CYCLE DOUBLE COVERS OF GRAPHS WITH DISCONNECTED FRAMES
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ABSTRACT. Continuing work initiated by Héggkvist and Markstrém, we show in this paper that
certain disconnected frames guarantee the existence of a cycle double cover. Specifically, we show
that the disjoint union of a Kotzig and a sturdy graph forms a good frame.

1. INTRODUCTION

The cycle double cover conjecture is one of the most well known conjectures in all of graph
theory. A cycle double cover of a graph G is a collection of (not necessarily disjoint) cycles such
that each edge of G is in exactly two cycles of the collection. The cycle double cover conjecture,
generally said to be due to Seymour [4] and Szekeres [5], is as follows:

Conjecture 1. FEvery 2-edge-connected graph has a cycle double cover.

While considerable effort has been put into the solution of this conjecture, it has thus far not
been solved. Many different techniques have been used to attack the problem, some of which have
been outlined by Jaeger [3]. Also, Zhang [6] is an excellent reference for an introduction to this field.
Furthermore, Jaeger [3] proves a result stating that the cycle double cover for cubic graphs implies
that for general graphs. This, of course, has meant that nearly all efforts towards the solution of
the Cycle Double Cover conjecture have been focused on cubic graphs.

In this note, we continue along the same vein investigated by Haggkvist and Markstrom [1, 2]
who introduced the idea of frames in cubic graphs to demonstrate certain classes of graphs which
have cycle double covers. The definition of a frame is as follows.

Definition 2. A bridgeless cubic graph H is said to be a frame of a graph G if G has a spanning
subgraph H such that
(i) H is isomorphic to a subdivision of H, and
(ii) the number of vertices in each component H; of H has the same parity as the number of
vertices in the corresponding component H; of H.

The research initiated by Haggkvist and Markstrom has centered on finding graphs H so that if
H is a frame of any 2-connected cubic graph G, then G has a cycle double cover. In this case, H
is called a good frame. Further, we say that H is a k-good frame if any graph with H as a frame
has a k-cycle double cover, where a k-cycle double cover is a cycle double cover in which the cycles
can be colored with & colors in such a way that no two cycles of the same color share an edge.

Two classes of graphs which Haggkvist and Markstrom were able to prove were good frames are
Kotzig and sturdy graphs. A proper edge coloring of a regular multigraph G is said to be Kotzig if
the edges in each pair of color classes form a Hamiltonian cycle. A graph G is said to be Kotzigian
or a Kotzig graph if it has a Kotzig coloring. We shall only be interested in 3-edge-colorable cubic
Kotzig graphs, and therefore the pairs of colors will form three Hamiltonian cycles. Finally, we
define a sturdy graph.

Definition 3. Let GG be a 3-edge-colorable cubic graph and assume there is a 3-edge-coloring with
colors 1, 2 and 3 of GG such that
1
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(i) Edges of colors 1 and 2 form a Hamiltonian cycle.
(ii) Edges of colors 1 and 3 form a Hamiltonian cycle.
(iii) Edges of colors 2 and 3 form a 2-factor of G.

Further, assume that if colors 2 and 3 are exchanged on any subset of cycles of the 2-factor, we
get a new proper 3-edge-coloring of GG satisfying the three properties. In this case, G is said to be
sturdy.

Armed with these definitions, let us review some the results proved by Haggkvist and Markstrom
in [1]. While this paper will only be concerned with whether a graph is a good frame or not, many
results in [1], including the following, found the k for which classes of graphs are a k-good frame.

Theorem 4. A Kotzigian graph is a 6-good frame.

In [1], Haggkvist and Markstrom also proved that graphs with a so-called switchable cycle double
cover are 6-good frames. A graph with a switchable cycle double cover is a sturdy graph in which
the 2-factor formed by colors 2 and 3 is made up of only two cycles. However, their technique is
easily extendable to give the result for sturdy graphs in general.

The aim of this paper is to extend the results in the vein described above to graphs which have
disconnected frames. The main result of the paper is as follows.

Theorem 5. A disjoint union of a Kotzig graph and a sturdy graph is a good frame.

We note that this theorem implies the following theorem which has been proved separately by
the senior author.

