approach is completely different from that of
Dubhashi, Jonasson, and Ranjan. We give an abstract characterization of TSSPs, and use this to
deduce that certain conditioned TSSPs are themselves TSSPs. We show that TSSPs have negative
association, and hence conditional negative association. We also give an example of an SSP that
does not have negative association.

1. Introduction

The theory of negative dependence has been a subject of great interest for mathematicians of
late. Intuitively, a sequence of random variables is negatively dependent if the event that some
subset of them are “large” tends to make the values of other variables “small.” In [6], Pemantle
calls for a general theory of negative dependence corresponding to that of positive dependence. One
step towards this goal had already been achieved by Reimer [7] in proving the van den Berg-Kesten
conjecture [10].

The examples of negative dependence properties with which this paper is concerned are that of
negative association and conditional negative association (defined below). While these concepts
were introduced by Joag-Dev and Proschan [5], they were studied earlier by Feder and Mihail [3]
in the context of balanced matroids. Since then negative association has been well-studied, see, for
example, [2], [4], and [8]. In the definition that follows, note that negative association is a much
stronger condition than pairwise negative correlation.

Definition 1. Given a sequence A = (Ax)x∈I of real-valued random variables we write AJ for the
subsequence (Ax)x∈J . We say that A is negatively associated if for every pair of disjoint subsets
J,K ⊆ I and all nondecreasing functions f, g,

E [f(AJ)g(AK)] ≤ E [f(AJ)]E [g(AK)] .

The variables (Ax)x∈I are conditionally negatively associated if for any subset J ⊆ I and sequence
a = (ay)y∈J the sequence (AI\J | AJ = a) is negatively associated.

In this paper, we will be concerned with the negative association and conditional negative as-
sociation of Srinivasan’s sampling process (SSP), a method of producing a random k-subset of an
n-element set [9]. A random k-subset of an n-element set can be thought of as a sequence of binary
random variables A = (Ax)x∈I , where |I| = n, in which Ax = 1 if x is in the k-set and Ax = 0
if not. Since we are choosing a k-subset, we have

∑
x∈I Ax = k. We freely switch between saying

x ∈ A and Ax = 1. One simple example of such a process is uniform sampling of k-subsets, where
k-subsets are chosen uniformly from all subsets of the n-element set of size k. In applications,
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including integer linear programming, it is desirable to be able to prescribe the marginals, i.e.,
P(Ax = 1) = px where 0 ≤ px ≤ 1 for all x ∈ I. This rules out uniform sampling.

Srinivasan’s sampling process was introduced as a method of producing random k-sets from
an n-element set quickly and with given marginals. The question of whether SSPs have negative
association and conditional negative association was considered by Dubhashi, Jonasson, and Ranjan
[1].

Before we define SSPs, we introduce some results related to negative association and conditional
negative association. Feder and Mihail [3] gave a somewhat surprising sufficient condition for
conditional negative association, involving the notion of variables of positive influence, defined as
follows.

Definition 2. Let A = (Ax)x∈I be real-valued random variables and F be an A-measurable random
variable (i.e., some function of the Ax). Then we say Ay is a variable of positive influence for F if

E [F | Ay = t]

is a nondecreasing function of t.

Feder and Mihail showed that the relatively weak property of conditional pairwise negative
correlation along with the existence of a variable of positive influence, gives conditional negative
association.

Theorem 1 (Feder and Mihail [3]). Let (Ax)x∈I be binary random variables such that for any
J ⊆ I, and any a = (ay)y∈J , the random sequence (Bx)x∈I\J = (Ax | AJ = a)x∈I\J satisfies the
following:

• Every nondecreasing B-measurable F has a variable of positive influence;
• The Bx are pairwise negatively correlated.

Then the variables (Ax)x∈I are conditionally negatively associated.

When studying random k-sets there is always a variable of positive influence. Indeed

cov(F,
∑
x∈I

Bx) = 0,

since
∑

x∈I Bx is constant, so some Bx has non-negative covariance with F , and is thus a variable
of positive influence. Therefore, in this case, it is enough to show conditional pairwise negative
correlation in order to prove CNA. In [1], a rather complicated coupling argument is used to
show this in the special case of so-called linear SSPs. In this paper we discuss a broader class
of SSPs called tournament SSPs. We show that this class of SSPs can be described by a slightly
different random process that we call a tournament sample. This allows us to give an abstract
characterization of tournament SSPs, and use this characterization to show that certain conditioned
tournament SSPs are, in fact, tournament SSPs themselves. This in turn allows us to deduce
conditional negative association for tournament SSPs directly from the much simpler fact that
they have negative association, bypassing the Feder-Mihail theorem.

