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PRIVACY-PRESERVING AND AUTHENTICATED DATA CLEANING ON

OUTSOURCED DATABASES

ABSTRACT

Data cleaning detects and removes errors, missing values and inconsistency from

dirty data in order to improve the data quality. It is a labor-intensive and complex

process. The data-cleaning-as-a-service (DCaS) paradigm enables users to out-

source their data and data cleaning needs to computationally powerful third-party

service providers. However, the DCaS framework raises several security issues.

One of the issues is how the data owner can protect the private information in

the outsourced data. As the outsourced dataset often involves sensitive personal

information, it is essential for the data owner to protect the private information

when outsourcing the data to the untrusted data cleaning service provider. In this

thesis, we focus on the privacy issue of specific data cleaning tasks, including data

deduplication and data inconsistency repair. To protect the data privacy, we design

efficient encoding and encryption schemes for the data owner to transform the

data before outsourcing. The proposed schemes provide robust privacy guarantee

against various inference attacks, while preserve the accuracy of data cleaning

result.

Another problem is the authentication of the outsourced data cleaning. It is

challenging for the data owner with weak computational power to verify whether

the untrusted service provider has executed the data cleaning task faithfully. To

address this issue, we design a lightweight authentication framework for the data

owner to verify the outsourced data deduplication result with small overhead. Any

incorrect or incomplete result can be caught with 100% guarantee.
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Chapter 1

Introduction

It is well known that real-world datasets, particularly those from multiple sources,

tend to be dirty - inaccurate, incomplete, and inconsistent. Data inaccuracy is usu-

ally raised by data entry mistakes like spelling errors. Missing data occurs for many

reasons such as data collecting device’s malfunction or a participant’s failure to re-

spond to certain questions in a poll. Data inconsistency exists when different and

conflicting versions of the same data appear in different places [33]. Dirty data is

commonly present in both single data collections (e.g., due to misspellings during

data entry, missing information or other invalid data) and multiple data sources.

Inaccuracies, obsolete and inconsistent information makes achieving the big data

utopia a slog for businesses and researchers [1]. In a real-life example shown in

[42], an insurance company receives 2 million claims per month with 377 data ele-

ments per claim. Even at an error rate of 0.001, the claims data contains more than

754,000 errors per month and more than 9.04 million errors per year. According to

a recent survey [42], around 40% of companies have suffered losses, problems, or

costs due to data of poor quality. 33% of organizations have delayed or cancelled

new IT systems because of poor data quality [85]. 42% of the sales professionals

claim that inaccurate contact data is the biggest barrier to multichannel marketing.

Many data management and decision making applications, e.g., data warehouses

and web-based information systems, require extensive support for data cleaning.

Data cleaning deals with detecting and removing errors, missing values and

inconsistencies from data in order to improve the quality of data [101]. There are

various specialized techniques to process different data cleaning tasks. For ex-
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ample, data deduplication aims at eliminating duplicated copies of repeating data;

data inconsistency repair makes the data consistent by making minimal change to

the original data; while data imputation replaces missing data with plausible values.

In data inconsistency repair, the integrity constraints such as functional dependen-

cies (FDs) play a crucial role. Informally, a set of attributes X in a dataset D is

said to functionally determine another set of attributes Y , (written X → Y ) if, and

only if, each X value in D is associated with precisely one Y value. The data

inconsistency problem rises when the data content does not comply with the FDs.

Data cleaning is a labor-intensive and complex process [13]. Most data

cleaning computations hold a high complexity. For example, the complexity of FD

discovery, which is at the root of inconsistency repair, is exponential to the number

of attributes in the dataset [62, 125]. Even with the FD knowledge, finding inconsis-

tency repair solution demands intensive user interaction and incurs computational

complexity NP-complete in the size of the dataset. Besides, nowadays the data

is evolving at a high velocity. During the lifetime of a database, we may witness

frequent evolution and violations of the pre-defined integrity constraints. Thus, a

rigid monitoring and analysis of the evolving data is demanded to keep up with

the transformation. To make data cleaning more complicated, huge amounts of

data are generated from a large variety of applications and sources. These data is

organized with inconsistency in schema, formats and adherence to integrity con-

straints. A comprehensive and in-depth expertise is needed to create a unified tool

to eliminate the errors and discrepancies from such diverse data. With the fast

growth of data volume, the sheer size of todays datasets are increasingly cross-

ing the zetabyte barrier. Considering the intrinsic high complexity, the huge data

volume makes the cleaning process prohibitively complex.

Providing a data cleaning solution that is powerful, reliable, and easy to use
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is extremely challenging. With corporate data exploding in volume and variety,

cleaning of large scale data has grown difficult. Therefore, building in-house tools

for data cleaning is very difficult, and may create maintenance problems down

the road. Alternatively, purchasing expensive proprietary data cleaning solutions

may not be acceptable by those medium- and small-size organizations that have

limited budgets. A possible solution to resolve this dilemma is to outsource the

data to a third-party data cleaning service provider for efficient data cleaning. This

motivates the data-cleaning-as-a-service (DCaS) paradigm that enables organiza-

tions (clients) with limited computational resources to outsource their data cleaning

needs to a third-party service provider (server). Recently, several academic and in-

dustrial organizations have started investigating and developing technologies and

infrastructure for cloud-based data cleaning services (e.g., OpenRefine [2]). The

DCaS paradigm alleviates small- and medium-size organizations the pressure to

build in-house data cleaning solutions and hire data science experts to maintain

the technology. Instead, these organizations enjoy the state-of-the-art data clean-

ing techniques by only transmitting the raw and nasty data to the service provider.

It is true that the DCaS paradigm enables data owners with limited resources

to improve their data quality. However, outsourcing data cleaning to a third-party

service provider raises a few issues. One important issue is data privacy. When

the outsourced data involves any personal information (e.g., medical or financial

details of individuals), the privacy of the information needs to be carefully protected.

Indeed, personal information is commonly present in datasets that call for cleaning.

Consider the data deduplication process which detects different records that refer

to the same entity. To make sure of the high deduplication accuracy, it is necessary

to include identifying descriptive properties such as date of birth, social number,

and home address. However, these information is extremely sensitive and should
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not be leaked to any untrusted party. It is therefore paramount to protect data

privacy when outsourcing the data to the untrusted DCaS provider.

The other concern is that the untrusted service provider may cheat on the

data cleaning results. The service provider has abundant incentives to do so.

For example, the service provider may intensionally execute the computation on

a small fraction of the data, in order to save the computational cost and improve

the revenue [49]. It is also possible that the service provider returns incorrect re-

sults due to software bugs or mis-configuration. As the data cleaning result is so

critical to the organization’s marketing strategy and investment plan, it is essen-

tial to authenticate whether the service provider has performed the data cleaning

faithfully, and returned the correct results [26].

This thesis focuses on privacy-preserving and authenticated outsourced data

cleaning. Particularly, we take the data deduplication and data inconsistency repair

as the central computations into consideration. In specific, in order to protect the

sensitive information in the outsourced data, we encrypt the original data before

outsourcing. The client only transmits the encrypted dataset to the server to clean.

However, the challenge is how to make sure that the server can execute accurate

data cleaning over the ciphertext values. For instance, in data deduplication, the

ciphertext values of a pair of similar records may be dramatically different to each

other. As a consequence, the server cannot identify these two records as near-

duplicates based on the ciphertext values. What makes the problem more chal-

lenging is the auxiliary knowledge about the private dataset that the server obtains

from the external sources. Take the frequency analysis attack as an example. Pre-

vious work [90] demonstrates that the frequency analysis attack can recover more

than 60% of the patient records from the encrypted attributes. Considering that the

frequency distribution of the data values at attribute level are easily accessible in
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real-world applications [108, 41], we need to design efficient encryption schemes

to defend against such attacks.

On the other hand, authentication of outsourced data cleaning is far from triv-

ial too. Traditionally, the authentication of outsourced computations can be solved

by verifiable computing protocols [49, 98]. In these protocols, before outsourcing,

the client converts any polynomial-time algorithm to quadratic programs, and con-

structs verifiable schemes. The server constructs cryptographic proofs to demon-

strate the result correctness. However, this solution is not pratical in the DCaS

paradigm. The client with weak computational power cannot afford the setup cost

which is equivalent to the computation complexity. Besides, the proof verification

cost at the client side is close to doing the data cleaning again. Thus, with the con-

sideration of the asymmetric computational power between the client and server,

we face the challenge of designing a lightweight authentication framework with

cheap setup and verification cost at the client side.

In this thesis, we make the following contributions.

First, we study the privacy-preserving techniques of outsourced data dedu-

plication. To be specific, we design the privacy-preserving data-deduplication-as-

a-service (PraDa) system that enables the client to outsource her data as well

as data deduplication needs to a potentially untrusted server. PraDa consists

of two efficient encoding schemes that transform the records into a set of hash

values or Euclidean points. These two approaches guarantee to preserve the

similarity between the original records, and flatten the frequency of the encoded

data. Therefore, PraDa enables the server to discover near-duplicated records

from the encoded data, while provides provable privacy guarantee against the fre-

quency analysis attack. We published our research results in a research paper ti-

tled “PraDa: Privacy-preserving Data-Deduplication-as-a-Service” in the Proceed-
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ings of ACM International Conference on Information and Knowledge Management

(CIKM), November 2014.

Second, we investigate the authentication problem of outsourced data dedu-

plication. The key idea is that besides returning the similar record pairs, the server

returns a verification object (V O) that can prove the soundness and completeness

of the returned data deduplication results. We design an authentication tree struc-

ture named MB-tree. When traversing the MB-Tree to find near-duplicates, the

server also constructs the V O, which consists of certain MB-tree entries, that can

be later utilized by the client to verify the correctness of the results. We further

reduce the V O verification cost at the client side by replacing a large amount of

expensive record similarity calculation with a small number of cheap Euclidean

distance computation. We published our research results in a research paper titled

“ARM: Authenticated Approximate Record Matching for Outsourced Databases”

in the Proceedings of IEEE International Conference on Information Reuse and

Integration (IRI), July 2016.

Third, we inspect the privacy issue in the outsourcing framework of data in-

consistency repair. We take functional dependencies (FDs) as the auxiliary knowl-

edge that the server posses about the private dataset. Given a dataset, a set

of attributes X in a dataset D is said to functionally determine another set of at-

tributes Y , (written X → Y ) if, and only if, each X value in D is associated with

precisely one Y value. The server fixes the inconsistency problem by making mini-

mal change to the data to comply with the FDs. We define a flexible security model

that allows the client to specify a part of the data to be sensitive. We perform

the foundational study of security vulnerabilities by adversarial FDs, and formal-

ize the FD attack. We prove the NP-completeness of finding the optimal scheme

that encrypts the minimum number of data cells. Following that, we design an effi-
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cient algorithm to find the data cells that are necessary to be encrypted to defend

against the FD attack. We published our research results in a research paper ti-

tled “Secure Data Outsourcing with Adversarial Data Dependency Constraints” in

the Proceedings of IEEE International Conference on Big Data Security on Cloud

(BigDataSecurity), April 2016.

Finally, we consider the scenario where the client is not aware of the FDs in

the dataset, while the server is expected to discover the FDs. The discovered FDs

function as the basis to improve the data quality through inconsistency repair when

the data is evolving in the future. In this process, the client takes the server with the

frequency knowledge into account and intends to keep the original data confidential

due to the privacy concern. We design F 2, a frequency-hiding, FD-preserving

encryption scheme based on probabilistic encryption for data inconsistency repair.

F 2 allows the client to encrypt the data without the awareness of any FD in the

original dataset. To defend against the frequency analysis attack on the encrypted

data, we apply the probabilistic encryption in a way that the frequency distribution

of the ciphertext values is always flattened. The complexity of F 2 is much cheaper

than doing inconsistency repair locally. Furthermore, F 2 guarantees to preserve all

FDs in the original dataset, while avoids to introduce any false positive FDs. The

results of this project are under review.

The remainder of this thesis is structured as follows: In Chapter 2, we dis-

cuss the related work. In Chapter 3, we introduce the preliminaries of our research.

We present the privacy-preserving and authentication approaches for outsourced

data deduplication in Chapter 4 and 5 respectively. Chapter 6 and 7 detail our

progress on privacy-preserving techniques of outsourced data inconsistency re-

pair with different privacy concerns. In Chapter 8, we discuss the next steps of my

thesis. We conclude this thesis in Chapter 9.
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Chapter 2

Related Work

In this chapter, we review the related work. We categorize the previous work into

three types: (1) data cleaning approaches, (2) privacy-preserving outsourced com-

putation, and (3) verifiable computing. Next, we discuss each category in detail.

2.1 Data Cleaning

2.1.1 Data Deduplication

Data deduplication is a data compression technique for eliminating duplicate copies

or near-duplicate copies of repeating data. It is closely related to record linkage

and similarity search.

McCallum et al. [87] initiate the study on blocking methods to filter a small

set of candidates for similarity search in an efficient way. The key idea is to apply

a cheap approximate distance measure to divide the data into multiple overlapping

canopies. Each canopy is a cluster of similar records. After that, exact similar

matching can be initiated within each canopy to discover the matching pairs. For

the first time, Gravano et al. [50] provide the capacity of approximate string sim-

ilarity join to commercial databases. By constructing an additional table to store

the q-grams of the records, they are able to calculate the edit distance between

the records in a way that is significantly more efficient than the user-defined fuc-

tions. Silva et al. [111] further improve the similarity join in the database research

by presenting multiple transformation rules that enable optimization through the

generation of equivalent similarity query execution plans. Jin et al. [68] convert
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the expensive similarity measurement on string values into the cheap Euclidean

distance calculation between Euclidean points. To achieve that, the strings are

first mapped into Euclidean points in a similarity-preserving way. Then the match-

ing is applied directly on the points. As a tradeoff, there exists the accuracy loss.

Following this direction, various embedding approaches [47, 79, 60] have been

proposed. They have different properties and embedding complexity. Most simi-

larity join approaches first convert records into a set of q-grams, and then estimate

the edit distance based on the matching of q-grams. On the contrary, Ed-join [126]

is a similarity join framework based on the derivation of edit distance from the mis-

matching of q-grams. This blocking method can dramatically reduce the number

of candidate similar records. Yan et al. [129] propose an adaptive approach to

adjusting the parameter values in record linkage to obtain the best performance.

The parameters include the attributes used for blocking, window size, and choice

of similarity measurement metrics.

2.1.2 Data Inconsistency Repair

Inconsistencies, errors and conflicts in a database often emerge as violations of in-

tegrity constraints. The data inconsistency repair aims at finding a minimal change

whose incurred cost is the smallest so that after the update, the data is consistent

with the constraints. Most often, the FDs and conditional functional dependencies

(CFDs) are used as the integrity constraints.