Theorem 6. A union of two disjoint Kotzig graphs is a good frame.

In fact, the senior author has proven that two disjoint Kotzig graphs along with a disjoint union
of arbitrarily many Cys also yields a good frame. Also, the same author has a proof for the disjoint
union of arbitrarily many Kotzig graphs which has yet to be published.

2. PRELIMINARIES

Firstly, we present a lemma which shall be used in the proof of our main theorem. It is a rather
trivial observation, but we include its proof for completeness.

Lemma 7. Given any tree T and a subset S C V(T') with |S| even, there exists a set of paths, P
in T such that

(i) each path has endpoints in S,
(ii) each vertex of S is an endpoint to exactly one path in P, and
(iii) the paths in P are edge-disjoint.

Proof. Consider all partitions P of S into pairs. Note that since |S| is even, P is not empty. Then
any P € P gives a set of paths between vertices of S by simply taking the unique path in T
between vertices in every pair in P. For a given P € P, let £(P) be the total length of all these
paths. Further, let P’ € P be such that ¢(P’) is minimal. Suppose there are then edges shared in
the paths induced by this pairing of vertices of S. Then, keep each edge appearing the paths an
odd number of times, and delete those which appear in an even number of paths. We are done if
each edge appears in exactly one path. If not, there must be an edge in at least three paths. Take
the symmetric difference of any two of these paths and we reduce the number of paths that this
edge is in by two. Continue until each edge is in one path and the proof is complete. O

In fact, we are interested in an easy corollary of Lemma 7.
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Corollary 8. In any tree T, given a set S C V(T') with |S| even, there is a subforest of T" with the
vertices of odd degree in T exactly the vertices in the set S.

Proof. Take the union of the paths given by Lemma 7. U

Before we begin the proof of Theorem 5, we define various notation that will ease our explanation.
For the rest of this note, we shall denote the general graph by G, which is formed by subdividing
edges in our two graphs which make up the frame, and then adding a matching between the
subdividing vertices. Let us call this matching M. The matching naturally partitions into three bits:
edges between subdividing vertices which are both in the Kotzig graph, those between subdividing
vertices in the sturdy graph and, lastly, those between the Kotzig and the sturdy graph. As will be
justified below, our interest does not lie in the former two types of subdividing edges, but rather
in the latter. Note that by the parity condition in the definition of a frame, we know that we have
an even number of subdividing vertices in each component of our frame. We denote the Kotzig
component of our frame by Hj and the sturdy component by Hs. We then color the edges of each
component with colors 1, 2 and 3, with the only restriction that the colors 2 and 3 in Hs make up
the non-Hamiltonian 2-factor. Let e = xy € M be an edge which goes between Hj and Hj, so that
x is a subdividing vertex in Hy and y in Hs. We say that zy is an ij-edge, for i,j € {1,2,3}, if the
color of the edge that x subdivides in H is ¢ and the color of the edge that y subdivides in Hy is
7. In this case, we sometimes say that x has color ¢ in Hy and j in H.

Note that we have a bit of freedom when it comes to determining which cycle of the frame a
particular subdividing vertex should be on. Of course, the edge it subdivides is fixed, but each edge
in Hy lies on two Hamiltonian cycles. Likewise, each edge in Hg lies on either two Hamiltonian
cycles, or a Hamiltonian cycle and a cycle of the 2-factor made up of edges colored 2 and 3. Thus,
we can shift around edges of M to get a particular arrangement. We do this because, as was shown
in [1], if there is some arrangement so that each cycle of the 3-edge-colorings of Hy and Hy has
an even number of subdividing vertices on it, then it has a cycle double cover. We state their
proposition more precisely as follows.

Proposition 9. If F' is a graph with cycle double cover C and G is a graph formed from F by
subdividing edges an even number of times and then adding a matching M between subdividing
vertices, then G has a cycle double cover if there exists an arrangement of the subdividing vertices
so that each cycle C in C has an even number of subdividing vertices on it.