Further, we disprove a conjecture of Dubhashi, Jonasson, and Ranjan by exhibiting an SSP that
does not even have negative association. This is in fact a counterexample to Theorem 5.1 in their
paper. The proof they give is correct for linear SSPs, but does not apply, as they claim, to arbitrary
SSPs.

2. Srinivasan’s sampling process

Srinivasan’s sampling process [9] is a probability distribution on the k-subsets of a finite set I.
It is determined by a sequence (px)x∈I of probabilities summing to k, together with an ordering
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(which we refer to as the “match ordering”) on pairs from I. If A is a random variable with this
distribution then for every x ∈ I we will have P(x ∈ A) = px.

Definition 3. Given a finite set I, a vector of probabilities p = (px)x∈I satisfying
∑

x∈I px = k,

and a total ordering < on
(
I
2

)
, the distribution SSP(I, p,<) is defined as follows. The elements

x ∈ I compete in a game in which each starts with credit px. Matches are played according to the
match ordering. After a match between x and y at least one will have credit in {0, 1} while the
sum of their credits does not change. These matches are independent, and are defined so that each
player’s credit evolves as a martingale. Eventually the credit of each player is either 0 or 1, and
the random set A is defined to be the set of players finishing with credit 1. We call a player whose
credit becomes either 0 or 1 a loser, in the sense that they take no further meaningful part in the
game (though of course whether they end up in the final random set A depends on whether their
final credit is 0 or 1). For a match between x and y where their current credits are wx and wy this
requires us to do the following:

(a) 0 ≤ wx + wy < 1: This is a loser-out match, since one player will end up with credit 0 and
the other with credit wx +wy. The probability that x wins is wx/(wx +wy), and similarly the
probability that y wins is wy/(wx + wy). (Even in the case where wx = wy = 0 it is useful, in
order to make our proofs more consistent, to continue to think of one of x and y as the winner.
We can define the probability of x winning arbitrarily.)

(b) 1 ≤ wx + wy ≤ 2: This is a loser-in match, since one player will end up with credit 1 and
the other with credit wx + wy − 1. We require

P(x wins) =
1− wx

2− wx − wy
and P(y wins) =

1− wy

2− wx − wy
.

In order to simplify the analysis, from here on we insist that px < 1 for each x ∈ I. In the general
case one can simply start by putting any x with px = 1 directly into the random set.

The match ordering has a substantial effect on the final distribution. Note that in a given run
of the generation process many matches will be irrelevant because one or other of the contestants
will already have lost a prior match, i.e., their credit will already be either 0 or 1.

It was conjectured in [1] that all SSPs have conditional negative association. This conjecture
turns out to be false. We give here a counterexample. In fact it is a counterexample to Theorem
5.1 of [1], since it doesn’t even have negative association1.

Example 1. Define pi = 4/7 for i = 1, 2, . . . , 7. Let < be the ordering on
(
[7]
2

)
given by:

{1, 2} , {1, 3} , {1, 4} , {1, 5} , {1, 6} , {1, 7} , {3, 4} , {2, 3} , {2, 4} , {2, 5} , {2, 6} ,
{2, 7} , {3, 5} , {3, 6} , {3, 7} , {4, 5} , {4, 6} , {4, 7} , {5, 6} , {5, 7} , {6, 7} .

Note that this ordering is the lexicographic ordering, except that match {3, 4} is played immediately
after all matches involving 1. We let A ∼ SSP([7], p,<). The probabilities of the 4-sets of [7] being
chosen are displayed in the table below. Sets that are not listed have probability 0 of being chosen.