Formally, given a relation R, there is a positive FD between a set of at-

tributes X and Y in R (denoted as X → Y ) if for any pair of records r1, r2 in R, if

r1[X] = r2[X], then r1[Y ] = r2[Y ]. Otherwise, we say X → Y is negative (denoted

as X 6→ Y ). We use LHS(F ) (RHS(F ), resp.) to denote the attributes at the
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left-hand (right-hand, resp.) side of the functional dependency F . As FDs function

as the guideline to detect inconsistency, how to discover FDs efficiently becomes

a research concentration. Kivinen et al. [71] define various measures to evaluate

the error of a FD in a relation. Depending on the measurement in use, the au-

thors propose a sampling approach to find the approximate FDs with small errors.

Among the previous work, Huhtala et al. [62] propose a classic FD discovery al-

gorithm, named TANE. The authors reveal the relationship between a FD X → Y

and the partitions of attribute set X and X ∪ Y . By exploiting the properties of par-

titions, TANE discovers the FDs based on a lattice structure of the attribute sets.

On each lattice level, TANE calculates the partitions of all attribute sets and checks

the existence of FDs. In order to improve the efficiency, a pruning procedure is

proposed to avoid the calculation on a large fraction of the lattice. In constrast,

FastFDs [125] traverses the lattice in a depth-first way. However, the complexity

of TANE and FastFDs can still be exponential to the number of attributes in the

worst case. Papenbrock et al. [97] experimentally evaluate seven FD discovery

algorithms, including TANE, FastFDs, and FD MINE, with regard to both time per-

formance and memory usage. Differently, Heise et al. [57] focus on the discovery

of unique column combinations, which is a set of columns whose projection has

no duplicate. This problem is closely related to FD discovery as the FD attributes

must be a subset of a non-unique column combination. The proposed approach

traverses the lattice in a depth-first and random walk combination.

Conditional functional dependency binds specific values with functional de-

pendencies. An example of CFD is the constraint [Disease=‘ovarian cancer’] →

[Gender=‘Female’]. Formally, a CFD [13] on a given dataset D is a pair ϕ(X →

Y, Tp), where (1) X, Y are sets of attributes from D; (2) X → Y is a standard FD;

and (3) Tp is a tableau with all attributes in X and Y , where for each A in X or
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Y and each record r ∈ Tp, r[A] is a constant in the domain of A, or an unnamed

variable “ ”. A CFD ϕ(X → Y, Tp) is called a constant CFD if its pattern record rp

consists of constants only, while it is called a variable CFD if Tp[Y ] = , i.e., the

right-hand side (RHS) of its pattern tuple is the unnamed variable . For simplicity,

we only consider constant CFDs in this thesis.

Bohannon et al. [12] define a new cost evaluation model to measure the cost

of a set of value modifications. This model incorporates the techniques from record

linkage to measure the difference between the original data and the repaired data.

[12] proves that it is a NP-complete problem to find minimal-cost repairs under

this model. Following that, a heuristic approach is proposed to merge equivalence

classes to resolve the conflict. Bohannon et al. [13] take CFDs as the guidelines

to detect inconsistency. The CFDs bring novel challenges as a set of CFDs may

have conflict in themselves. They design an approach similar to the Armstrong’s

axioms to detect the conflicting CFDs. Similarly, Wang et al. [121] develop effi-

cient algorithms to check whether a set of fixing rules is consistent. A fixing rule

contains an evidence pattern, a set of negative patterns, and a fact value. Cong

et al. [31] propose two algorithms to heuristically find repairs with small cost to

resolve the inconsistency with regard to CFDs. One algorithm finds the tuple with

the smallest repair cost, and the other suggests the optimal value to be updated.

The iteration of these two algorithms yield a clean dataset. When the data is dis-

tributed either horizontally or vertically, it is a NP-complete problem to detect the

violations of CFDs. Fan et al. [48] extend the heuristic detection approach to the

distributed setting to increase the parallelism and reduce data shipment between

different sites. Chomicki et al. [25] consider the integrity constraints to be both FDs

and inclusion dependencies. The authors aim at deleting the minimum amount of

tuples to resolve the inconsistency. However, this may lead to serious information
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loss. Beskales et al. [11] motivate the inconsistency repair based on FD repairs

rather than data repair. They propose a random sampling approach to fix the in-

consistency by modifying the FDs. Mazuran et al. [86] also suggest to update

the FDs in the evolving data where the data quality is believed to be high. They

propose a way to order the FDs based on the fixing cost, and remove the inconsis-

tency by adding a small amount of attributes to the FDs. Chiang et al. [24] propose

a unified model that eliminate the inconsistency by modifying both the data values

and the FDs at the same time.

2.2 Privacy-preserving Outsourced Computation

When the data is outsourced to a untrusted third party for computation, the data

privacy issue turns to be a concentration of the security community. In order to

protect data privacy, data can be encrypted into ciphertext values or encoded into

another format. Besides, secure multiparty computation (SMC) can also be applied

to guarantee that the server does not learn anything from the original data more

than the computed result. Differential privacy considers the data privacy from an-

other angle. In this section, we introduce the related work in the four fields.

2.2.1 Encryption

Data encryption is an effective way to prevent the server from obtaining the sensi-

tive information. However, a major challenge is to enable the server to execute the

functions on the encrypted data.

[53] is one of the pioneering works that explores the data encryption for

the outsourcing paradigm. They propose an infrastructure to guarantee the se-

curity of stored data. Different granularity of data to be encrypted, such as row



13

level, field level and page level, is compared. Chen et al. [52] develop a frame-

work for query execution over encrypted data in the outsourcing paradigm. In this

framework, the domain of values of each attribute are partitioned into some buck-

ets. The bucket ID which refers to the partition to which the plain value belongs

serves as an index of ciphertext values. The server returns the query result on

the encrypted data, and the client needs to perform post-processing to retrieve the

correct result in plaintext. After that, a number of privacy-preserving cryptographic

protocols are developed for specific applications. For example, searchable en-

cryption [114] allows to conduct keyword searches on the encrypted data, without

revealing any additional information. Homomorphic encryption [113] enables the

service provider to perform meaningful computations on the encrypted data. It pro-

vides general privacy protection in theory, but it is not practical. Hacigumus et al.

[52] enable to execute queries over the encrypted data by using conventional en-

cryption techniques and additionally assigning a bucket id to each attribute value.

Agrawal et al. [3] design order-preserving encryption (OPE) functions such that

the distribution of the encrypted values follows an arbitrarily chosen target distribu-

tion. Curino et al. [34] propose a system that provides security protection. Many

cryptographic techniques like randomized encryption, order-preserving encryption

and homomorphic encryption are applied to provide adjustable security. CryptDB

[100] supports processing queries on encrypted data. It employs multiple encryp-

tion functions and encrypts each data item under various sequences of encryption

functions in an onion approach. Liu et al. [81] propose a secure outsourced cross-

user data deduplication framework based on additively homomorphic encryption

and the password authenticated key exchange protocol. The server obtains no in-

formation about the private data, while the deduplication accuracy is reasonable.

ENKI [55] aims at protecting the data privacy when multiple users store the private
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data on the same server. The private data is protected from the untrusted server,

as well as the other users, based on encryption and key management.

In the scenario where the server may posses auxiliary knowledge about the

private dataset, it is possible that the server exploits the knowledge to infer the sen-

sitive information from the encrypted data. In [90], experiment results suggest that

the inference attack on determinisitc or order-preserving encrytion schemes can

reveal up to 99% of all the data. To block inference channels such as frequency

analysis attack, Kerschbaum [70] designs a frequency-hiding order-preserving en-

cryption scheme that provides indistinguishability under frequency-analyzing or-

dered chosen plaintext attack.

2.2.2 Encoding

To protect the sensitive data from the service provider, the client may transform her

data so that the server cannot access the actual content of the data outsourced to

it. Most of the encoding techniques for secure data cleaning focus on data dedu-

plication. Churches et al. [27] propose a three-party data deduplication protocol

based on hash values of q-grams. In particular, for each string, its power set (i.e.

the subsets of the original bigram set) is constructed. Each subset of the power

set is hashed using a common secret key shared among database owner A and B.

Party A and B transmit tuples containing the hash values, the number of q-grams in

the hashed subset, the total number of q-grams and an encryption of the identifiers

to a third party C. Party C computes the similarity based on the hash values. To

prevent the frequency analysis attack, Churches et al. [27] proposes to: (1) use

an additional trusted party, thereby extending the number of parties to four; and

(2) recommend to use chaffing and winnowing [105] to insert dummy records to
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obfuscate the frequency information in the hash values. A trusted party may not

exist in practice. Furthermore, besides the substantial increase of computational

and communication costs, inserting dummy records is still prone to frequency at-

tacks on the hashes of the q-gram subsets with just one q-gram [119]. Schnell et

al. [108] and Durham et al. [41] propose to store the q-grams in the Bloom Filters

(BFs); the BFs of two similar strings (i.e., many q-grams in common) have a large

number of identical bit positions set to 1. Kuzu et al. [73] formalize the frequency

attack on the Bloom filters as a constraint satisfaction problem, and point out that

the probability of mapping BF values to original strings is high even when only the

frequency of samples is used for the attack. To fix this problem, Durham et al.

[41] propose composite BFs by which the attribute-level bloom filter values are to

be combined into a single bloom filter for the entire record. Storer et al. [115]

consider the duplicates as exact identical contents. They use convergent encryp-

tion that uses a function of the hash of the plaintext of a chunk as the encryption

key, so that any identical plaintext values will be encrypted to identical ciphertext

values. This one-to-one encryption cannot defend against the frequency analysis

attack. Scannapieco et al. [107] focus on the three-party scenario and use em-

bedding techniques to transform original strings into a Euclidean space by using

the SparseMap method [59]. The embedding guarantees that the distance of the

embedded Euclidean points approximates the actual distance of the strings. Both

parties then send the embedded strings to a third party which determines their

similarity.

Hung et al. [63] design a privacy-preserving way for the schema contribu-

tors to upload their schemas to the repository so that the other users can directly

reuse the existing schemas and avoid from designing new schema. They allow the

contributors to specify the privacy constraints in the schema. The algorithm pro-
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duces the anonymized schema by removing some attributes while preserving the

schema utility as much as possible. There is little work to protect the data privacy

in inconsistency repair as the repair problem is extremely complicated in itself.

There are also numerous encoding-based approaches to solve the privacy

issue for other computation tasks. Cheng et al. [23] investigate the privacy at-

tacks based on background knowledge in the outsourced graph database. K-

isomorphism, through which anonymization is realized by building k pairwise iso-

morphic subgraphs, is proved to be a sufficient condition to protect the privacy.

Stavros et al. [94] propose a method to protect a query’s privacy in a location-

based database service. The scheme ensures that a k-nearest-neighbor (KNN)

query’s location can not be distinguished by the service provider from any other

location in the data space. A private range query framework [77] is proposed to

provide index indistinguishability under the chosen keyword attack. To achieve the

goal, a secure indexing structure based on bloom filters is utilized to prevent an

adversary from deducing the plaintext values.

2.2.3 Secure Multiparty Computation

Given a set of participants, each holding a collection of private data, secure mul-

tiparty computation (SMC) allows them to collaborate to get an output from the

whole data but learn nothing beyond the output. Clifton et at. [120, 69] propose

privacy-preserving association rule mining methods based on SMC when the data

is distributed either horizontally or vertically. Emekçi et al. [45] concentrate on

learning a decision tree in a privacy-preserving manner. To overcome the limita-

tion by the partially homomorphic encryption schemes which only support a spe-

cific type of query, Wong et al. [124] adapt the SMC model to the outsourcing
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paradigm to provide data interoperability, via which a wide range of queries can be

executed on the encrypted data. Atallah et al. [9] design a SMC protocol based

on homomorphic encryption for record linkage based on edit distance similarity.

Ravikumar et al. [103] propose a SMC protocol for two-party record matching us-

ing TF-IDF distance and Euclidean distance. Since we consider a client-server

framework, we aim to design privacy-preserving encoding methods that are more

efficient than SMC computations. [64, 65, 66] propose a three-party protocol that

first runs the blocking step by utilizing anonymized datasets to accurately match

or mismatch a large portion of record pairs. Then the blocking step is followed by

the SMC step, where unlabeled record pairs are labeled using cryptographic tech-

niques. Talukder et al. [117] consider a scenario where one party owns the private

data quality rules (e.g., functional dependencies) and the other party owns the pri-

vate data. These two parties wish to cooperate by checking the quality of the data

in one party’s database with the rules discovered in the other party’s database.

They require that both the data and the quality rules need to remain private. They

propose a cryptographic approach for FD-based inconsistency detection in private

databases without the use of a third party. The quadratic algorithms in the protocol

may incur high cost on large datasets [117]. Liu et al. [80] propose a SMC proto-

col, given a trajectory path from a user, for the server to compute the similarity to

all paths in a database. The proposed protocol is secure under the semi-honest

adverary model.

2.2.4 Differential Privacy

Differential privacy aims to provide means to maximize the accuracy of queries

from statistical databases while minimizing the chances of identifying its records.
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Chen et al. [21] propose a sanitization scheme for set-valued data such as trans-

action data and click streams. The transformed data achieves differential privacy

and supports a wide class of counting queries. Bonomi et al. [15] propose a new

transformation method that integrates embedding methods with differential privacy.

Its embedding strategy projects the original data on a base formed by a set of fre-

quent grams of variable length. The privacy of the gram construction procedure

is guaranteed to satisfy differential privacy. Inan et al. [65] extend [64] by inte-

grating differential privacy with the blocking step in record linkage. McSherry et

al. [88] design PINQ as a platform for privacy-preserving data analysis. It supplies

the functionality of differential privacy to both analysts and the service providers.

Applying differential privacy on a set of histogram queries may lead to inconsistent

aggregate results. Hay et al. [56] resolve the problem by adding a post-processing

phase to guarantee the final result is both differentially-private and consistent. Al-

lard et al. [5] protects the highly-sensitive personal time-series data by combining

encryption with differential privacy. The clustering quality due to the smoothing of

the impact from differentially private perturbation. To remove the noise from differ-

ential privacy, Tramer et al. [118] take the prior distribution into consideration to

generate a more reasonable perturbed result. Thus, a balance between utility and

privacy is reached. Chen et al. [22] improves the data utility by discovering the

dependencies between the attributes in a high-dimensional dataset. The released

dataset preserves the join distribution of the original dataset.

2.3 Verifiable Computing

In the outsourcing paradigm, verifiable computing (VC) enables the client to verify

the correctness of results returned by the untrusted server. Some verifiable com-
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puting protocols are general-purpose, i.e., the protocol can verify the results of any

computation. While others are function-specific. In other words, they can only ver-

ify the results of a particular function, but at a cheaper cost. Next, we discuss these

two flavors of work.