This is shown by taking such an arrangement and recoloring edges. Firstly, color all edges of
M red. Then, color edges in the subdivided H; and Hj green and blue by starting a subdividing
vertex, coloring the edges around a cycle of the original 3-coloring say blue, then switching to green
at the next subdividing vertex, and so on. This coloring is well-defined since there are an even
number of switched between green and blue (since there are an even number of subdividing vertices
on each cycle). Then cycles are formed by taking red/green (and red/blue) alternating walks. It is
not too hard to see that these cycles form a cycle double cover of our graph G.

Before we are able to begin proving lemmas, we need to shift some edges of M around a bit
so that our proofs are easier to describe. The main aim of this section is to describe our starting
configuration of edges of M, or our default arrangement of edges of M. Unfortunately, to do this,
there is quite a bit of notation that needs to be introduced. Let Cis be the Hamiltonian cycle in
Hj, formed by edges of colors 1 and 2 and likewise for C13 and Cas. Let Dis be the Hamiltonian
cycle in Hy formed by edges of colors 1 and 2 and likewise for Dy3. Let D, for i = 1,...,m be
the cycles formed by edges of color 2 and 3 in H, and giving a 2-factor of Hs. Note that we can
arrange the edges of M between Hy and H, in a “parallel” way, i.e., we can ensure that such edges
appear only between C15 and D12, Ci3 and D13 and lastly Cs3 and the Dégs. We can do this since
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FIGURE 1. The basic setup

if we have, for example, a 13-edge in M between H; and H, we can put it between C13 and Dq3.
After doing this, we are able to name sets of different types of edges in M. Let the edges of M
between C12 and D12 be denoted H; and likewise the edges of M between C13 and D3 be denoted
Ho. Also, let the edges of M between Ch3 and D§3 be denoted D; for i = 1,..., 5. See Figure 1 for
a picture. So each edge between Hj and Hj is in either H, Hs or one of the D;s. In our starting
configuration, we will always minimize the edges in H; and Ha, so that any edge of the same color
in both sides which can be shifted to one of the D;s, i.e., 22- and 33-edges, will be at the start.

Proposition 9 is essentially the key to our entire proof. If we can find an arrangement of the
edges of M so that Cio, Ci3, Cas, D12, D13 and all the Dégs have an even number of subdividing
vertices on them, we are done. We will consider the edges of M depending upon where they lie.
Note first that any edge of M lying entirely in Hj, causes no problem whatsoever. Since Hy, is made
up of three Hamiltonian cycles, we know that for any edge e of M in Hy, we can think of e as being
a chord in one of these Hamiltonian cycles. Thus, we can arrange edges of M in Hj so that they
each contribute an even number of subdividing vertices to Cia, C13 and Cas. As for Hg, the same
situation is true for edges of M that can be arranged to be chords of Do and Dqs.

However, the situation for the D;s is slightly more complicated. We again note that if an edge
of M is a chord of any Dj,, then it causes no trouble for us. So we are interested in the edges of
M between the D§3S. As would be expected, we are really interested in the parity of the number
of edges between any two Djss. In order to make this clear, contract each of the Diss to a vertex
and consider the multigraph formed by these vertices and the edges between them (thus, we delete
any loops formed by edges in the original cycles). Remove a maximal Eulerian subgraph of this
multigraph and we are left with a forest, which we will call the Das-forest from this point forward.
The form of the Dss-forest plays a critical role in what edge sets need to be changed amongst the
D;s. As will be seen later, after applying Corollary 8, we only need to ensure that each component,
i.e., tree, of the Das-forest has a even number of edges between it and Css. In this vein, let the trees
of the Dss-forest be denoted by 11,75, ..., Ty,. We shall slightly abuse this notation, using it both
for the contracted trees and the cycles Di; corresponding to the vertices of this tree and edges of
M between them. Then let 7; for j = 1,...,¢ be the set of edges in M between C»3 and 7). Now,
let us describe the situation we need in order to have a so-called good configuration. Firstly, we
begin by consider the Diss in a fixed Tj. The proof will depend on switching colors in either Hy
or Hg, but we need to be careful in this switching. In terms of the Dijs in T}, we do not want to
change one of these D§3s without changing the others. In other words, we will “tie” these cycles
together and change the colors over the entire T;. But before we do this, we need to ensure we can
shift some edges out from between these Djgs if necessary. Since we have a tree structure between
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these D§3s we can root our tree anywhere and fix an edge-coloring with colors 2 and 3 on that
cycle. Then, we travel along edges in the tree, ensuring that along each edge of the tree, at least
one edge of M is either a 22- or a 33-edge. We can do this by switching the colors 2 and 3 along
each new D§3 encountered. This will allow us to shift this edge to either Do or Di3 if necessary.
After making all of these adjustments to our edges in M, we finally have our starting configuration.