1In the proof of Theorem 5.1 of [1] the authors introduce a random variable Z representing the outcome of the
first match and claim that Z is independent of the random variables Ax for all x not involved in the first match. This
is correct for linear SSPs, and, as we prove later, for tournament SSPs, but is not true in Example 1.
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4-set Probability 4-set Probability

{1, 2, 3, 6} 1/56 {1, 4, 5, 6} 1/14

{1, 2, 3, 7} 1/56 {1, 4, 5, 7} 1/14

{1, 2, 4, 6} 9/280 {1, 4, 6, 7} 1/28

{1, 2, 4, 7} 9/280 {2, 3, 4, 6} 2/35

{1, 2, 5, 6} 3/175 {2, 3, 4, 7} 2/35

{1, 2, 5, 7} 3/175 {2, 3, 5, 6} 12/175

{1, 2, 6, 7} 3/350 {2, 3, 5, 7} 12/175

{1, 3, 4, 6} 1/28 {2, 3, 6, 7} 6/175

{1, 3, 4, 7} 1/28 {2, 4, 5, 6} 2/35

{1, 3, 5, 6} 1/14 {2, 4, 5, 7} 2/35

{1, 3, 5, 7} 1/14 {2, 4, 6, 7} 1/35

{1, 3, 6, 7} 1/28

A routine calculation shows that

P({2, 3, 4} ⊆ A)− P(2 ∈ A)P({3, 4} ⊆ A) =
2

245
,

and so A fails to be negatively associated since

E(1(2 ∈ A)1({3, 4} ⊆ A)) > E(1(2 ∈ A))E(1({3, 4} ⊆ A)).

One can understand this by considering the question of whether 1 wins the first match (in which
case 2 is definitely in A). If 1 wins then the next match is the losing match 1 vs. 3, biased 4 to 1
in favor of 3. Then, assuming that 3 is not eliminated, 3 plays 4 with respective probabilities 5/7
and 4/7, giving a probability of 2/7 that they are both in A. On the other hand if 2 wins the first
match then 3 and 4 play each other immediately, both with probabilities 4/7 and there is a 1/7
probability that they are both in A.

There is a natural class of SSPs whose structure is more regular. These are the linear SSPs,
in which, in every match after the first, a new contender plays against the winner of the previous
match.

Definition 4. Suppose that I = {x1, x2, . . . , xn} ⊂ N has x1 < x2 < · · · < xn. Let <L be the

lexicographic order on
(
I
2

)
defined by A <L B if min(A4 B) ∈ A. When we generate a random

subset of I by the Srinivasan sampling process SSP(I, p,<L), we start by playing a match between
x1 and x2. Next we play x3 against the winner of the first match. Then x4 plays against the winner
of the second match, and so on. This type of SSP is called a linear SSP.

There are several ways in which linear SSPs are easier to understand than general SSPs. The
essential reason is that for a linear SSP the general outline of the process is known from the
beginning. To be precise the parameters of the jth subprocess do not depend on the prior random
choices. In advance of playing match i we know whether it will be a loser-out match or a loser-in
match; we know that one of the contestants is xi+1 and that its opponent is one of x1, x2, . . . , xi.

The main result of [1] is the following theorem.

Theorem 2 (Dubhashi, Jonasson, and Ranjan [1]). The distribution produced by a linear SSP has
conditional negative association.
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3. Tournament SSPs

In this section we present the main results of the paper. We generalize Theorem 2 to a class
of SSPs we call tournament SSPs or TSSPs. These are SSPs for which the match schedule has
a tree structure. In a TSSP the game described in Definition 3 is organized in a tournament.
Leaves of the tree correspond to elements of the ground set I; internal vertices correspond to
matches. In this section we give an abstract characterization of TSSPs. This allows us to deduce
that certain conditioned tournament TSSPs are themselves TSSPs. This immediately implies that
TSSPs have conditional negative association, since we prove that TSSPs have negative association.
Our theorems for tournament SSPs apply in particular to linear SSPs.

In order to make the definition of a TSSP clear, we first need to define the notion of a tournament
tree, and also the reduction of a tree (the tournament structure corresponding to the situation after
one match has been played).