2.3.1 General-purpose Verifiable Computing

Yao [132, 133] proposes the garbled circuit construction protocol that converts any

function to a garbled circuit. By combining Yao’s protocol with the 1-out-of-2 obliv-

ious transfer protocol [46], we not only obtain a secure multiparty computation

protocol, but also achieve a ”one-time” verifiable computing protocol [78]. This is

because as long as the server learns one of the two output keys by executing the

computation correctly once, he can just return it to the client in future computa-

tions. The client is not able to detect the cheating behavior. Gennaro, Gentry, and

Parno [49] achieves non-interactive verifiable computing by applying homomorphic

encryption to make Yao’s protocol multi-time verifiable. The key idea is that for

each wire, the client randomly generates a pair of master keys for homomorphic

encryption. In each round of computation, a new pair of session keys is associ-

ated with each wire. Thus, the server cannot use previous output keys for future

verification. Setty et al. [109] build a general-purpose verification approach to

support a wide range of computation including floating-point fractions and inequal-

ity comparisons. Parno et al. [99] propose to construct a VC scheme with pub-

lic delegation and public verifiability from any attribute-based encryption scheme.

PEPPER was proposed in [110]. It dramatically reduces the verification cost by

using an argument system in which the verifier queries the linear probabilistically

checkable proofs in an inexpensive way. PEPPER also reduces the prover’s over-
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head so that its total work is not significantly more than the cost of executing the

computation. Groth [51] constructs non-interactive zero knowledge arguments that

have sub-linear size and can be efficiently verified by the public. Braun et al. [16]

propose a proof-based verification framework that supports the computations that

interact with RAM and disk. This work greatly extend the reachability of verifiable

computations by incorporating MapReduce jobs. Pinocchio [98] is the first practi-

cal general-purpose verifiable computation scheme. The authors make substantial

improvement in the implementation to reduce the computational cost of the under-

lying crypto functions. For some computation tasks such as matrix multiplication,

the verficiation cost can be marginally cheaper than local native execution.

2.3.2 Function-specific Verifiable Computing

Considering the asymmetric computational power between the client and the server,

it is necessary to exploit the unique nature of specific function to design more prac-

tical verifiable computing protocols.

In the last decade, intensive efforts have been devoted to ensure the correct-

ness and completeness of the query result in the database-as-a-service paradigm

[91, 52]. Authentication data structures [89, 76, 91] are utilized to build a signa-

ture of the outsourced database. For example, Li et al. [76] present the Merkle

B-Tree as the authenticated index structure and use two boundary nodes in the

tree to prove the completeness. Mykletun et al. [89, 91] propose to use the Merkle

Hash Tree to facilitate the authentication of query replies. Besides, Sion [112]

proposes a method to let the server provide challenge tokens for every batch of

client’s queries to prove that the queries are executed correctly on the entire data.

Xie et al. [127] design a probabilistic integrity audit method by inserting a small
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amount of fake tuples into the outsourced database. The integrity of a query re-

sult is checked by analyzing the fake tuples in the reply. Hu et al. [61] propose a

way for the service provider to deliver the location-based services in an authenti-

cable manner. Indexing structures like B-Tree and R-tree and cryptographic proofs

are utilized by the server to prepare a query proof. To authenticate a wide range of

queries on outsourced streaming data, Papadopoulos et al. [95] design authentica-

tion mechanisms for dynamic vector sums and dot products. These mechanisms

are adapted to support a range of linear algebraic queries in stream authentica-

tion. Chen et al. [20] develop a novel authentication code called homomorphic

secret sharing seal that can aggregate the inputs from individual sources faithfully

by the untrusted server for future query authentication. Two authenticated indexing

structure are designed based on the authentication code to process queries on

multi-dimensional data.

The verification problem becomes more challenging when the outsourced

computing replies on complex data mining algorithms. Wong et al. [123] initiate

the study by proposing a result verification scheme for outsourced frequent itemset

mining. They consider a curious server without background knowledge about the

dataset. A set of fake items are inserted into the original dataset to construct fake

(in)frequent itemsets. The returned result is checked against the fake (in)frequent

itemsets to verify the correctness and completeness. Following that, Dong et al.

[36] design verification techniques by constructing evidence (in)frequent itemsets

from real items. Both these approaches give the client probabilistic guarantee

about the result’s integrity. [38, 37] adapt the secure intersection verification pro-

tocol to check the result integrity of outsourced frequent itemset mining to provide

the client with a deterministic guarantee. The key idea is that the server returns

cryptographic proofs to demonstrate the correctness and completeness. Liu et al.
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[82, 83, 84] design efficient verification approaches for some other data mining

tasks. In all these work, three types of untrusted servers (sloppy, lazy and mali-

cious) are formally defined according to the behavior. In the outlier detection, Liu

et al. [82] design a probabilistic verification approach by injecting a set of artifi-

cial tuples which consist of artificial outliers and artificial non-outliers. Any incor-

rect/incomplete result can be caught with high confidence. Liu et al. [83] propose

both deterministic and probabilistic approaches to verify the correctness of out-

sourced k-means clustering tasks. The deterministic approach applies the Voronoi

diagram to pick a small portion of centroids for verification. The probabilistic ap-

proach inserts artificial tuples that are far away from the original tuples. These

artificial tuples are clustered independently from the original data. The client can

check the result correctness by comparing it with the artificial clusters. In [84], Liu

et al. introduce three probabilistic verification approaches for the client to check

the integrity of outsourced Bayesian network structure learning tasks with small

computational overhead. Papadopoulos et al. [93] design an efficient answer-

verification process for authenticated pattern matching. An authenticated data

structure named suffix-tree is proposed to store the accumulation values of the

data. A nice property of this approach is that the proof includes 10 accumulation

values at most, which saves the bandwidth for proof transmission. Armknecht et al.

[7] propose a way for the client to verify the actual storage space after the server

launches the data deduplication.
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Chapter 3

Preliminaries

3.1 Data Cleaning

In an ideal world, data would go into the database accurately, completely and con-

sistently; in other words, cleanly. Unfortunately, in reality, that is rarely possible. In

real-world applications, data tend to be dirty - inaccurate, incomplete and inconsis-

tent. Data cleaning, also known as data cleansing or scrubbing, aims at detecting

and removing errors, duplications, redundancies and fixing the missing and incon-

sistent data in order to improve data quality. There are various data cleaning tasks.

• Data deduplication is a data compression technique for eliminating duplicate

copies or near-duplicate copies of repeating data.

• Data inconsistency repair modifies the data to make it consistent with the

integrity constraints.

• Data imputation is the process of replacing the missing data with substituted

values.

• Data smoothing identifies outliers and smoothes out noisy data.

In this thesis, we focus on data-deduplication and data inconsistency repair. In the

following subsections, we introduce more details about these two data cleaning

tasks.
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3.1.1 Data Deduplication

Data deduplication aims to identify the records that refer to the same entity. It ef-

fectively reduces the storage needs by ensuring only one unique instance of an

entity is actually retained on the storage media. A concept that is highly related

to data deduplication is record linkage, which shares the same goal as data dedu-

plication as finding duplicated records in the datasets. There are two types of

duplicated records: identical duplicates and near-duplicates. Most of the existing

data deduplication work considers near-duplicates that have small differences in

data values. In this thesis, we consider the problem of finding near-duplicates from

string databases.

String Similarity Metric. Record linkage techniques are used to link together

records that relate to the same entity (e.g. patient or customer) in one or more

datasets where a unique identifier is not available. The key of most record linkage

techniques is to measure the similarity of records. Many record linkage methods

treat each attribute value as a string (e.g., [50]). In this thesis, we consider approx-

imate string matching. There are a number of approximate string similarity mea-

surement methods in the literature, e.g., q-grams, edit distance, and Euclidean

distance (See [72] for a good tutorial.) In this thesis, we consider two similarity

measurement metrics, i.e., the edit distance and the jaccard similarity based on

q-grams.

• The edit distance between a pair of strings S1 and S2 quantifies the minimum

number of removal, insertion, or substitution of characters to transform S1

into S2. It is widely applied in error corrcting, pattern recognition, and other

related applications.

One efficient way to compute the edit distance is dynamic programming. Let
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S[i] denote the i-th character of string S, then the edit distance between S1

and S2 is DST (S1, S2) = d`1,`2, where `1 (`2) is the length of S1 (S2), and di,j is

defined in Equation 3.1.

di,j =



0 : i = 0

0 : j = 0

di−1,j−1 : S1[i] = S2[j]

min{di−1,j−1, di−1,j, di,j−1}+ 1 : S1[i] 6= S2[j]

(3.1)

The value d|S1|,|S2| is the edit distance DST (S1, S2). We say two strings S1 and

S2 are similar, denoted as S1 'E S2, if DST (S1, S2) ≤ θ, where θ is a user-

specified similarity threshold. Otherwise, we say S1 and S2 are dissimilar

(denoted as S1 6'E S2).

• To calculate the jaccard similarity, each string is decomposed into a set of

tokens of length q (called q-grams). Then for any two strings S1 and S2,

jaccard(S1, S2) =
|G(S1, q) ∩G(S2, q)|
|G(S1, q) ∪G(S2, q)|

, (3.2)

where G(S1, q) (G(S2, q), resp.) is the set of q-grams of S1 (S2, resp.). We say

two strings S1 and S2 are δ-similar regarding the Jaccard metrics, denoted as

S1 'J S2, if jaccard(S1, S2) ≥ δ. Otherwise, S1 and S2 are dissimilar (denoted

as S1 6'J S2).

3.1.2 Data Inconsistency Repair

Integrity constraints serve as restrictions on data semantics. Inconsistencies, er-

rors and conflicts in a database often emerge as violations of integrity constraints.
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Due to careless maintenance or the negligence to obey data quality rules, incon-

sistencies are commonly present in a large database. Therefore, integrity con-

straints like functional dependencies have been widely studied to capture errors

from semantically related values. For example, we show a dataset containing the

conference information in Figure 3.1. In Figure 3.1, the records r1, r2 and r3, r5 fail

to comply with the FD {Country} → {Capital}.

TID Conference Year Country Capital City
r1 SIGMOD 2007 China Beijing Beijing
r2 ICDM 2014 China Shanghai Shenzhen
r3 KDD 2014 U.S. Washington D.C. New York City
r4 KDD 2015 Australia Canberra Sydney
r5 ICDM 2015 U.S. New York City Atlantic City

Figure 3.1: An Example of Data Inconsistency

Given a set of integrity constraints, data inconsistency repair aims at de-

tecting the inconsistencies and finding a minimal change with which the repaired

dataset is consistent with the constraints. Functional dependencies (FDs) are com-

monly used as the integrity constraints. For any FD F : X → Y such that Y ⊆ X,

F is considered as trivial. In this thesis, we only consider non-trivial FDs. It is well

known that for any FD F : X → Y such that Y contains more than one attribute, F

can be decomposed to multiple functional dependency rules, each having a single

attribute at the right-hand side. For the following discussions, we assume the FD

rules only contain one single attribute at the right-hand side. We assume that the

client is not aware of any FD in her dataset. We also assume that the data is con-

sistent with the FDs. Given the original dataset D and its encoded version D̂, we

say the FD F is a false positive if F holds in D̂ but not in D. We will show that our

encoding scheme guarantees that the server can discover all true FDs in D, and

no false positives.
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There exists monotone property among positive and negative FDs. In par-

ticular, the upward closure specifies that for any positive FD F : X → Y , the FD

X ′ → Y must also hold for any attribute set X ′ such that X ⊆ X ′. And the down-

ward closure states that for any negative FD X 6→ Y , X ′ 6→ Y must also hold for

any attribute set X ′ such that X ′ ⊆ X.

We use the edit distance to measure the distance between the original data

and the repaired data. In particular, the edit distance between two strings S1 and S2

represents the minimal number of insertions, deletions and substitutions to trans-

form S1 into S2. The edit distance between two datasets is the summation of the

distances in every data cell. It has been proved that the problem of finding a incon-

sistency repair with minimal cost is NP-complete [31]. Follow that, various heuristic

algorithms [12, 13, 121, 31] have been designed to find the repair with small cost

to make the data consistent with the integrity constraints.

3.2 The Data-Cleaning-as-a-Service (DCaS) Paradigm

Traditional way of data cleaning requires the data owner to be equipped with ex-

pensive computational resources and strong expertise. In recent years, the advan-

tage of network technologies and cloud computing enables the data-cleaning-as-

a-service (DCaS) paradigm in which the data owner with the need to perform data

cleaning on big data but without resources outsources the data cleaning task to

a service provider. Typically, the architecture of the DCaS paradigm involves two

entities:

The data owner (client) owns the private dataset and outsources his/her

data cleaning tasks to the DCaS service provider. To protect the private information

in D, the client encodes D to D̂, and sends D̂ to the server. If it is necessary, the
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client also specifies the data cleaning configuration (e.g. the matching rules in data

deduplication).

The service provider (server) receives the dataset and the configuration

from the client and performs data cleaning according to the client’s instruction.

The data cleaning result is returned to the client after the cleaning is finished.

3.3 Embedding Methods for Similarity Searching

Given two records S1 and S2, normally the complexity of computing edit distance

is O(|S1||S2|), where |S1| and |S2| are the lengths of S1 and S2. One way to re-

duce the complexity of similarity measurement is to map the records into a multi-

dimensional Euclidean space, such that the similar strings are mapped to close

Euclidean points. The main reason of the embedding is that the computation of

Euclidean distance is much cheaper than string edit distance. A few string em-

bedding techniques (e.g., [47, 68, 59, 79, 60]) exist in the literature. These em-

bedding techniques include SparseMap [79, 60], FastMap [47], StringMap [68],

and MetricMap [122, 130]. These algorithms have different properties in terms of

their efficiency and distortion rate (See [58] for a good survey). In this thesis, we

consider an important property named contractiveness property of the embedding

methods, which requires that for any pair of strings (Si, Sj) and their embedded

Euclidean points (pi, pj), dst(pi, pj) ≤ DST (Si, Sj), where dst() and DST () are the

distance function in the Euclidean space and string space respectively. In this the-

sis, we use dst() and DST () to denote the Euclidean distance and edit distance.

The contractiveness property is important as for any two embedded points pi and

pj that are θ-dissimilar (i.e. dst(pi, pj) > θ), their original strings Si and Sj must

be θ-dissimilar. We use the SparseMap method [59] for the string embedding.
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SparseMap preserves the contractiveness property. We will show how to leverage

the contractiveness property to improve the verification performance in Chapter 5.

Note that the embedding methods may introduce false positives, i.e. the embed-

ding points of dissimilar strings may become close in the Euclidean space.

3.4 Inference Attack

We assume the server is curious-but-honest that it follows the DCaS outsourcing

protocols honestly (i.e., no cheating on storage and faithful execution of data anal-

ysis), but he is curious to extract additional information from the received dataset.

Since the server is potentially untrusted, the client sends the encrypted data to the

server. The client considers the true identity of every cipher value as the sensitive

information that should be protected.

The server may posses some background knowledge about the dataset and

the encryption techniques and tries to infer more information from the encrypted

dataset. In this thesis, we consider that the server may have three types of prior

knowledge and is able to initiate the following three attacks.