From this point forward, we always think of the edges of G as arranged in a starting configuration.
Note that a starting configuration is not unique given a graph G which has a frame made up of
the disjoint union of a Kotzig graph and a sturdy graph. This is because the starting configuration
depends on which Hamiltonian cycle in Hy, we call Co3. This is obviously different than the other
two Hamiltonian cycles as it is “matched up” with the 2-factor in Hj.

3. LEMMAS

With the above preliminaries in hand, we are finally able to begin proving Theorem 5. We shall
present a series of lemmas which narrow down the possibilities of edge types in a graph with a frame
made up of a Kotzig and a sturdy graph which does not have a cycle double cover. Throughout,
we let G be such a graph which is, again, in a starting configuration.

Lemma 10. If there is an arrangement of edges of M so that Hi, Ho and all T;s are even, then
the graph G has a cycle double cover.

Proof. In order to prove this lemma, we simply need to show that there is some arrangement of
edges in this graph so that each cycle in G has an even number of edges of M incident with it. We
may examine each 7; separately, in any order. So, fix a 7;. Let the cycles corresponding to vertices
of T; be D35, ..., D5y, Now, since there are an even number of edges in 7;, we know that there are

an even number of odd D;; for j = 1,...,s. Let the set of Dggs corresponding to these D; ;s be

denoted S and now apply Corollary 8 to T; with .S the set of vertices corresponding to the D;]és.
Then, we know that there is a subforest of T; with vertices of odd degree exactly the vertices of S.
We then can leave the edge sets of M between cycles of S down, since along with the edges of M in
T; gives an even number of edges on this cycle. For any two cycles connected by an edge of T; not
in this set of edge-disjoint paths, we shift an odd number of same colored edges up to the correct
Hamiltonian cycle. This gives a configuration of edges of M with each cycle of T; incident to an
even number of edges of M. Since we can repeat this process with all of the T;s, we have proved
the lemma. O

We now prove the following lemma, which states that, in fact, we are done unless we have only
one type of edge in either H; or H> in our starting configuration.

Lemma 11. Any graph which has a frame formed by the disjoint union of a Kotzig graph and a
sturdy graph in such a way that it has an edge of the matching between Hg and Hy of color 1 in Hg
has a cycle double cover.

Proof. To begin, note that we may assume that this edge of color 1 in Hy is, in fact, a 11-edge.
For, if it is not, and say it is a ¢1-edge for ¢ = 2 or 3, then switch the colors 1 and ¢ in Hj and we
have a new configuration with a 11-edge. Now, we examine the situation amongst the D;s and in
fact, using Lemma 10, we are interested only in the parity of the 7;s. We begin by dealing with
each 7; separately, and in arbitrary order. So, begin with 7;. If 77 is even, then we leave it alone
and go to T2. Otherwise, when 77 is odd, we examine the types of edges in 7;. If there is either
a 22- or 33-edge, we simply shift it up to H; or Hs. If there is not, then we switch colors 2 and
3 in Hy just amongst cycles in T7. This will create either a 22- or 33-edge, which we shift up to
either Hy or Hs, making our modified 77 even. We continue this process for every 7;, making each
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of them even in the process. Thus, when we finish this process, all 7;s are even, meaning that our
new H; and Hy are either both odd or both even. If they are both even, we are done. If they are
both odd, we may switch the 11-edge (which remains since we didn’t switch color 1 in either Hg
or Hy) to the other pair of Hamiltonian cycles, making both #; and Hz even and completing the
proof of the lemma. O

So, for the remainder of the note, we shall assume that there are no edges of M between Hg and
Hy, of color 1 in H,. Thus, in our initial arrangement of edges, we only have edges of type 12 in ‘H;
and 13 in Hs. Before the next lemma, we define the notion of an opposite pair of edge types, which
is a pair of edge types of the form either 22 and 33, or 23 and 32.