Definition 5. A tournament tree is a rooted binary tree. If T is a tournament tree with root r, and
x and y are leaves of T with a common parent m, we define the reduction of T at m, denoted Tm,
to be T with leaves x and y deleted. This is a tournament structure, which carries no information
about the winner of the first match. When we need to record such information we talk about the
reduction of T in which x beats y, denoted Tx/y, which is simply Tm with x replacing m. The root
of Tx/y is r unless r = m, in which case the root of Tx/y is x. We call the non-leaf vertices of T
matches, since they correspond to matches in the tournament. There is a natural (partial) order on
the vertices of T in which a ≥T b if a is on the unique b− r path in T . In fact (V (T ),≥T ) is a join
semi-lattice; for all a, b ∈ V (T ) there exists a unique least upper bound a ∨ b such that c ≥ a, b iff
c ≥ a∨ b. In particular, if x, y ∈ I are leaves of T then x∨ y is the unique match of the tournament
in which x might meet y. For this reason we define match(x, y) = x ∨ y.

Definition 6. The TSSP associated with a tournament tree T is any SSP in which at every stage
the match being played is one of the ≥T -minimal matches. Clearly, any such SSP has the same
distribution.

There are many edge orderings that generate a TSSP with a given tournament structure. We
now introduce a random process that eliminates this ambiguity, which we call a tournament sample.
Essentially, we will indicate the winner of a given match not by the identity of the winning element,
but instead by which branch of the tree they came from. This is the process we will analyze
throughout the rest of the paper. It is clear that every TSSP is a tournament sample and vice
versa.

Definition 7. Let T be a tournament tree with set of leaves I and let p = (px)x∈I be a family of
probabilities with

∑
x∈I px = k, an integer. We start by extending p to be a function on all the

vertices of T . For a match m of T define

km =
∑
x∈I

x<Tm

px

pm = km − bkmc .

Suppose now that m is a match with children a and b. [The children of m might of course be either
leaves or matches.] We say that m is a loser-out match if pa + pb ≤ 1, otherwise we say it is a
loser-in match. Let Zm be a two valued random variable whose possible values are a and b. The



NEGATIVE DEPENDENCE AND SRINIVASAN’S SAMPLING PROCESS 6

Zm are chosen to be independent, and to satisfy

P(Zm = a) =

{
pa/(pa + pb) m is a loser-out match

(1− pa)/(2− pa − pb) m is a loser-in match,

P(Zm = b) =

{
pb/(pa + pb) m is a loser-out match

(1− pb)/(2− pa − pb) m is a loser-in match.

For x ∈ I let a0, a1, a2, . . . , aq be the unique x− r path in T (where a0 = x and aq = r). Define

`(x) =

{
min {i ≥ 1 : Zai 6= ai−1} if this set is non-empty

q + 1 otherwise,

and

m(x) =

{
a`(x) `(x) ≤ q
∞ otherwise.

Thus m(x) is the first match lost by x. (The symbol ∞ represents winning the final—the match
r.) Finally we define the random set S by

S = {x ∈ I : m(x) is a loser-in match.}

This random variable S is the tournament sample with parameters T and p. We denote its distri-
bution by Tourn(T, p). If we wish also to specify the Zm we write S = Tourn(T, p, Z).

Example 2. Consider the tournament structure below (Figure 1), with p1 = p2 = 2/3, p3 = p4 =
1/6 and p5 = 1/3. We have k = 2 and loser-in matches are marked with a +, loser-out matches
with a −. The values of the Za are indicated by the arrows; there is an arrow from x to m if
Zm = x. In this case A = {1, 5}.

1 2

3 4

5

r

a b

c

+

+ −

−

Figure 1. An example of a tournament sample; here A = {1, 5}

We first prove some basic facts about tournament samples. Following that we prove an abstract
characterization of tournament samples that will allow us to deduce rather quickly that certain
conditioned tournament samples are tournament samples, and hence that they have conditional
negative association.

Lemma 3. Suppose T is a tournament tree with set of leaves I and p = (px)x∈I is as in Definition 7.
Let m be a match in T with children x, y that are leaves, and set S = Tourn(T, p, Z). We define S′

to be the tournament sample S′ = Tourn(Tm, p, Z). [Here pm is defined, as in Definition 7, to be
px + py − bpx + pyc and we drop Zm from the list of match results.] Then
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(a) S is given in terms of S′ by

S =


S′ m is a loser-out match, m 6∈ S′

S′ ∪ {Zm} \ {m} m is a loser-out match, m ∈ S′

S′ ∪ {x, y} \ {m} m is a loser-in match, m ∈ S′

S′ ∪ {x, y} \ {Zm} m is a loser-in match, m 6∈ S′.