Frequency Analysis Attack. We assume that the attacker may know the domain

values in the original dataset D. We also assume that the attacker may possess

the frequency knowledge of plain values in D. As shown previously [108], such ad-

versary knowledge can be easily obtained in real-world applications. In reality, the

attacker may possess approximate knowledge of the value frequency in D. How-

ever, in order to make the analysis robust, we adopt the conservative assumption

that the attacker knows the exact frequency of every plain value in D. The attacker

can launch the frequency analysis attack by matching the encoded data with the

original ones of the same frequency.
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Figure 3.2: Frequencies of Different Attributes

Figure 3.2 shows an example of frequency distributions of various attributes

the North Carolina voter registration (NCVR) dataset1. We select three attributes

namely “Voting Party”, “Voting Methods”, and “PCT Description” and count their

frequency over 10k tuples. It is easy to observe, the three attributes have different

frequency distributions. For example, in Figure 3.2 (a), there are 4 unique values:

“Democratic Party”, “Republican Party”, “Libertarian Party” and “Unaffiliated” that

illustrated the party the voter voted for. A “Null” value shows that the field is not

filled with any value. From the chart, we can easily observe that the Democratic

has the highest support while the Libertarian only receives few votes. On the

other hand, the frequency distribution of voting methods (Figure 3.2 (b)) is much

skewer. The frequency of “In-person” values is more than 6400 while other values’
1Available at ftp://www.app.sboe.state.nc.us/data

ftp://www.app.sboe.state.nc.us/data
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frequencies are much smaller. The attacker can utilize such information to help

decrypting the dataset. The last attribute “PCT description” also shows few values

have distinguishable frequency (Figure 3.2 (c)). This example drawn from the real

dataset shows that the frequency distribution of different attributes is different and

can be used to help decrypting the dataset. Moreover, recent work [90] shows how

effective is the frequency analysis attack at uncovering sensitive data encrypted by

a deterministic scheme. By launching attacks on real-world data from hospitals,

the frequency analysis attack is able to recover the Mortality Risk and Disease

Severity attribute for almost all patients. Besides, it can also reveal the Primary

Payer and Admission Type attribute for more than 60% of the patients.

Known-scheme Attack. We assume the attacker knows the details of the encod-

ing methods that are used by the client. He may try to break the encoding scheme

by utilizing the knowledge of the encoding methods.

NM SEX AGE DC DS SR
Alice F 53 CPD5 Breast N

cancer
David M 30 VPI8 HIV Y
Ela F 24 VPI8 HIV N

NM SEX AGE DC DS SR
Alice F 53 CPD5 α N
David M 30 VPI8 HIV Y
Ela F 24 VPI8 γ N

(a) The original dataset D (b) The unsafe encoded dataset D̄

Figure 3.3: An Instance of Customer Information

FD-based Attack. In some real-word applications, the adversary may be aware

of the integrity constraints in the data. In this thesis, we consider the integrity

constraints that take the form of functional dependencies (FDs). Informally, a

FD : X → Y constraint indicates that attribute set X uniquely determines at-

tribute set Y . For example, the FD Zipcode→City indicates that all tuples of the

same zipcode values always have the same City values. It is possible that FDs

can serve as an important piece of adversary knowledge and bring security vul-
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nerabilities. For example, consider a hospital that stores its patients’ information,

including patient’s name (NM), gender (SEX), age (AGE), hospital-wide disease

code (DC) and disease (DS), in a dataset. The dataset also has the SR attribute

indicating whether the patients are willing to disclose his/her disease information

to any third-party (SR = “Y”/“N” means can be disclosed/no disclosure). Consider

an example of the instance in Figure 3.3 (a). Assume it has the FD rule: F: DC

→ DS. Before outsourcing the dataset to a third-party service provider, the hospi-

tal encodes its data according to the patients’ settings. The encrypted instance is

shown in Figure 3.3 (b). Consider Ela’s (encrypted) disease value. Since David

has the same disease code as Ela’s, the attacker can easily infer Ela’s disease if

he knows the FD rule F .
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Chapter 4

Privacy-preserving Outsourced Data Deduplication

In this chapter, we discuss the problem of how to protect the data privacy in the

outsourced data deduplication computation. We consider that the client has a

private dataset D and would like to find out all record pairs in D that are near-

duplicates. However, she is not willing to reveal any private information in D to

the server. Therefore, to protect the private information in D, she transforms D to

D̂, and sends D̂ together with the matching decision rule based on the Jaccard

similarity of q-grams to the server. When the server receives D̂, it executes the

data deduplication on D̂ to find all data pairs that are similar (e.g., their distance

is less than the client’s threshold), and returns the results R̂S to the client. This

work has been published in the proceedings of ACM International Conference on

Information and Knowledge Management (CIKM), November 2014.

4.1 Preliminaries

4.1.1 Utility of Privacy-preserving Techniques

We define precision and recall to measure the impact of privacy-preserving tech-

niques to the accuracy of data deduplication. Formally, given a dataset D, let RS

be the similar records in D, and R̂S be the pairs of similar records (possibly in

encoded format) returned by the service provider. The precision is measured as

Pre =
|RS ∩ R̂S|
|R̂S|

. (4.1)



34

And the recall is measured by

Rec =
|RS ∩ R̂S|
|RS|

. (4.2)

Intuitively, the precision measures the fraction of near-duplicates by the encoding

method that are correct, while the recall measures the fraction of original near-

duplicates that are preserved by the encoding methods.

4.1.2 Locality Sensitive Hash (LSH) Function

LSH is a set of hash functions that map objects into several buckets such that

similar objects share a bucket with high probability, while dissimilar ones do not.

Formally, let P be the domain of objects, and dist() be the distance measure be-

tween two objects. Then,

Definition 1. [(d1, d2, prob1, prob2)-sensitive hashing] A function family H is called

(d1, d2, prob1, prob2)-sensitive if for any function h ∈ H, and for any two ob-

jects p1, p2 ∈ P: (1) If dist(p1, p2) < d1, then PrH[h(p1) = h(p2)] ≥ prob1; (2) If

dist(p1, p2) > d2, then PrH[h(p1) = h(p2)] ≤ prob2, where 0 ≤ d1 < d2 ≤ 1, and

0 ≤ prob1, prob2 ≤ 1.

A family is interesting when prob1 > prob2. Intuitively, any two similar objects

will have the same LSH value with high probability, while any two dissimilar objects

will have the same LSH value with a low probability. As we consider the q-gram

based Jaccard similarity, we consider the distance of any two objects p1 and p2

dist(p1, p2) = 1− jaccard(p1, p2). (4.3)

To date, several LSH families have been discovered for different distance
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metrics. In this thesis, we consider the q-gram based Jaccard metric and use the

MinHash [29] as the LSH function family. The family of MinHash functions is a

(d1, d2, 1 − d1, 1 − d2)-sensitive family for any d1 and d2, where 0 ≤ d1 < d2 ≤ 1.

Our method can be applied to other distance metrics such as Hamming distance

and edit distance. The basic idea of MinHash is to first pick a random permutation

π on the ground universe of bit vectors. Then, apply this random permutation to

re-order indices of a sparse binary vector. Define

hπ(p) = min{π(v)|v ∈ p}. (4.4)

In other words, the hash value of the object p equals to the first index that

contains “1”. It is not hard to prove that the probability

Prπ[hπ(p1) = hπ(p2)] = jaccard(p1, p2). (4.5)

We follow [74] to divide the MinHash signature matrix into µ bands consist-

ing of ν rows each. We require that µν = ξ, where ξ is the length of the MinHash

signatures. For each band, there is a hash function that takes vectors of r integers

(the portion of one column within that band) and hashes them to some large num-

ber of buckets. We use a separate bucket array for each band, so the columns of

the same vector in different bands will not hash to the same bucket. Then the client

outsources the MinHash signatures and the threshold δ to the server. The server

will examine the signatures; those signatures agree on at least δ fractions of bands

are considered as similar candidates.
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4.1.3 Attack Model

We consider that the server may know the domain values in the original dataset

D. We assume that the server may posses knowledge of the value frequency

in D. Besides the frequency knowledge, the server may know the details of our

encoding schemes and try to utilize such knowledge to break the cipher. Based

on the attacker’s knowledge, we consider two types of attacks, namely frequency

analysis attack and known-scheme attack.

4.1.4 Our Approaches in a Nutshell

We propose two approaches: (1) Locality-Sensitive Hashing based (LSHB) ap-

proach, and (2) embedding & homophonic substitution (EHS) approach.

LSH-based Approach. The basic idea of LSHB scheme is to use a set of hash

functions to map objects into several buckets such that similar objects share a

bucket with high probability, while dissimilar ones do not [67]. Following this prop-

erty, the client uses the LSH functions to transform her data, and send LSH values

to the server for data deduplication. To defend against the frequency-based attack,

identical strings are split into multiple split copies, so that the LSH values of these

split copies are different. In addition, duplicates of split copies may be inserted to

ensure that the frequency of LSH values follows a uniform distribution. We control

the number of split copies so that the encoded dataset provides provable privacy

guarantee with acceptable amounts of accuracy loss of data deduplication. More

details of the LSH-based approach can be found in Section 4.2.

Embedding & Homophonic Substitution (EHS) Approach. This approach first

maps all strings in D to an Euclidean space; each unique string is mapped to a

point in the Euclidean space. To defend against the frequency-based attack, for
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any plaintext string of frequency f > 1, its corresponding point in the Euclidean

space is encoded as f different points in the same space. The client sends the

encoded Euclidean points to the server for data deduplication. Compared with the

LSH approach, EHS does not insert any new record, but requires more expen-

sive communication overhead. More details of the EHS approach can be found in

Section 4.3.

For both approaches, we assume the transformation is applied at the cell

level; each individual attribute value is transformed to either a LSH value or an

EHS encoding.

4.2 Locality-Sensitive Hashing Based (LSHB) Approach

In this section, we propose two locality-sensitive hashing based (LSHB) approaches,

namely the duplication approach (Section 4.2.1) and the split-and-duplication ap-

proach (Section 4.2.2). For both approaches, we present their details, and an-

alyze their privacy guarantee as well as the impact to the performance of data

deduplication. The key idea of the two LSHB methods is to map the strings to

locality-sensitive hashing (LSH) values. Intuitively, sending LSH values guarantees

privacy as it does not involve any data. However, the LSH values are vulnerable

against the frequency analysis attack by which the attacker tries to map the LSH

values to strings based on their frequency. Formally, given nS unique strings S =

{S1, . . . , SnS
} and nL ≤ nS LSH values of these strings, let fi and li be the fre-

quency of the string Si(1 ≤ i ≤ nS) and the LSH value Li(1 ≤ i ≤ nL) respectively.

Then for each LSH value Li(1 ≤ i ≤ nL), the attacker tries to find its matching

candidates S ′ ⊆ S s.t. (1) for all Si, Sj ∈ S ′, Si ' Sj, and (2)
∑

Sj∈S′ fj = li. In other

words, the attacker will try to find those similar strings that are mapped to the same
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LSH value based on their frequency. Then the attacker’s probability that the LSH

value Li(1 ≤ i ≤ nL) is mapped to a specific string Sj ∈ S ′ is prob(Li → Sj) = 1
|S′| .

For any LSH value that has few matching candidates (e.g., those strings have few

similar others), it can be mapped to the correct string with high probability (possibly

100%).

4.2.1 Duplication Approach

To defend against the frequency analysis attack on the LSH-based approach, we

define α-privacy to quantify the desired privacy guarantee:

Definition 2. [α-privacy] Given a set of unique strings S {S1, . . . , SnS
} and their

LSH values L {L1, . . . , LnL
}, we say L is α-private if for each Li ∈ L, the probability

that maps it to string Sj satisfies that prob(Li → Sj) ≤ α.

Intuitively, lower α provides higher privacy guarantee.

Next, we present our duplication-based approach that constructs α-private

LSH values. It consists of two steps:

Step 1: Grouping. First, we construct the LSH values of all strings in S. Second,

we sort LSH values by their frequency in descending order. Third, starting from the

most frequent LSH value, we repeat grouping k = [ 1
α

] adjacent values together into

one group (called an α-group), until all LSH values are grouped. The last group, if

less than k in size, is merged with its previous group.

Step 2: Frequency homogenization. For each group, let lmax be the maximum

frequency of its LSH values. Then for each LSH value Li in the group, we add

lmax − li copies of Li, where li is the frequency of Li.

After the two steps, all LSH values in the same group have the same fre-

quency, regardless their frequency in the original dataset.
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Privacy Analysis of Duplication Approach

Frequency Analysis Attack. The duplication-based approach guarantees that

there are always at least [ 1
α

] LSH values that are of the same frequency. Therefore,

even for the worst case that these values have no other similar strings, the proba-

bility of associating any LSH value with its original string based on their frequency

is at most α. In other words, the duplication approach guarantees α-privacy.

Known-scheme Attack. When the attacker knows the details of the duplication

approach, he can apply the following two-step attack trying to find the mapping be-

tween LSH values and strings. First, the attacker tries to find the mapping between

string groups and LSH groups. He can execute the grouping step of the duplication

approach over the string values to get string groups; the string groups are expected

to be similar to the LSH groups of the strings. Then for each string group, he will

try to find out the corresponding LSH values based on their frequency. From the

knowledge of the encoding algorithm, he knows that with high probability all LSH

values of the same frequency belong to the same group. Furthermore, for any

string S and its LSH value L, it must be true that freq(S) ≤ freq(L). Based on

these information, he can map LSH groups to the string groups based on their fre-

quency. Note that all LSH values in the same group have the same frequency, while

the strings in the same group do not have to. Apparently, for any string groups of

k unique and dissimilar strings, its LSH group must contain exactly k unique LSH

values. Furthermore, since it is highly likely that a string group only contains dis-

similar strings, the maximum frequency of the LSH group must be no larger than

the maximum frequency of its string group. The attacker can use these knowledge

to map LSH groups to string groups. Under the worst case, there is only one such

mapping. Second, the attacker tries to find the mapping between specific strings
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and LSH values based on the group mapping result. Consider a mapping that con-

sists of k strings and k LSH values. The attacker constructs all possible mappings

between k LSH values and k strings, with each LSH value mapped to exactly one

string. There are k! such mappings. Among these mappings, (k − 1)! mappings

map a specific LSH value Lj(1 ≤ j ≤ k) to its correct string Si(1 ≤ i ≤ k) correctly.

Therefore, the probability

prob(Lj → Si) =
(k − 1)!

k!
=

1

k
. (4.6)

Since k = [ 1
α

], the duplication-approach is α-private against the known-scheme

attack.

Complexity Discussion

The duplication approach requires O(nS) to group and add duplicates at the client

side, where nS is the number of unique strings in D. The complexity of data dedu-

plication at the server side is O((|D|+nd)2), where |D| is the total number of strings

in D (|D| � nS), and nd is the total number of duplicated LSH values. In particular,

the number of duplicated LSH values that are added to the string Si is

f ′i = (fmax − fi). (4.7)

The total number nd of duplicated LSH values added to D is

nd =

nS∑
i=1

f ′i . (4.8)
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It can be large, especially for the datasets of skewed frequency distribution. This

will hurt the performance of data deduplication in terms of both accuracy and time

performance. Next, we discuss our split-and-duplication approach that can improve

the duplication-based approach by reducing the number of added LSH copies,

while still providing provable guarantee against both the frequency analysis attack

and the known-scheme attack.