Lemma 12. If there exists a T; with an opposite pair of edge types appearing, then there exists a
cycle double cover of G.

Proof. Let 71 have an opposite pair of edge types inside it. To begin, switch colors 2 and 3 in T3
if necessary to make this opposite pair of the form 22 and 33. Then, switch colors 2 and 3 in each
of the T;s corresponding to the odd 7;s so that there is an odd number of either 22- or 33-edges in
each. Then, for each of these odd 7;s, shift the odd number of 22- or 33-edges up to either H; or
Hs, so that each of these 7;s becomes even. Now, if 77 is odd, then one of the H;s must be odd
and we can simply shift up a 22- or 33-edge from 77 to the odd H; to get an all even arrangement.
If 77 is even, then either both H;s are even after the shifting from the odd 7;s and we are done, or
they are both odd, in which case we take one 22-edge and one 33-edge from 77, shift them up and
we have an all even arrangement. O

Corollary 13. If there exists a configuration where any T; has more than two types of edges, then
there exists a cycle double cover of G.

Proof. If there is a T; with at least three types of edges, then it contains an opposite pair of edge
types, and thus we are done by Lemma 12. O

Before we prove our final lemma, we must define one more object. The key definition in the
proof of Theorem 5 follows; it describes a particular type of 7; which allows us to tweak the parities
of the H;s after we shift up edges of the form 22 and 33 from the odd 7;s.

Definition 14. A controlling 7; is an even 7; with an odd number of edges from one of the H;s
and an even number from the other in it after switching 1 and either 2 or 3 in Hy.

In other words, we can switch the parities of H; and Ho by switching colors 2 and 3 inside the
T; corresponding to a controlling 7;. The existence of a controlling 7; is the key to the rest of the
proof, as it implies a cycle double cover of GG, as shown in the following lemma.

Lemma 15. If there exists a starting configuration with a controlling T;, then G has a cycle double
cover.

Proof. In this case, we simply shift up all odd types of the form 22 or 33 from each odd 7;. We
then have either both H;s even or odd. If they are both even, we are done. If, on the other hand,
they are both odd, we simply switch colors 2 and 3 on the T; corresponding the the controlling 7;
in the statement of the lemma, and the parities of the H;s switch, leaving them both even. ]

We shall next prove the case when there is a starting configuration with an odd 7; present.
Note that there are in fact three starting configurations then for every Kotzig and sturdy graph
frame, depending on which Hamiltonian cycle of Hy is chosen to have colors 2 and 3. This starting
configuration can be any of the three possible starting configurations.
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Lemma 16. If there is a starting configuration of G with at least one odd T;, then G has a cycle
double cover.

Proof. To begin, we note that if color 1 and either 2 or 3 are switched in Hy, then any odd 7; can
only get edges from either H; or Ha, but not both. In fact, if it is an odd 22-7;, then it can get
edges only from H;. Otherwise, we could switch 1 and 3 in Hy, and get a starting configuration in
which this 7; has an opposite pair of edge types, completing the proof by Lemma 12.

Using this fact, we now note that the parity of #; and the number of odd 22-7;s must differ, and
likewise for Ho and odd 33-7;s. Otherwise, we can simply shift up all the 22 or 33 edges from these
and get an all even configuration. Since there is an odd 7;, there must be either an odd 22-7; or an
odd 33-7;. Without loss of generality, assume there is an odd 22-7;. In fact, we note that since the
parity of the number of odd 22-7;s is different than 7{; and also since all odd 22-7;s get edges only
from H1 when colors 1 and either 2 or 3 are switched in Hy, there must be an odd 22-7; which gets
an even number of edges from H; when colors 1 and 2 or 3 are switched in Hy. Let such a 7; be
T;.