(b) For any x ∈ I we have P(x ∈ S) = px. Moreover, if some match m′ has children a, b with
pa + pb = 0 then the distribution of Zm′ does not affect the distribution of S.

(c) S has size k =
∑

x∈I px.

Proof. Straightforward. �

Our goal is to prove that tournament samples have conditional negative association. We start
by proving that they have negative association, closely following the proof of Theorem 5.1 in [1].

Theorem 4. If T is a tournament structure with set of leaves I and p = (px)x∈I is a family of
probabilities with

∑
x px = k ∈ N and S ∼ Tourn(T, p) then S has negative association.

Proof. We may suppose that S = Tourn(T, p, Z). Suppose that J,K are disjoint subsets of I and

that f, g are increasing functions on {0, 1}J and {0, 1}K respectively. We need to show that

E [f(SJ)g(SK)] ≤ E [f(SJ)]E [g(SK)] .

Pick a leaf match m (I.e., a match both of whose children, x and y say, are leaves). Then we have,
by the conditional covariance formula, that

cov(f(SJ), g(SK)) = E[cov(f(SJ), g(SK) | Zm)] + cov(E[f(SJ) | Zm],E[g(SK) | Zm]).

For the first term, note that both (S \ {y} | Zm = x) and (S \ {x} | Zm = y) are tournament
samples (on Tx/y and Ty/x respectively). Thus, by induction,

cov(f(SJ), g(SK) | Zm) ≤ 0,

hence

E[cov(f(SJ), g(SK) | Zm)] ≤ 0.

As far as the second term is concerned, note that SI\{x,y} is independent of Zm, so the second
term is 0 unless one of x, y belongs to J and the other to K. (Since J and K are disjoint this is
the only possibility.) Without loss of generality, let us suppose that x ∈ J and y ∈ K. Suppose,
firstly, that m is a loser-out match. Let Y = 1(Zm = x). Note that, as in Lemma 3, if we set
S′ = Tourn(Tm, p, Z) then S′ is independent of Zm and

S =

{
S′ m 6∈ S′

S′ ∪ {Zm} \ {m} m ∈ S′.

This makes it clear that E[f(SJ) | Y ] is increasing in Y since possible values of SJ are either equal
for Y = 0 and Y = 1, or equal apart from having Sx = Y . Similarly E[g(SK) | Y ] is decreasing in
Y , from which it follows immediately that

cov(E[f(SJ) | Zm],E[g(SK) | Zm]) ≤ 0.

The case where m is a loser-in match is similar. This time we set Y = 1(Zm = y). We have

S =

{
S′ ∪ {x, y} \ {m} m ∈ S′

S′ ∪ {x, y} \ {Zm} m 6∈ S′.
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Again the possible values of SJ for a given S′ are either equal or differ in that Sx = Y . Again we
also have that E[g(SK) | Y ] is decreasing in Y , and

cov(E[f(SJ) | Zm],E[g(SK) | Zm]) ≤ 0.

Having shown that both terms in the conditional covariance formula are non-positive we have
cov(f(SJ), g(SK)) ≤ 0, hence S has negative association. �

We now state some not-quite-so-basic properties of tournament samples, properties that, it turns
out, characterize them. For a tournament sample Tourn(T, p, Z), recall that Zm specifies the branch
of T from which the winner of m comes. It is convenient to be able to refer to the contestant that
wins m. We write Wm for the (random) winner of match m.

Theorem 5. Suppose that S = Tourn(T, p, Z) is a tournament sample. For m a match of T define

D(m) = {z ∈ I : z <T m}

S+(m) =

{
S \D(m) Wm 6∈ S
(S ∪ {m}) \D(m) Wm ∈ S

S−(m) = SD(m) \ {Wm}
Nm = |S ∩D(m)| ,

and recall that

km =
∑
x∈I

x<Tm

px

pm = km − bkmc .

Then for all matches m in T ,

(a) S+(m) = Tourn(Tm, p, Z), where we abuse notation and write p and Z for the restrictions of p
and Z to the leaves and matches of Zm respectively.