4.2.2 Split-and-duplication (SD) Approach

The main idea of the split-and-duplication (SD) approach is to add a split step be-

tween the grouping step and the frequency homogenization step of the duplication-

based approach. The aim of the split step is to convert those LSH values of large

frequency to several different ones of smaller frequency, so that the number of

added LSH values by the frequency homogenization step can be reduced. Appar-

ently the split copies of the same string cannot have the same LSH values. A naive

approach is, for each LSH value L of high frequency, we make several copies of L,

so that the frequencies of these copies accumulate to the same frequency. Then

for each copy of L, we randomly modify a number of its bits, so that all split copies

of L will be different after modification. Though simple, this approach may lead to

high amounts of accuracy lost due to the fact that the LSH values of similar strings

may not share the same bucket anymore. Therefore, instead of making split copies

of LSH values, we propose to make split copies of the strings, and construct LSH

values of these string split copies. We ensure that for each similar string pair, at

least one pair of their split copies share the same LSH value with high probability.

Therefore, the server still can identify the similar strings from the received LSH

values. Next, we present the details of the split step.
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Our split step is based on the permutation mechanism. Formally, let S and

S ′ be equal-size strings. We say S is a permutation of S ′ if there exists a bijection π

such that for each i, S[i] = π(S ′[i]). For instance, the string “cacb” is a permutation

of the string “abac” as there exists the bijection π(a) = c, π(b) = a, and π(c) = b.

We call π a permutation function. For any given string S of frequency f , the client

defines sc unique permutation functions, and constructs sc unique split copies of S

by applying the sc permutation functions on S. Each permutation generates a split

copy of frequency [ f
sc

]. Continuing our example, consider the string “abac”, and

two permutation functions π1 and π2 such that π1(a) = c, π1(b) = a, and π1(c) = b,

as well as π2(a) = b, π2(b) = c, and π2(c) = a, it has two split copies “cacb” and

“bcba”. We have the following theorem to show that permutation preserves Jaccard

similarity.

Lemma 1. Given any two strings S1 and S2, let π be a permutation function. Let S ′1

and S ′2 be the strings after applying π on S1 and S2 respectively. Then it must be

true that jaccard(S1, S2) = jaccard(S ′1, S
′
2).

Proof. Let Σ be the alphabet. Since π is a bijection, for any S1, S2 ∈ Σ, π(S1) =

π(S2) if and only if S1 = S2. Therefore, for any q-gram W ∈ G(S1, q) ∩ G(S2, q), it

must be true that π(W ) ∈ G(S ′1, q) ∩ G(S ′2, q). Also for any q-gram W ∈ G(S ′1, q) ∩

G(S ′2, q), it must be true that π−1(W ) ∈ G(S1, q) ∩ G(S2, q). Therefore, |G(S1, q) ∩

G(S2, q)| = |G(S ′1, q) ∩G(S ′2, q)|. Similarly, we can prove that |G(S1, q) ∪G(S2, q)| =

|G(S ′1, q) ∪G(S ′2, q)|. Therefore, jaccard(S ′1, S
′
2) = jaccard(S1, S2).

Following Lemma 1, we have the following theorem to show that for any two

(dis)similar strings, their permutations using the same permutation function are

always (dis)similar. Indeed, this applies to not only Jaccard similarity measurement

but also other distance metrics such as Hamming distance and edit distance.
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Theorem 1. Given any two strings S1 and S2 s.t. S1 ' S2 (S1 6'Eucl S2 resp.). Let

S ′1 and S ′2 be the strings after applying the permutation function π on S1 and S2

respectively. Then it must be true that S ′1 ' S ′2 (S ′1 6'Eucl S ′2 resp.).

Theorem 1 shows that the permutation-based split procedure will lead to

neither false negatives (i.e., the split copies of two similar strings turn dissimilar)

nor false positives (i.e., the split copies of two dissimilar strings become similar).

Next, we discuss how to decide the total number of split copies. Our goal

is to ensure that the total amounts of duplicated LSH values by the SD approach

is no larger than that of the duplication approach. First, we calculate the total

number of the duplicated values that are to be added by the SD approach. For

each group that consists of k strings {S1, . . . , Sk}, let fi be the frequency of the

string Si(1 ≤ i ≤ k). Assume that the string Si is split into sci copies. Apparently,

the frequency of each split copy of Si is [ fi
sci

]. Let fmax be the maximum frequency

of the split copies in the group. Then for each string Si, its number f̄i of duplicated

LSH values is

f̄i = sci(fmax − [
fi
sci

]). (4.9)

To find out when the SD approach incurs smaller amounts of duplicate values than

the duplication approach, we compare f ′i (Eqn. 4.7) and f̄i (Eqn. 4.9). Apparently

f̄i = sci(fmax− [ fi
sci

]) = scifmax−fi. Compared with f ′i = fmax−fi, the SD approach

wins the duplication approach if fmax > scifmax. Note that the split copy of the string

that has fmax may not be the same string of fmax. Therefore, for each string, we

always pick sci, the number of split copies, in the way that ensures fmax > scifmax.
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Privacy Analysis of SD Approach

Frequency Analysis Attack. The SD approach guarantees that for each LSH

value, there are always at least [ 1
α

] − 1 other LSH values that are of the same

frequency. Thus, it guarantees α-privacy against the frequency analysis attack.

Known-scheme Attack. If the attacker knows the details of the SD approach,

he can launch the following two-step attack trying to decode the received LSH

values. By the first step, the attacker tries to find mapping between string and

LSH groups based on the frequency of strings and LSH values. From the analysis

of the SD algorithm, he knows that all LSH values of the same frequency belong

to the same group with high probability. Furthermore, for any string S and its

split copy S ′, freq(S) ≥ freq(S ′). Apparently, for any string groups of k unique

strings, its LSH groups must contain at least k unique LSH values. Furthermore,

the maximum frequency of the LSH group must be no larger than the maximum

frequency of its string group. The attacker can use these two facts to map LSH

groups with string groups. In the worst case, there is only one such mapping. Then

by the second step, the attacker tries to find the mapping between LSH values and

strings. Consider a mapping that consists of k strings and k′ ≥ k LSH values, in

which LSH values are of the same frequency while the strings may have different

frequency. The attacker tries to construct all possible mappings of k′ LSH values

to k strings. This is equivalent to the problem of distributing k′ distinguishable balls

into k distinguishable boxes where k′ > k and no box is empty. The number of

such mapping equals:

M(k′, k) =
k−1∑
i=0

(−1)i
(
k

i

)
(k − i)k′ . (4.10)
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Among these mappings, there are M(k′− 1, k) +M(k′− 1, k− 1) correct mappings

between a LSH value Lj(1 ≤ j ≤ k′) and its string Si(1 ≤ i ≤ k). Therefore, the

probability of finding the correct mapping Lj → Si is

prob(Lj → Si) =
M(k′ − 1, k) +M(k′ − 1, k − 1)

M(k′, k)
=

1

k
. (4.11)

Since k ≥ 1
α
, the SD approach can provide α-privacy against the known-scheme

attack. Interestingly, varying the number of split copies will not impact the privacy

guarantee.

Complexity Discussion

The SD approach requires O(scnS) to construct all split copies at the client side,

where nS is the number of unique strings in D, and sc is the average number of

split copies of all strings. The complexity of the data deduplication at the server

side is O((|D| + nd)
2), where |D| is the total number of strings in D, and nd is the

total number of duplicates. Note that |D| � n. Thus the computational effort at the

client side is much cheaper than that at the server side.

4.3 Embedding & Homophonic Substitution (EHS) Approach

In this section, we present a different approach called Embedding & Homophonic

Substitution (EHS) that constructs the encoding of the input data without adding

any additional data. In a nutshell, EHS has two steps: (1) conversion of categorical

data to Euclidean space, and (2) 1-to-many homophonic substitution of Euclidean

points. The EHS approach can be easily adapted to numerical data for which the

conversion step is not necessary, while the substitution step will be applied on the
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original data.

For the first step, many mapping techniques (e.g., FastMap [47] and StringMap

[68]) can be used to map strings into a multidimensional Euclidean space. The

mapping functions guarantee that the similar strings are mapped to close Eu-

clidean points. In this paper, we use FastMap [47] for string conversion. By

FastMap, the string similarity threshold δ will be adjusted to a new similarity thresh-

old δE for Euclidean points. FastMap is not reversible [47], thus the original strings

cannot be reconstructed from the embedded Euclidean points. The complexity

of the embedding step is O(d2|D|), where d is the number of dimensions of the

Euclidean points, and |D| is the number of strings in D.

FastMap embedding is one-to-one, simply mapping strings to Euclidean

points fails to defend against the frequency analysis attack. Therefore, the second

step of EHS is to apply a homophonic substitution encoding scheme on the Eu-

clidean points to defend against the frequency analysis attack. Homophonic substi-

tution schemes are one-to-many, meaning that multiple encoded symbols can map

to one plaintext symbol. Next, we will first discuss our basic homophonic substitu-

tion encoding scheme and its weakness against both the frequency analysis and

the known-scheme attacks (Section 4.3.1). We then present our grouping-based

homophonic substitution (GHS) scheme that can defend against these attacks with

provable guarantee (Section 4.3.2).

4.3.1 Basic Approach

By the basic approach, any Euclidean point P of frequency f is transformed to f

unique points E1, . . . , Ef in the same Euclidean space, each point of frequency 1.

Therefore, the frequency distribution of the Euclidean points is always uniform, re-
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gardless of the frequency distribution of the original data. The substitution scheme

is one-to-many as one string maps to multiple Euclidean points. To preserve simi-

larity, for each point P in the d-dimension Euclidean space, we construct a d-sphere

HR
P of radius R centered at P , where R is a user-specified parameter. Let f be the

frequency of P . Then we pick f points from HR
P in a uniformly random manner,

with each point of frequency 1. These f points are the encoded versions of P . The

distance between the constructed Euclidean points satisfies the following theorem.

Figure 4.1: Illustration of 1-to-many Substitution Encoding

Theorem 2. Given any two original Euclidean points P1 and P2, let {E1
1 , . . . , E

f1
1 }

and {E1
2 , . . . , E

f2
2 } be the Euclidean points of P1 and P2 constructed by the above

procedure (f1 and f2 are not necessarily the same). Then for any pair of Euclidean

points Ei
1 and Ej

2 (i ∈ [1, f1], j ∈ [1, f2]), dist(Ei
1, E

j
2) ≤ dist(P1, P2)+R1 +R2, where

dist() is the Euclidean distance function, and R1, R2 are the length of the radius of

the corresponding d-spheres of P1 and P2.

Proof. Given any two points P1 and P2, we pick a point P between these two

points. Figure 4.1 illustrates the positions of P1, P2 and P . Apparently, it must be

true that dist(P1, E
i
1) ≤ R1(1 ≤ i ≤ f1). Similarly, dist(P2, E

j
2) ≤ R2 (1 ≤ j ≤ f2).

According to triangle inequality,

dist(Ei
1, P ) ≤ dist(P1, E

i
1) + dist(P1, P ) ≤ R1 + dist(P1, P ), (4.12)
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and

dist(Ej
2, P ) ≤ dist(P2, E

j
2) + dist(P2, P ) ≤ R2 + dist(P2, P ). (4.13)

It is easy to infer that

dist(Ei
1, E

j
2) = dist(Ei

1, P ) + dist(Ej
2, P )

≤ R1 +R2 + dist(P1, P ) + dist(P2, P )

= R1 +R2 + dist(P1, P2). (4.14)

Based on Theorem 2, we adjust the similarity threshold of the encoded Eu-

clidean points accordingly. We say two encoded values Ei and Ej are similar if

dist(Ei, Ej) ≤ δE + Ri + Rj, where δE is the distance threshold after embedding,

Ri and Rj are the length of the radius of spheres of Pi and Pj, the corresponding

original Euclidean point of Ei and Ej.

Privacy Analysis

Frequency Analysis Attack. Given nS strings, each of frequency fi, and nE en-

coded Euclidean points, each of frequency f (f = 1 for the basic approach), we

define sf =
∑n

i=1 fi. With further computation, the probability probF that the

encoded point Ej is mapped to its string Si by the frequency analysis attack is

probF (Ej → Si) =

(
fi
f

)(
sf
f

) . (4.15)

As an example, consider two strings S1 and S2 of frequency 10000 and 10. These

two strings are encoded as 10000 and 10 Euclidean points respectively by the

basic approach. Then for any encoded Euclidean point Ej of S1, probF (Ej → S1) =
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(
10000

1

)
/
(

10010
1

)
= 10000

10010
≈ 1.

Known-scheme Attack. If the attacker possesses the details of the basic ap-

proach, he knows that all Euclidean points of the same string must fall in a circle of

a small radius in the Euclidean space. Given nS unique strings and nE ≥ nS Eu-

clidean points, he can apply the following 2-step attack to find the mapping between

the Euclidean points and the strings: By the first step, it uses a clustering algorithm

(e.g., k-means clustering) to group nE Euclidean points to nS groups based on

their closeness, so that the groups are of low intra-group distances and high inter-

group distances. By the second step, it maps nS clusters of Euclidean points to nS

unique strings based on their similarities. In particular, the attacker maps the nS

cluster centroids to n strings in the way that for any three centroids cti, ctj and ctk,

their corresponding strings Si, Sj and Sk satisfy that if dist(cti, ctj) ≤ dist(cti, ctk),

then jaccard(Si, Sj) ≥ jaccard(Si, Sk). After the two-step attack, some Euclidean

points of the same string may be covered by multiple clusters (i.e., mapped to

multiple strings). Given nS unique strings and nE ≥ nS Euclidean points by the

basic approach, the probability probS that the encoded point Ej is mapped to its

corresponding string Si by the known-scheme attack is

probS(Ej → Si) =
1

t
, (4.16)

where t is the number of clusters that include Ej. If t = 1, the mapping Ej → Si is

broken with 100% certainty.

We simulate the known-scheme attack on the 1990 Census dataset of fre-

quently occurring surnames1. We used the female first name data set (4000

names) and applied the basic approach on them. Then we executed the known-
1http://www.census.gov/genealogy/www/data/1990surnames

/names files.html.
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scheme attack on the encoded data. Figure 4.2 illustrates the clustering result of

the Euclidean points of five names. The Euclidean points of the same color and the

same shape belong to the same string. We observe that some Euclidean points

(e.g., the red square ones) only belong to one cluster. These Euclidean points are

mapped to their string with 100% probability.

Figure 4.2: Simulation of similarity-based known-scheme attack
(dotted lines represent the real clusters, while solid lines represent the clusters

constructed by the known-scheme attack)

Now we are ready to define the privacy model that can defend against both

the frequency analysis attack and the known-scheme attack.