To complete the proof, we shall show that we can switch colors in Hy to get a new starting con-
figuration in which 7; is a controlling 7;. In fact, we simply switch color 1 and 2 (since we assumed
that 7; has an odd number of 22-edges), and we rearrange to get a new starting configuration. The
number of edges in the new 7} is even, since the number of edges left behind after the switch is even
(could be 0) and the number of edges switched down from #; is even (also could be 0). Further,
note that the switch puts an even number of edges from this 7; in our new #; and an even number
(perhaps 0) of edges in the new H,. Thus, in this starting configuration, 7; is a controlling 7;, and
thus we are done after applying Lemma 15. g

4. PROOF OF THEOREM 5

Finally, we are ready to prove Theorem 5. Essentially the problem that is encountered is that
when all the 7;s are even, there may be several empty 7;s, to which ‘H; and Hs can switch down.
This case will have to be dealt with carefully and in a new way.

Proof of Theorem 5. We begin the proof by applying our Lemmas, essentially in order, to obtain a
case not yet covered. Thus, Lemma 11 tells us that our frame must not have any edges of color 1 in
H,. Corollary 13 gives that each 7; can only have two types of edges, and that they must share a
color in either Hy or Hy. Lemma 15 gives that there is no starting configuration with a controlling
T;. Likewise, Lemma 16 gives that every starting configuration must have all even T;s. It follows
that in each of the three starting configurations, both H; and Hs are odd, or we have an all even
configuration and are done by Lemma 10.

Now, we consider the case when there is a starting configuration where all 7;s are nonempty.
Since both H; and Hs are odd, and by Lemma 15 there are no controlling 7;s, there must be a 7;
which gets an odd number of edges from both H; and Ho. But this 7; was nonempty and thus had
edges with some color in Hy in it. If we switch colors 1 and the other color in Hy, then we get a
starting configuration in which this 7; has three edge types, and thus we are done by Corollary 13.

On the other hand, we may have a situation in which all three starting configurations have empty
Tis. In this case, we cannot hope to apply Lemma 10 since there are configurations in which we
cannot make H1, Hs and all 7;s even, e.g., see Figure 2. In this case, we must have edges between
the T;s and two of the Hamiltonian cycles in Hy, in order to get an even number of edges to each
Hamiltonian cycle and 7;. In this case, there are an odd number of empty 7;s which have an odd
number of edges from each of #; and Ho after a switch of color 1 and either 2 or 3 in Hp. We
move these edges so that they are on the 7; in H,, and since there are an odd number of each,
there are an even total number. This gives each T; even degree with respect to the matching edges.
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FIGURE 2. An example of a graph with frame Hj and H; which cannot have an
all even configuration with respect to edge sets H1, Ho and the 7;s. Edge e is a
12-edge, ey a 13-edge, es a 22-edge, eq4 a 23-edge, e5 a 32-edge and eg a 33-edge.
The dotted lines represent where the edges e; and es go after switching colors 1 and
either 2 or 3 in Hy.

Since all of these edges have color 1, we simply put them on the same Hamiltonian cycle in Hy,
and once again there are an even number of them so this gives each Hamiltonian cycle even degree
with respect to the matching edges. Now, we must be a bit careful in the end, since we cannot have
a cycle which begins in a T;, goes across matching edges to H; and then returns to a Hamiltonian
cycle of Hg, for this may give a circuit rather than a cycle, i.e., the same vertices may be traversed
more than once. However, if we move all edges of the matching down to the T;s, and have none
on D15 and D3, then we will certainly avoid this situation. However, since each of the 7;s in this
case must have an even number of edges in them not matter which starting configuration is used,
we can simply move all matching edges down so that they are on the T;s in H,. Since all other
sets were even to begin with, we have a configuration in which Ciq, C13, Cos, D12, D13 and all T;s
have even degree (where Do and Dj3 have degree 0) with respect to the matching edges. Thus,
we have proved the theorem. ]

5. FUTURE DIRECTIONS

The next natural problem to tackle is to prove that the disjoint union of two sturdy graphs is
a good frame. Also, considering frames consisting of more than two components would be a step
forward. Eventually the aim would be to prove a result which states that all cubic graphs have a
frame with less than some number of components, all of which are Kotzig or sturdy. This would,
of course, answer the cycle double cover conjecture, so we anticipate quite a bit of work is left to
be done.
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