(b) If m’s children are both leaves, x and y say, then S can be reconstructed from S+(m) and Zm

as

S =


S+(m) m is a loser-out match and m 6∈ S+(m)

S+(m) ∪ {Zm} \ {m} m is a loser-out match and m ∈ S+(m)

S+(m) ∪ {x, y} \ {Zm} m is a loser-in match and m 6∈ S+(m)

S+(m) ∪ {x, y} \ {m} m is a loser-in match and m ∈ S+(m).

(1)

(c) E(Nm) = km.
(d) The random variables Nm satisfy

bkmc = bENmc ≤ Nm ≤ dENme = dkme .

(e) SD(m) and SI\D(m) are conditionally independent given Nm.

Proof. Parts (a)–(d) are straightforward. We briefly sketch the proof of (e). From part (c) we know
that Nm − 1(Wm ∈ S) is a constant, so we wish to show that SD(m) and SI\D(m) are conditionally
independent given the random variable 1(Wm ∈ S). Given subsets A,B of D(m) and I \ D(m)
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respectively we have,

P(Wm ∈ S)P(SD(m) = A,SI\D(m) = B,Wm ∈ S)

= P(S+(m) = B ∪ {m})
∑
x∈A

P(Wm ∈ S)P(S−(m) = A \ {x} ,Wm = x)

= P(SI\D(m) = B,Wm ∈ S)P(SD(m) = A,Wm ∈ S).

where the first equality A similar calculation establishes that

P(Wm 6∈ S)P(SD(m) = A,SI\D(m) = B,Wm 6∈ S)

= P(SD(m) = A,Wm 6∈ S)P(SI\D(m) = B,Wm 6∈ S),

completing the proof. �

We are now almost ready to state a theorem that characterizes those random processes that are
tournament samples. Before we can do that however we need to clarify the relationship between
the random variables Sx and the various Zm where S = Tourn(T, p, Z) is a tournament sample.
Note that there is more information in the random variables Z than in the sample S. Some match
results may be rendered irrelevant by the results of later matches. In the next lemma we prove
that this “irrelevant” information can, in a certain sense, be taken from an arbitrary source. To be
more precise we would like to show that we can choose the Zm so that they are (Z̃, S)-measurable,

where Z̃ is any “suitable” source of randomness. The following lemma provides the details.

Lemma 6. Let S = Tourn(T, p, Z ′) and let Z̃ = (Z̃m) be any family of independent two-valued

random variables with P(Z̃m = a) = P(Z ′m = a) for all matches m and all vertices a, and in

addition Z̃ is independent of Z ′. Define, for a ∈ V (T ), the random variable Xa = Na−bkac. If we
let, for every match m with children a, b,

Zm =



Z̃m Xa = Xb

a Xa = 1, Xb = 0,m is a loser-out match

b Xa = 0, Xb = 1,m is a loser-out match

b Xa = 1, Xb = 0,m is a loser-in match

a Xa = 0, Xb = 1,m is a loser-in match,

then the (Zm) are independent, (Z̃, S)-measurable, and S = Tourn(T, p, Z).

Proof. By construction, Tourn(T, p, Z) = Tourn(T, p, Z ′), since we have only referred to values of

Z̃ to decide matches that were irrelevant. Moreover, the (Zm) are obviously (S, Z̃)-measurable
since the Xas are S-measurable. Now we need to verify that the Zm are independent. Suppose
then that T has at least two matches, and that m̂ is a leaf match of T . It is easy to check, by
induction, that the (Zm)m6=m̂ are independent. Let the children of m̂ be x and y. Let ζ be a
sequence with P((Zm)m6=m̂ = ζ) > 0. Now there are two cases, depending on whether Xx = Xy,
which is determined by ζ. Firstly if Xx = Xy then

P(Zm̂ = x, (Zm)m6=m̂ = ζ) = P(Z̃m̂ = x, (Zm)m6=m̂ = ζ)

= P(Z̃m̂ = x)P((Zm)m 6=m̂ = ζ),
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since Z̃m is independent of S and (Zm)m 6=m̂ by hypothesis. The other case is that Xx 6= Xy. If m̂
is a loser-out match then

P(Zm̂ = x, (Zm)m 6=m̂ = ζ) = P(x ∈ S, (Zm)m6=m̂ = ζ)

= P(x ∈ S, (Zm)m6=m̂ = ζ,Nm̂ = 1)

= P(x ∈ S, (Zm)m6=m̂ = ζ | Nm̂ = 1)P(Nm̂ = 1)

= P(x ∈ S | Nm̂ = 1)P((Zm)m6=m̂ = ζ | Nm̂ = 1)P(Nm̂ = 1) (∗)

=
px

px + py
P((Zm)m6=m̂ = ζ,Nm̂ = 1)

= P(Zm̂ = x)P((Zm)m6=m̂ = ζ).