Definition 3. [(α1, α2)-privacy] Given nS strings S {S1, . . . , SnS
} and nE encoded

Euclidean points E {E1, . . . , EnE
}, we say E satisfies (α1, α2)-privacy if for any Eu-

clidean point Ei ∈ E (whose corresponding string is Sj ∈ S), probF (Ej → Si) ≤ α1,

and probS(Pi → Si) ≤ α2, where probF and probS are measured by Eqn. 4.15 and

Eqn. 4.16 respectively.

As we have shown, the basic approach may fail to meet the (α1, α2)-privacy

requirement.
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4.3.2 Grouping-based Homophonic Substitution (GHS) Scheme

To address the privacy weakness of the basic approach, we design the grouping-

based homophonic substitution encoding scheme (GHS) that satisfies (α1, α2)-

privacy. The GHS takes nS Euclidean points that are transformed from the original

nS strings and outputs nE (nE ≥ nS) transformed Euclidean points, each of fre-

quency 1. It satisfies that
∑nS

i=1 fi = nE, where
∑n

i=1 fi is the sum of the frequency

of all Euclidean points. Before we explain the details of GHS method, we first

define (α1, α2)-bounded clusters.

Definition 4. [(α1, α2)-bounded clusters] For any given cluster CT and two user-

specified thresholds α1, α2, CT is (α1, α2)-bounded if it satisfies: (1) for each point

P ∈ CT , fP∑
Q∈CT fQ

≤ α1, where fP (fQ, resp.) is the frequency of point P (point Q,

resp); and (2) CT contains at least [ 1
α2

] points.

The GHS procedure consists of 2 steps. First, the Euclidean points are

grouped into (α1, α2)-bounded clusters. For each cluster CT , a d-sphere H is

constructed to cover all points of CT , where d is the dimension of the Euclidean

space. Second, for each sphere H that covers the points {P1, · · · , Pk}, f1 + · · ·+fk

points in total are constructed within H in a uniform random fashion, where fi

(1 ≤ i ≤ k) is the frequency of the point Pi. Each constructed point is of frequency

1. Theorem 3 below shows how to update the similarity threshold for the Euclidean

points constructed by the GHS approach.

Theorem 3. Given any two original Euclidean points P1 and P2 that are similar

according to the threshold δ′, let {E1
1 , . . . , E

f1
1 } and {E1

2 , . . . , E
f2
2 } be the Euclidean

points of P1 and P2 constructed by the above procedure (f1 and f2 are not nec-

essarily the same), and R1 and R2 be the top-2 maximum radius length of all
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spheres. Then for any pair of Euclidean points Ei
1 and Ej

2 (i ∈ [1, f1], j ∈ [1, f2]),

dist(Ei
1, E

j
2) ≤ δ′ + 2R1 + 2R2, where dist() is the Euclidean distance function.

Figure 4.3: Similarity Preservation of Euclidean Points

Proof. Given any two Euclidean points P1 and P2, assume that they are in the

different clusters whose centers are ct1 and ct2. Let P be the intersection point of

the line (P1, P2) and (ct1, ct2). By triangle inequality,

dist(P1, P ) + dist(ct1, P1) ≥ dist(ct1, P ), (4.17)

and

dist(P2, P ) + dist(ct2, P2) ≥ dist(ct2, P ). (4.18)

Combining Equation 4.17 and 4.18 we have:

dist(P1, P2) = dist(P1, P ) + dist(P2, P )

≥ dist(ct1, P ) + dist(ct2, P )− dist(ct1, P1)− dist(ct2, P2)

≥ dist(ct1, ct2)−R1 −R2. (4.19)

Since dist(ct1, P1) ≥ R1 and dist(ct2, P2) ≥ R2,

dist(ct1, ct2) ≤ dist(P1, P2) +R1 +R2. (4.20)
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On the other hand, for any points Ei
1 constructed for P1 and any points Ej

2 con-

structed for P2, we have

dist(Ei
1, P ) ≤ dist(ct1, P ) + dist(ct1, E

i
1), (4.21)

and

dist(Ej
2, P ) ≤ dist(ct2, P ) + dist(ct2, E

j
2). (4.22)

Combining Equation 4.21 and 4.22 we have:

dist(Ei
1, E

j
2) ≤ dist(ct1, ct2) + dist(ct1, E

i
1) + dist(ct1, E

j
2). (4.23)

Given the fact that dist(ct1, Ei
1) ≤ R1, dist(ct2, E

j
2) ≤ R2, and dist(P1, P2) ≤ δ′, we

have:

dist(Ei
1, E

j
2) ≤ dist(ct1, ct2) + dist(ct1, E

i
1) + dist(ct2, E

j
2)

≤ dist(P1, P2) +R1 +R2 +R1 +R2

≤ δ′ + 2R1 + 2R2. (4.24)

Note that different from Theorem 2 that considers the distance between the

centers of spheres, Theorem 3 considers the distance between any two points

within the spheres. Following Theorem 3, the new similarity threshold for the points

constructed by GHS approach is

δnew = δE + 2R1 + 2R2. (4.25)

Next, we discuss how to construct (α1, α2)-bounded clusters.
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Our algorithm consists of the following steps. First, each point is initialized

as a cluster. Second, for each cluster CTi that is not (α1, α2)-bounded, we look

for other cluster(s) to merge with Ci. In particular, for each cluster candidate CTj,

we compute the radius length of the sphere by merging CTj with CTi, and pick the

candidate that leads to the smallest radius length. We design an efficient algorithm

that computes the approximate radius length in O(1) time. In particular, given two

clusters CTi, CTj of centers cti and cti respectively, let Ri and Rj be the radius

length of the spheres of CTi and CTj, and cti[z] be the value of the z-th dimension

of the vector cti. The new center ctnew of the sphere that covers all points in CTi ∪

CTj is computed as

ctnew[z] =
cti[z]sti + ctj[z]stj

sti + stj
,∀z ∈ [1, d], (4.26)

where sti and stj are the number of points of CTi and CTj, and d is the dimension

of the Euclidean space. Then the approximate radius length of the sphere that

covers all points in CTi ∪ CTj is computed as

Rnew = max(dist(cti, ctnew) +Ri, dist(ctj, ctnew) +Rj). (4.27)

We look for the cluster CTj whose merge with CTi will lead to the smallest Rnew.

After that, we check whether CTi ∪ CTj is a (α1, α2)-bounded cluster. If not, we

repeat the merging procedure, until all clusters are (α1, α2)-bounded.

Privacy analysis

The GHS approach provides (α1, α2)-privacy against the frequency analysis attack,

as each point belongs to a (α1, α2)-cluster. Next, we discuss the robustness against
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the known-scheme attack. If the attacker knows the details of the GHS method,

he can group the received Euclidean points into clusters of high intra-cluster sim-

ilarity. Next, he tries to map Euclidean points to the strings based on their fre-

quency. In particular, a cluster of f points is highly likely to be mapped to the

strings {S1, . . . , St} if
∑t

i=1 fi = f . It is possible that the attacker can find a unique

mapping between the clusters and the strings. After that, for each cluster CTi that

consists of st Euclidean points {E1, . . . , Est} (each of frequency f = 1), assume

CTi is mapped to k ≤ st strings {S1, . . . , Sk}. He can apply the frequency analysis

attack (Section 4.3.1) on CTi. Since each cluster is (α1, α2)-bounded, the probabil-

ity probF that the encoded point Ej is mapped to its corresponding string Si by the

frequency analysis attack equals to probF (Ej → Si) =
(
fi
f

)
/
(
fnE

f

)
= fi

nEf
≤ α1. The

attacker also computes the probability of mapping each Euclidean point to a spe-

cific string by trying all possibilities. The reasoning of the attack probability is similar

to the attack as described in Section 4.2.2, where M(st, k) =
∑k−1

i=0 (−1)i
(
k
i

)
(k−i)st,

and probS(Ej → Si) = M(st−1,k)+M(st−1,k−1)
M(st,k)

= 1
k
. Since k ≥ [ 1

α2
], the probability

probS ≤ α2. Therefore, the GHS approach can provide (α1, α2)-privacy guarantee.

Complexity analysis

The complexity of constructing (α1, α2)-bounded clusters is O(n ∗ niter), where n

is the number of Euclidean points, and niter is the number of required iterations.

Our empirical study shows that niter is normally a small portion of n (at most half

of n). The complexity of constructing the spheres for each cluster is O(1), and the

complexity of constructing all transformed Euclidean points is O(n). Thus the total

complexity of GHS is O(n∗niter). The complexity of data deduplication at the server

side is O(|D|2), where |D| is the total number of strings of D. Since identical string
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values are always mapped to the same Euclidean point, |D| � n. Therefore, the

computations at the client side are much cheaper than that at the server side.

Improvement of Precision

Our GHS approach guarantees a 100% recall, but a possibly low precision. The

low precision comes from the fact that the radius of (α1, α2)-bounded clusters may

be much larger than the original Euclidean similarity threshold δE. This leads to

a too relaxed similarity threshold and thus large amounts of false positives. A

possible solution to bound the precision that GHS is to control the radius of the

clusters. In particular, given the set of Euclidean points P and a set of clusters CT

that is constructed from P by our GHS approach, we say CT provides γ-precision

if the precision of CT is never below γ. We propose the following procedure to

find γ-precision clusters. First, we pick a subset of points from P as the sample,

and measure the pair-wise distance between all pairs of the sample. The sample’s

size is normally much smaller than that of P; thus the computational efforts for

pairwise distance measurement at the client side is acceptable. Second, we sort

the pairwise distances in the ascending order. From the sorted list, we find the

index of the distance that is smaller than δE. Let the found index be j. Then, we

calculate k = [1−γ
γ
j], and find the distance dst at the (j + k)th location in the sorted

list. We use dst as the new similarity threshold δnew. Third, we group all points in P

into clusters whose radius R satisfies that R ≤ (dst− δE)/4. Though those clusters

can provide bounded precision loss, they may not satisfy the (α1, α2)-bounded

requirement. There exists the trade-off between the precision and privacy. High

privacy may lead to large loss of precision.
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4.4 Post-Processing

After the server returns the near-duplicates, the client maps the received results to

strings, then eliminates the false positives by measuring the similarity of all near-

duplicate pairs. Assume that the similarity of each near-duplicate pair can be mea-

sured in constant time. Then the complexity of the post-processing is O(|R̂S|),

where |R̂S| is the number of near-duplicates that are returned by the server. Com-

pared with the complexity of data deduplication of the original dataset D (quadratic

to |D|), the post-processing is much cheaper than running the data deduplication

locally (note that |R̂S| � |D|).

4.5 Experiments

4.5.1 Setup

Experiment Environment. We implemented both of our LSHB and EHS ap-

proaches in Java. All experiments were executed on a PC with a 2.4GHz Intel

Core i5 CPU and 8GB memory running Linux.

Datasets. We use two real datasets2 from US Census Bureau in our experiments:

(1) the female first name dataset (FEMALE for short) that contains 4275 unique

female first names and their frequencies, and (2) the last name dataset (LAST for

short) that contains 88799 last names and their frequencies. We also use subsets

of LAST dataset of various sizes for scalability measurement. To study the impact

of pairwise distance distribution to the performance, we also prepared two types of

datasets: (1) the thick dataset in which a large potion of strings are similar to each

other; and (2) the sparse dataset in which most strings are dissimilar.
2available at http://www.census.gov/topics/population/genealogy/data/1990_census/

1990_census_namefiles.html.

http://www.census.gov/topics/population/genealogy/data/1990_census/1990_census_namefiles.html
http://www.census.gov/topics/population/genealogy/data/1990_census/1990_census_namefiles.html
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Parameters. We use q = 2 for q-gram setting and set the jaccard similarity thresh-

old to be 0.4 for both FEMALE and LAST datasets. For LSHB approach, we apply

100 random permutations to generate the MinHash signatures.

4.5.2 Performance of LSHB Approach

Time performance

First, we measure the impact of various α values (for α-privacy) to the time per-

formance of LSHB approach (Figure 4.4 (a)). We measure preparation time at the

client side, data deduplication time at the server side, and post-processing time

at the client side. First, the preparation time at the client side is stable. This is

because the complexity of encoding is decided by the number of unique strings,

which is not affected by α value. The post-processing time at client side is also

stable, because different α values do not change the number of similar string pairs.

Second, the time performance at the server side is also stable. The reason is

the complexity at the server side only relies on the number of unique LSH values

(and thus the number of unique strings), thus changing α values does not affect

the running time at server side. Third, the computational efforts at the server side

dominate the whole data deduplication process (including both at the client and the

server side). This observation supports our claim that the LSHB approach suits the

outsourcing paradigm very well.

Second, we measure the scalability of LSHB approach on datasets of vari-

ous sizes (Figure 4.4 (b)). We observe that the preparation time at the client side

increases slowly with the growth of the data size, while the post-processing time

at the client side and the time performance at the server side increase sharply.

This is because the complexity of preparing LSH values at the client side is linear
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Figure 4.4: Time Performance of LSHB Approach

to the data size, while the complexity of deduplication and data post-processing is

quadratic to data size. Second, compared to the time performance at the server

side, the post-processing time at the client side is very small, as the server has

filtered many dissimilar string pairs. We also observe that the time performance

of preparation at the client side is much cheaper than that of the server side. In-

deed, the LSH construction time at client side never exceeds 2 seconds. We also

observe that the difference between the performance at the client and the server

sides becomes more significant with the growth of data size. This is because the

complexity of preparation at the client side is linear to the data size, while the com-

plexity at the server side is quadratic to the data size. This proves the advantage

of the outsourcing paradigm that handles large datasets most of the time.

Third, we measure the impact of LSHB encoding to the time performance
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Figure 4.5: Impact of LSHB Encoding to Accuracy

of data deduplication. We compare the time of the LSHB approach (including the

time at the client and the server side) with the time of the data deduplication on

the original data (Figure 4.4 (c)). We observe that the time performance of both

scenarios increases with the growth of data size. However, the time performance of

the LSHB encoding is always cheaper than that of the original data. This speed-up

is mainly due to the use of LSH values. This shows that although the privacy-

preserving methods may bring computational overhead in general, picking a right

encoding method (e.g., LSHs) may enable faster data deduplication than the brute

force approach of measuring the pairwise similarity of all string pairs.

Impact to Accuracy of Data Deduplication

Storage Overhead. We measure the amounts of the added LSH copies by using

duplication ratio. We define the duplication ratio as |D̂||D| , where |D| and |D̂| are the

number of strings in original D and after applying LSHB respectively. In Figure 4.5

(a), the ratio increases with the decrease of α (i.e., higher privacy requirement).

The reason is that smaller α requires larger groups, and thus more inserted copies

to make their frequency homogenized. This is the price we need to pay for higher

privacy.
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Figure 4.6: Time Performance of EHS Approach

Precision/Recall We compare the precision/recall of applying our LSHB approach

with the precision/recall of directly applying LSH hashing over the original data

(Figure 4.5 (b)). In all the experiments, the precision varies around 75%, and the

recall is around 80%. Our LSHB approach is able to provide comparable accuracy

to LSH. This convinces us the good utility of the LSHB approach. We note that

after post-processing, we can ensure 100% precision.