The equality (∗) follows from the facts that Sx is conditionally independent of SI\D(m̂) given Nm̂,

and that (Zm)m 6=m̂ is ((Z̃m)m 6=m̂, SI\D(m̂))-measurable by induction. The case where Xx 6= Xy and
m̂ is a loser-in match is similar. �

We are now ready to prove our characterization of tournament SSPs. Essentially the proof is a
straightforward induction, but we need to be careful in moving up from a smaller case that we have
enough independence between our inductively established tournament sample and the behavior of
our SSP. This is where Lemma 6 comes in.

Theorem 7. Let T be a tournament structure with set of leaves I and let A be a random variable
with values in {0, 1}I . Define pi = P(Ai = 1), p = (pi)i∈I and, for m any match in T , set
Nm =

∑
i<TmAi. Then A ∼ Tourn(T, p) if and only if

(1) For all matches m of T ,

bE(Nm)c ≤ Nm ≤ dE(Nm)e ,
(2) For any match m the variables AD(m) and AI\D(m) are conditionally independent given Nm.

Proof. The implication in the forward direction follows from Theorem 5 (d) and (e).
For the backward direction, the proof proceeds by induction on the number of leaves of T . The

result is trivial if T has only one vertex. Suppose then that T has at least two leaves, and let m̂
be a match both of whose children, x and y say, are leaves. We define a random subset B of the
leaves of Tm̂ as follows. We’ll describe the {0, 1}-valued variables Bz that specify whether each leaf
z of Tm̂ is in or out. For leaves of the original tree we just set Bz = Az. For the special leaf m̂ we
compare |A ∩ {x, y}| with its expectation and include m̂ if we have exceeded the expected value.
I.e.,

Bz =

{
Nm̂ − bE(Nm̂)c z = m̂

Az otherwise.

Note first that since bE(Nm̂)c ≤ Nm̂ ≤ dE(Nm̂)e we have Bm̂ ∈ {0, 1}. We’ll show that B and Tm̂
satisfy the hypotheses of the theorem. To see this let us write, for m a match in Tm̂,

Mm =
∑

z<Tm̂
m

Bz

Note that all matches m of Tm̂ are also matches of T and Mm is either Nm or Nm − 1 (the
second case occurs when m̂ is a loser-in match and m is an ancestor of m̂). Thus (1) is trivially
satisfied. The required conditional independence follows from that of the Az. Thus, by induction,
Y ∼ Tourn(Tm, q) where qm̂ = px + py −bpx + pyc and otherwise qz = pz. Thus there exist random
variables Zm for each match of Tm̂ such that B = Tourn(Tm̂, q, Z). By Lemma 6 we can assume

that there are random variables Z̃ independent of A such that Z is (Z̃, B)-measurable. We will
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now make a careful choice of a Bernoulli random variable Zm̂ such that A = Tourn(T, p, Z). We

start by letting Z0 be a random variable, independent of Z̃ and B, distributed as

Z0 ∼

Bernoulli
(

px
px+py

)
px + py < 1

Bernoulli
(

1−px
2−px−py

)
px + py ≥ 1.

Then we set

Zm̂ =



Z0 if Nm̂ = 0

x if Ax = 1, Ay = 0 and m̂ is a loser-out match

y if Ax = 0, Ay = 1 and m̂ is a loser-out match

y if Ax = 1, Ay = 0 and m̂ is a loser-in match

x if Ax = 0, Ay = 1 and m̂ is a loser-in match.

For this Zm̂ it is straightforward to check, from (1), that A = Tourn(T, p, Z); in the cases where
Zm̂ is defined to be Z0 its value is ignored in the calculation of Tourn(T, p, Z), in the other cases
it is chosen to have the correct value to ensure that A = Tourn(T, p, Z).

It remains of course to prove that Zm̂ is independent of the other Zm and has the right distri-
bution. For any fixed sequence ζ = (ζm)m 6=m̂ we wish to show that P(Zm̂ = x | (Zm)m 6=m̂ = ζ) has
the appropriate value. We split into two cases according to whether m̂ is a loser-in or a loser-out
match. If it a loser-out match then we have

P(Zm̂ = x | (Zm)m 6=m̂ = ζ) = P(Zm̂ = x | (Zm)m6=m̂ = ζ,Nm̂ = 1)P(Nm̂ = 1)+

P(Zm̂ = x | (Zm)m 6=m̂ = ζ,Nm̂ = 0)P(Nm̂ = 0)

= P(Ax = 1 | (Zm)m6=m̂ = ζ,Nm̂ = 1)P(Nm̂ = 1)+

P(Z0 = 1)P(Nm̂ = 0)

= P(Ax = 1 | Nm̂ = 1)P(Nm̂ = 1) + P(Z0 = 1)P(Nm̂ = 0)

=
px

px + py
(P(Nm̂ = 1) + P(Nm̂ = 0))

=
px

px + py
.

The third equality follows from the conditional independence of Ax and Ay from Az, z 6∈ {x, y},
together with the independence of Z̃ from A and the (Z̃, (Az)z 6=x,y)-measurability of Z. The fourth
is a simple calculation: we have

P(Ax = 1 ∧Nm̂ = 1) = P(Ax = 1) = px,

and, since Nm̂ is a Bernoulli random variable,

P(Nm̂ = 1) = E(Nm̂) = E(Ax) + E(Ay) = px + py.

The other case is when m̂ is a loser-in match; this case is proved entirely analogously. �

Corollary 8. If S ∼ Tourn(T, p), J is a subset of I, and ζ = (ζj)j∈J then the random variable
S′ = (S | SJ = ζ) is distributed as Tourn(T, q) where qx = P(i ∈ S | SJ = ζ).

Proof. We need merely check the conditions of Theorem 7. For a match m in T we write Mm =∑
x<Tm S

′
x. Since S is a tournament sample Mm takes at most two adjacent values, so certainly

S′ satisfies (1). Now we need to prove that for m a match of T we have S′D(m) and S′I\D(m)

conditionally independent given Mm. Of the “fixed” values SJ = ζ some are in D(m) and some
are not. Let’s write J1 = D(m) ∩ J , J2 = J \ D(m) and ζ1, ζ2 for the restriction of ζ to J1, J2
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respectively. Suppose then that ξ, ψ are possible values for S′D(m) and S′I\D(m) respectively. [In

particular we know that ξ restricted to J1 equals ζ1 and similarly ψ restricted to J2 equals ζ2.]

P(S′D(m) = ξ | S′I\D(m) = ψ,Mm = k) =
P(S′D(m) = ξ, S′I\D(m) = ψ,Mm = k)

P(S′I\D(m) = ψ,Mm = k)

=
P(SD(m) = ξ, SI\D(m) = ψ,Nm = k)/P(SJ = ζ)

P(SJ1 = ζ1, SI\D(m) = ψ,Nm = k)/P(SJ = ζ)

=
P(SD(m) = ξ,Nm = k)

P(SJ1 = ζ1, Nm = k)

= P(S′D(m) = ξ |Mm = k).

The third equality follows from the conditional independence of SD(m) and SI\D(m) given Nm = k.
This proves the conditional independence of S′D(m) and S′I\D(m) given Mm, which, by Theorem 7,

proves the corollary. �

It is now immediate to deduce the main result of our paper, that tournament SSPs have condi-
tional negative association.

Theorem 9. TSSPs have conditional negative association.

Proof. By Corollary 8 we know that conditioned TSSPs are themselves TSSPs. These have negative
association by Theorem 4. Thus TSSPs have conditional negative association. �

4. Further Directions

There are still a large number of natural open questions in this area. In general it would certainly
be interesting to know whether there are other classes of SSPs that have conditional negative
association, or indeed negative association. However the most interesting question concerns a
related process called a random ordering SSP. In this process we start by picking an ordering from
some distribution on the set of all orderings on

(
I
2

)
, and then we run an SSP using this ordering.

The techniques in this paper seem to offer very little traction in this more general setting. Even
proving that a random ordering SSP that starts by picking a random linear ordering on I has
negative association seems a difficult task.
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