4.5.3 Performance of EHS Approach

Time performance

First, we measure the time performance of EHS encodings for various α1 and α2

settings of (α1, α2)-privacy (Figure 4.6 (a)). We use the similarity threshold δE = 0.2
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and various α values (α = α1 = α2). We measure: (1) the preparation time at the

client side, (2) the data deduplication time at the server side, and (3) the post-

processing time at the client side. First, we observe that the preparation time

decreases when α increases. The reason is that larger α value requires smaller

clusters and points of lower frequency, leading to less merge during the (α1, α2)-

bounded cluster. Second, the data deduplication time is stable for all α values,

because the complexity at the server side is decided by the dataset size, which is

unchanged for these settings. Third, the post-processing time decreases when α

increases. That is when α value is larger, the clusters get smaller, which leads to

more tightened similarity threshold and thus fewer false positives. For all experi-

ments, the post-processing time is always less than 0.6 seconds. Similar to LSHB

approach, we observe that the server’s computation efforts are much higher than

that of the client.

Second, we measure the scalability of EHS approach for various data sizes.

As shown in Figure 4.6 (b), the preparation time increases with the growth of the

data size. That is because larger dataset requires more time to construct (α1, α2)-

bounded clusters. On the other hand, the post-processing time increases because

the size of R̂S increases with the size of data. We also compare the time perfor-

mance at both the client and the server side. We observe that the client requires

much less time than the server. When the size of the dataset increases, the run-

ning time at the server side grows faster than the client side. This observation

shows that our EHS approach suits the outsourcing paradigm well.

Third, we compare the time performance of data deduplication by our EHS

encoding with that on the original data (Figure 4.6 (c)). For EHS encoding, we add

up the preparation time, the post-processing time, and the data deduplication time.

We observe that the processing time of both cases increases with the size of the
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data. However, applying EHS encoding only adds a small potion of time overhead

compared with the performance of the original data.

Impact to Accuracy of Data Deduplication
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Figure 4.7: Impact of EHS Encoding to Accuracy of Deduplication (FEMALE
dataset, d = 10)

We measure the precision and recall of our EHS approach for various α

values (α = α1 = α2) and various δE values (Figure 4.7). First, we observe that

recall is always 100%. In other words, all the near-duplicates in the original dataset

are returned. Second, from Figure 4.7 (a), we observe that precision increases with

α value. This is because larger α value leads to smaller clusters, which yield more

tightened δnew. One interesting observation is, the precision on the sparse dataset

increases much slower than that of the thick dataset. That is because the δnew

value of the sparse dataset is large; thus the change of δnew (from 1.00 to 0.89)

makes less impact than the change of δnew on the thick dataset (from 0.23 to 0.21).

As shown in Figure 4.7 (b), the precision raises with δE, because large δE results in

more similar pairs. Thus, the ratio of false positive decreases. In all experiments,

we observe that the precision of the thick dataset (at least 0.4) is much better

than the sparse dataset. To understand why, we measured the average pair-wise
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Figure 4.8: Comparison of LSHB Approach and EHS Approach (LAST dataset,
r = 0.4)

distances of both datasets. It turned out that the average pair-wise distance of the

thick and the sparse datasets are 0.27 and 0.31 respectively. We use 0.2 as the

value of δE, and measure the new similarity threshold δnew. For the thick dataset,

δnew is less than 0.23, which is less than 15% change of the similarity threshold.

While for the sparse dataset, δnew is changed to be between 0.9 and 1, which is too

loose compared with the original threshold and thus concludes almost all pairs as

similar. Therefore, the (α1, α2)-bounded clustering method introduces fewer false

positives on the thick dataset than the sparse dataset.
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4.5.4 LSHB Versus EHS

First, we compare the time performance of encoding at client side for both ap-

proaches (Figure 4.8 (a)). We observe that the LSHB approach is much faster

than the EHS approach. This is because constructing LSHs is much faster than

the FastMap embedding and (α1, α2)-bounded clustering. Second, we compare

the time performance of data deduplication at the server side. The result (Fig-

ure 4.8 (b)) shows that although LSHB adds additional values to the outsourced

dataset, it is again faster than EHS, due to the fact that dealing with LSH values

is much faster than the computation of Euclidean distances. Third, we compare

the precision and recall of the two approaches (Figure 4.8 (c)). We observe that

LSHB yields comparable precision with EHS but EHS yields much higher recall

(100%). In summary, there exists the trade-off between the time performance of

the privacy-preserving encoding methods and the accuracy of data deduplication

on encoded data. The use of LSH values enables faster time performance at

both the client and the server sides, but it introduces lower recall rate, while EHS

guarantees 100% recall.



66

Chapter 5

Efficient Authentication of Outsourced Data Deduplication

In this chapter, we discuss the authentication of outsourced data deduplication.

Record matching, which targets on finding similar and near-duplicate record pairs

from a dataset, is the fundamental computation for data deduplication. Without

loss of generality, we focus on the authentication of outsourced record matching.

We design two efficient authentication approaches named V S2 and E-V S2 to ver-

ify the integrity of record matching results returned by an untrusted server. The

key idea is that besides returning the matching records, the server also constructs

verification objects (VOs) to demonstrate the correctness of the result. This work

has been published in the proceedings of IEEE International Conference on Infor-

mation Reuse and Integration (IRI), July 2016.

5.1 Preliminaries

5.1.1 Record Similarity Measurement

Record matching is a fundamental problem in many research areas, e.g., informa-

tion integration, database joins, and more. In general, the evaluation that whether

two records match is mainly based on the string similarity of the attribute values.

There are a number of string similarity functions, e.g., Hamming distance, n-grams,

and edit distance (see [72] for a good tutorial). In this thesis, we mainly consider

edit distance, one of the most popular string similarity measurements that have

been used in a wide spectrum of applications. Informally, the edit distance of two

strings s1 and s2, denoted as DST (s1, s2), measures the minimum number of inser-
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tion, deletion and substitution operations to transform s1 to s2. We say two strings

s1 and s2 are similar, denoted as s1 'E s2, if DST (s1, s2) ≤ θ, where θ is a user-

specified similarity threshold. Otherwise, we say s1 and s2 are dissimilar (denoted

as s1 6'E s2). Without loss of generality, we assume that the dataset D only con-

tains a single attribute. Thus, in the following sections, we use record and string

interchangeably. Our methods can be easily adapted to the datasets that have

multiple attributes.

5.1.2 Authenticated Data Structure

To enable the client to authenticate the correctness of mining results, the server

returns the results along with some supplementary information that permits result

verification. Normally the supplementary information takes the format of verifica-

tion object (V O). In the literature, VO generation is usually performed by an au-

thenticated data structure (e.g., [76, 131, 96]). One of the popular authenticated

data structures is Merkle tree [104]. In particular, a Merkle tree is a tree T in which

each leaf node N stores the digest of a record r: hN = h(r), where h() is a one-

way, collision-resistant hash function (e.g. SHA-1). For each non-leaf node N of T ,

it is assigned the value hN = h(hC1|| . . . ||hCk
), where C1, . . . , Ck are the children of

N . The root signature sig is generated by signing the digest hroot of the root node

using the private key of a trusted party (e.g., the data owner). The VO enables the

client to re-construct the root hash value.

5.1.3 Bed-Tree for String Similarity Search

A number of compact data structures (e.g., [6, 19, 75]) are designed to handle edit

distance based similarity measurement. In this thesis, we consider Bed-tree [134]
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due to its support for external memory and dynamic data updates. Bed-tree is a

B+-tree based index structure that can handle arbitrary edit distance thresholds.

The tree is built upon a string ordering scheme which is a mapping function ϕ to

map each string to an integer value. To simplify notation, we say that s ∈ [si, sj]

if ϕ(si) ≤ ϕ(s) ≤ ϕ(sj). Based on the string ordering, each Bed-tree node N is

associated with a string range [Nb, Ne]. Each leaf node contains f ≥ 1 strings

{s1, . . . , sf}, where si ∈ [Nb, Ne], for each i ∈ [1, f ]. Each intermediate node N

(with range [Nb, Ne]) contains multiple children nodes, where for each child, its

range [N ′b, N
′
e] ⊆ [Nb, Ne]. We say these strings that stored in the sub-tree rooted

at N as the strings that are covered by N .

We use DSTmin(sq, N) to denote the minimal edit distance between a string

sq and any string s that is covered by a Bed-tree node N . A nice property of the Bed-

tree is that, for any string sq and node N , the string ordering ϕ enables to compute

DSTmin(sq, N) efficiently by computing DST (sq, Nb) and DST (sq, Ne) only, where

Nb, Ne refer to the string range values of N . Based on this, we define the Bed-tree

candidate node.

Definition 5. Given a string sq and a similarity threshold θ, a Bed-tree node N is a

candidate if DSTmin(sq, N) ≤ θ. Otherwise, N is a non-candidate.

Bed-tree has an important monotone property.

Property 5.1.1. Monotone Property of Bed-tree : Given a nodeNi in the Bed-tree

and any child node Nj of Ni, for any string sq, it must be true that DSTmin(sq, Ni) ≤

DSTmin(sq, Nj). Therefore, for any non-candidate node, all of its children must be

non-candidates. This monotone property enables early termination of search on

the branches that contain non-candidate nodes.



69

For any given string sq, the string similarity search algorithm starts from the

root of the Bed-tree, and iteratively visits the candidate nodes, until all candidate

nodes are visited. The algorithm does not visit non-candidate nodes as well as

their descendants. An important note is that for each candidate node, some of

its covered strings may still be dissimilar to sq. Therefore, given a string sq and a

candidate Bed-tree node N , it is necessary to compute DST (sq, s), for each s that

is covered by N .

5.1.4 Security Model

To catch the cheating on the matching results, we formally define the integrity of

the record matching result from two perspective: soundness and completeness.

Let M be the set of matching pairs in the outsourced database D, and MS be the

result returned by the server. We define the precision of MS as pre = |M∩MS |
|MS | (i.e.,

the percentage of returned pairs that are similar to each other), and the recall of

MS as rec = |M∩MS |
|M | (i.e., the percentage of matching pairs that are returned). We

say the result MS is incorrect if pre < 1 and incomplete if rec < 1. The soundness

verification is straightforward. For each record pair (si, sj) ∈ MS, the client checks

whether si 6'E sj. On the other hand, the completeness verification requires to

verify for each record pair (si, sj) /∈ MS, it is true that si 6'E sj. A naive method

for the client to verify the result integrity (for both soundness and completeness) is

to re-compute the similarity of all record pairs, which is prohibitively costly. In this

thesis, we design an efficient verification approach for the client to verity both the

soundness and completeness of matching results.
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5.1.5 Attack Model

We assume that the third-party server is not fully trusted as it could be compro-

mised by the attacker (either inside or outside). The server may alter the received

dataset D and return any matching result that does not exist in D. It may also

tamper with the matching results. For instance, the server may return incomplete

results that omit some legitimate similar pairs in the matching results [92]. Note that

we do not consider privacy protection for the outsourced data. This issue can be

addressed by privacy-preserving record linkage [39] and is discussed in Chapter

4.

5.1.6 Our Approaches in a Nutshell

We consider the outsourcing model that involves three parties - a data owner who

possesses a dataset D that contains n records, the user (client) who requests for

approximate record matching services on D, and a third-party service provider

(server) that executes the record matching services on D. The data owner out-

sources D to the server. The server provides storage and record matching as

services. The client can be the data owner or an authorized party. To facilitate

authenticated record matching, the data owner generates some auxiliary informa-

tion of D, and sends D together with the auxiliary information to the server. Upon

finishing record matching on D, the server returns the matching result MS, as well

as the verification object V O, to the client. The client checks the correctness of

MS via V O. Given the fact that the client may not possess D, we require that the

availability of D is not necessary for the authentication procedure.
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5.2 VO Construction for A Single Target Record

In this section, we consider a set of similar record pairs {(sq, s1), (sq, s2), . . . , (sq, st)}

for a single target record sq. We first present our basic verification approach named

V S2 (Section 5.2.1). Then we present our E-V S2 method with improved verification

cost (Section 5.2.2).

5.2.1 Basic Approach: V S2

We design a verification method of similarity search (V S2) approach. V S2 con-

structs a proof that proves MS = {s1, s2, . . . , st} include all strings (records) that

are similar to sq (completness), and all strings (records) in MS is indeed similar to

sq (correctness), where θ is the similarity threshold. V S2 consists of three phases:

(1) the pre-processing phase in which the data owner constructs the authenticated

data structure T of the dataset D. Both D and T are outsourced to the server,

while only the root signature sig of T is transmitted to the legitimate clients; (2) the

matching phase in which the server executes the approximate matching on D to

find similar strings for sq, and constructs the verification object (V O) of the search

results MS. The server returns both MS and V O to the client; and (3) verification

phase in which the client verifies the integrity of MS by leveraging V O. Next we

explain the details of these three phases.

Pre-Processing

In this one-time phase, the data owner constructs the authenticated data structure

of the dataset D before outsourcing D to the server. We design a new authenti-

cated data structure named the Merkle Bed tree (MB-tree). Next, we explain the

details of MB-tree.
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Figure 5.1: An example of Merkle Bed tree

The MB-tree is constructed on top of the Bed tree by assigning the digests

to each Bed node. In particular, every MB-tree node contains a triple (Nb, Ne, hN),

where Nb, Ne correspond to the string range values associated with N , and hN is

the digest value computed as hN = h(h(Nb)||h(Ne)||h1→f ), where h1→f = h(hC1|| . . . ||hCf
),

with C1, . . . , Cf being the children of N . If N is a leaf node, then C1, . . . , Cf are the

strings s1, . . . , sf covered by N . Besides the triple, each MB-tree node contains

multiple entries. In particular, for any leaf node N , assume it covers f strings. Then

it contains f entries, each of the format (s, p), where s is a string covered by N , and

p is the pointer to the disk block that stores s. For any intermediate node, assume

that it has f children nodes. Then it contains f entries, each entry consisting of a

pointer to one of its children nodes.

The digests of the MB-tree T can be constructed in the bottom-up fashion,

starting from the leaf nodes. After all nodes of T are associated with the digest

values, the data owner signs the root with her private key. The signature can be

created by using a public-key cryptosystem (e.g., RSA). An example of the MB-

tree structure is presented in Figure 5.1. The data owner sends both D and T to
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the server. The data owner keeps the root signature of T locally, and sends it to

any client who requests for it for authentication purpose.

Following [30, 76], we assume that each node of the MB-tree occupies a

disk page. For the constructed MB-tree T , each entry in the leaf node occupies

|s| + |p| space, where |p| is the size of a pointer, and |s| is the maximum length of

a string value. The triple (Nb, Ne, hN) takes the space of 2|s|+ |h|, where |h| is the

size of a hash value. Therefore, a leaf node can have f1 = [P−2|s|−|h|
|p|+|s| ] entries at

most, where P is the page size. Given n unique strings in the dataset, there are [ n
f1

]

leaf nodes in T . Similarly, for the internal nodes, each entry takes the space of |p|.

Thus each internal node can have at most f2 = [P−2|s|−|h|
|p| ] entries (i.e., [P−2|s|−|h|

|p| ]

children nodes). Therefore, the height ht of T is ht ≥ logf2 [
n
f1

].

V O Construction

Upon receiving the dataset D and the threshold θ from the data owner, the server

calculates the edit distance between all the string pairs and distills the similar pairs.

For each target string sq, the server constructs a V O to show that the matching

result MS is both sound and complete.

First, we define false hits. Given a target string sq and a similarity threshold θ,

the false hits of sq, denoted as F , are all the strings that are dissimilar to sq. In other

words, F = {s|s ∈ D, sq 6'E s}. Intuitively, to verify that MS is sound and complete,

the V O includes both similar strings MS and false hits F . Apparently including all

false hits may lead to a large V O, and thus high network communication cost and

the verification cost at the client side. Therefore, we aim to reduce the V O size of

F .

Before we explain how to reduce V O size, we first define C-strings and NC-
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strings. Apparently, each false hit string is covered by a leaf node of the MB-tree

T . Based on whether a leaf node in MB-tree is a candidate, the false hits F are

classified into two types:

• C-strings: the strings that are covered by candidate leaf nodes; and

• NC-strings: the strings that are covered by non-candidate leaf nodes.

Our key idea to reduce V O size is to use representatives of NC-strings in

V O instead of individual NC-strings. The representatives of NC-strings take the

format of maximal false hit subtrees (MFs). Formally, given a MB-tree T , we say

a subtree TN that is rooted at node N is a false hit subtree if N is a non-candidate

node. We say the false hit subtree TN rooted at N is maximal if the parent of N is

a candidate node. The MFs can root at leaf nodes. Apparently, all strings covered

by the MFs must be NC-strings. And each NC-string must be covered by a MF

node. Furthermore, MFs are disjoint (i.e., no two MFs cover the same string).

Therefore, instead of including individual NC-strings into the V O, their MFs are

included. As the number of MFs is normally much smaller than the number of

NC-strings, this can effectively reduce V O size. Now we are ready to define the

V O.

Definition 6. Given a dataset D and a target string sq, let MS be the returned

similar strings of sq. Let T be the MB-tree of D, and NC be the strings that are

covered by non-candidate nodes of T . Let M be a set of MFs of NC. Then the

V O of sq consists of: (i) string s, for each s ∈ D − NC; and (ii) a pair (N, h1→f )

for each MF ∈ M that is rooted at node N , where N is represented as [Nb, Ne],

with [Nb, Ne] the string range associated with N , and h1→f = h(hC1|| . . . ||hCf
), with

C1, . . . , Cf being the children of N . If N is a leaf node, then C1, . . . , Cf are the

strings s1, . . . , sf covered by N . Furthermore, in V O, a pair of brackets is added
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around the strings that share the same parent in T .

Intuitively, in V O, the similar strings and C-strings are present in the original

string format, while NC-strings are represented by the MFs (i.e., in the format of

([Nb, Ne], hN)).

Example 5.2.1. Consider the MB-tree T in Figure 5.1, and the string sq to construct

V O. Assume the similar strings are MS = {s2}. Also assume that node N3 of T

is the only non-candidate node. Then NC-strings are NC = {s7, . . . , s12}, and

C-strings are {s1, s3, s4, s5, s6}. The set of MFsM ={N3}. Therefore,

V O = {(((s1, s2, s3), (s4, s5, s6)), ([s7, s12], h7→12))},

where h7→12 = h(hN6||hN7), hN6 = h(h(s7)||h(s9)||h(h(s7)||h(s8)||h(s9))),

and hN7 = h(h(s10)||h(s12)||h(h(s10)||h(s11)||h(s12))).

For each MF , we do not require that h(Nb) and h(Ne) appear in V O. How-

ever, the server must include both Nb and Ne in V O. This is to prevent the server

from cheating on the non-candidate nodes by including incorrect [Nb, Ne] in V O.

More details of the security analysis of our authentication procedure can be found

in Section 7.3.

We present the details of the verification objects in Algorithm 5.1. In Algo-

rithm 5.1, we build the VO starting from the MBed-tree’s root. In Algorithm 5.2, for

each node N in the MB-tree, we first check if it is a MF node. If it is, we add its

triple to V O (Line 3 to 4). Otherwise, if N is a non-leaf node, we go through all of

its children nodes to prepare the V O (Line 6 to 8); if not, we only need to add the

enclosed strings to V O as it is a leaf node (Line 9 to 11).
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Require: the target record sq, the MB-tree T
Ensure: The verification object to authenticate the query result MS(sq).
1: set ht to be the root’s height in T
2: V O = DFS V O(sq, T.root, ht)
3: return V O

Algorithm 5.1: V SS V O Construction(sq, T ))

Require: the target string sq, a node N in MB-tree T and its height ht
1: V O =′ (′

2: Let N = (Nb, Ne, hN )
3: if DSTmin(sq, Nb, Ne) > θ then
4: V O = V O + (Nb, Ne, hN )
5: else
6: if ht > 0 then
7: for all pointer p ∈ N do
8: V O = V O +DFS V O(sq, ∗p, ht− 1)
9: end for

10: else
11: for all entry (s, p) ∈ N do
12: V O = V O + s
13: end for
14: end if
15: end if
16: V O = V O+′)′

17: return V O

Algorithm 5.2: DFS V O(sq, N, ht))

Authentication Phase

For a given target string sq, the server returns V O together with the matching set

MS to the client. The verification procedure consists of three steps. In Step 1,

the client re-constructs the MB-tree from V O. In Step 2, the client re-computes

the root hash value h′root, and compares h′root with the hash value decrypted from

sig. In Step 3, the client re-computes the edit distance between sq and a subset of

strings in V O. Next, we explain the details.

Step 1: Re-construction of MB-tree. First, the client sorts the strings and string

ranges (in the format of [Nb, Ne]) in V O by their mapping values according to the
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string ordering scheme. String s is put ahead of the range [Nb, Ne] if s < Nb. It

returns a total order of strings and string ranges. If there exists any two ranges

[Nb, Ne] and [N ′b, N
′
e] that overlap, the client concludes that the V O is not correct. If

there exists a string s ∈ MS and a range [Nb, Ne] ∈ V O such that s ∈ [Nb, Ne], the

client concludes that MS is not sound, as s indeed is a dissimilar string (i.e., it is

included in a non-candidate node). Second, the client maps each string s ∈MS to

an entry in a leaf node in T , and each pair ([Nb, Ne], hN) ∈ V O to an internal node in

T . The client re-constructs the parent-children relationships between these nodes

by following the matching brackets () in V O.

Step 2: Re-computation of root hash. After the MB-tree T is re-constructed,

the client computes the root hash value of T . For each string value s, the client

calculates h(s), where h() is the same hash function used for the construction of

the MBed-tree. For each internal node that corresponds to a pair ([Nb, Ne], h
1→f ) in

V O, the client computes the hash hN of N as hN = h(h(Nb)||h(Ne)||h1→f ). Finally,

the client re-computes the hash value of the root node, namely h′root. The client

recovers the original MB-tree’s root hash value hroot by decrypting sig using the

data owner’s public key. The client then compares h′root with hroot. If h′root 6= hroot,

the client concludes that the server’s results are not sound.

Step 3: Re-computation of necessary edit distance. First, for each string

s ∈ MS, the client re-computes the edit distance DST (sq, s), and verifies whether

DST (sq, s) ≤ θ. If all strings s ∈MS pass the verification, then the client concludes

that MS is sound. Second, for each C-string s ∈ V O (i.e., those strings appear

in V O but not MS), the client verifies whether DST (sq, s) > θ. If it is not (i.e., s

is a similar string indeed), the client concludes that the server fails the complete-

ness verification. Third, for each range [Nb, Ne] ∈ V O, the client verifies whether

DSTmin(sq, N) > θ, where N is the corresponding MB-tree node associated with
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the range [Nb, Ne]. If it is not (i.e., node N is indeed a candidate node), the client

concludes that the server fails the completeness verification.

Example 5.2.2. Consider the MB-tree in Figure 5.1 as an example, and the target

string sq. Assume the similar strings MS = {s2}. Consider the VO shown in Exam-

ple 5.2.1. The C-strings are C = {s1, s3, s4, s5, s6}. After the client re-constructs the

MB-tree, it re-computes the hash values of strings MS ∪ C. It computes the root

hash value h′root from these values. It also performs the following distance com-

putations: (1) for MS = {s2}, compute DST (sq, s2); (2) for C = {s1, s3, s4, s5, s6},

compute the edit distance between sq and every string in C; and (3) for the pair

([s7, s12], h7→12) ∈ V O, compute DSTmin(sq, N3). Compared with the record match-

ing locally which requires 12 edit distance calculations, V S2 only computes 7 edit

distances.

Security Analysis

Given a target string sq and a similarity threshold θ, let M (F , resp.) be the similar

strings (false hits, resp.) of sq. Let MS be the similar strings of sq returned by

the server. An untrusted server may perform the following cheating behaviors to

generate MS: (1) tampered values: some strings in MS do no exist in the original

dataset D; (2) soundness violation: the server returns MS = M ∪ FS, where

FS ⊆ F ; and (3) completeness violation: the server returns MS = M − SS, where

SS ⊆M .

The tampered values can be easily caught by the authentication procedure,

as the hash values of the tampered strings are not the same as the original strings.

This leads to that the root hash value of MB-tree re-constructed by the client dif-

ferent from the root value of original dataset. The client can catch the tampered
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values by Step 2 of the authentication procedure. Next, we mainly focus on the

discussion of how to catch soundness and completeness violations.

Soundness. The server may deal with the V O construction of MS = M ∪ FS in

two different ways:

Case 1. The server constructs the V O of the correct resultM , and returns {MS, V O}

to the client;

Case 2. The server constructs the V O of MS, and returns {MS, V O} to the client.

Note that the strings in FS can be either NC-strings or C-strings. Next, we discuss

how to catch these two types of strings for both Case 1 and 2.

For Case 1, for each NC-string s ∈ FS, s must fall into a MF -tree node

in V O. Thus, there must exist an MF -tree node whose associated string range

overlaps with s. The client can catch s by Step 1 of the authentication procedure.

For each C-string s ∈ FS, s must be treated as a C-string in V O. Thus the client

can catch it by computing DST (s, sq) in Step 3.

For Case 2, the C-strings in FS will be caught in the same way as Case

1. Regarding NC-strings in FS, they will not be included in any MF-tree in V ′.

Therefore, the client cannot catch them by Step 1 of the authentication procedure

(as Case 1). However, as these strings are included in MS, the client still can catch

these strings by computing the edit distance of sq and any string in MS in Step 3.

Completeness. To deal with the V O construction of MS = M − SS, we again

consider the two cases as for the discussion of soundness violation.

For Case 1, where V O is constructed from the correct result M , any string

s ∈ SS is a C-string. These strings can be caught by re-computing the edit dis-

tance between the target string and any C-string (i.e., Step 3 of the authentication

procedure).

For Case 2, where V O is constructed from the MS, any string s ∈ SS is
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either a NC-string or a C-string in V ′. For any C-string s ∈ SS, it can be caught

by re-computing the edit distance between the target string and the C-strings (i.e.,

Step 3 of the authentication procedure). For any NC-string s ∈ SS, it must be

included into a non-candidate MB-tree node. We have the following theorem.

Theorem 4. Given a target string sq and a non-candidate node N of range [Nb, Ne],

including any string s′ into N such that s′ 6'E sq will change N to be a candidate

node.

The proof is straightforward. It is easy to see that s′ 6∈ [Nb, Ne]. Therefore,

including s′ into N must change the range to be either [s′, Ne] or [Nb, s
′], depending

on whether s′ < Nb or s′ > Ne. Now it must be true that DSTmin(sq, N) ≤ θ, as

DST (s′, sq) ≤ θ.

Following Theorem 4, for any string s ∈ SS that is considered a NC-string in

V O, the client can easily catch it by verifying whether DSTmin(sq, N) > θ, for any

non-candidate node (i.e., Step 3 of the authentication procedure).

5.2.2 String Embedding Authentication: E-V S2

One weakness of V S2 is that if there exists a significant number of C-strings, the

verification cost might be expensive, as the client has to compute the string edit

distance between the target record and the C-strings. Our goal is to further re-

duce the VO verification cost at the client side by decreasing the amount of edit

distance computation. We observe that although C-strings are not similar to the

target record, they may be similar to each other. Therefore, we design E-V S2, a

computation-efficient method on top of V S2. The key idea of E-V S2 is to construct

a set of representatives of C-strings based on their similarity, and only include the

representatives of C-strings in V O. To construct the representatives of C-strings,
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we first apply a similarity-preserving mapping function on C-strings, and transform

them into the Euclidean space, so that the similar records are mapped to the close

points in the Euclidean space. Then C-strings are organized into a small number

of groups called distant bounding hyper-rectangles (DBHs). DBHs are the rep-

resentatives of C-strings in V O. In the verification phase, the client only needs

to calculate the Euclidean distance between sq and DBHs. Since the number of

DBHs is much smaller than the number of C-strings, and Euclidean distance cal-

culation is much faster than that of edit distance, the verification cost of the E-V S2

approach is much cheaper than that of V S2. Next, we explain the details of the E-

V S2 approach. Similar to the V S2 approach, E-V S2 consists of three phases: (1)

the pre-processing phase at the data owner side; (2) the V O construction phase

at the server side; and (3) the authentication phase at the client side.

Pre-Processing

Before outsourcing the dataset D to the server, similar to V S2, the data owner con-

structs the MB-tree T on D. In addition, the data owner maps D to the Euclidean

space E via a similarity-preserving embedding function f : D → E denote the

embedding function. We use SparseMap [59] as the embedding function due to

its contractive property.The complexity of the embedding is O(cdn2), where c is a

constant value between 0 and 1, d is the number of dimensions of the Euclidean

space, and n is the number of strings of D. We agree that the complexity of string

embedding is comparable to the complexity of similarity search over D. However,

such embedding procedure is performed only once. Its cost will be amortized over

the authentication of all the future similarity search queries.

The data owner sends D, T and the embedding function f to the server.
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The server constructs the embedded space of D by using the embedding function

f . The function f will also be available to the client for result authentication.

VO Construction

Given the query (sq, θ) from the client, the server applies the embedding func-

tion f on sq, and finds its corresponding node Pq in the Euclidean space. Then

the server finds the result set MS of sq. To prove the soundness and complete-

ness of MS, the server builds a verification object V O. First, similar to V S2, the

server searches the MB-tree to build MFs of NC-strings. For the C-strings, the

server constructs a set of distant bounding hyper-rectangles (DBHs) from their

embedded nodes in the Euclidean space. Before we define DBH, first, we de-

fine the minimum distance between an Euclidean point and a hyper-rectangle.

Given a set of points P = {P1, . . . , Pt} in a d-dimensional Euclidean space, a

hyper-rectangle R(〈l1, u1〉, . . . , 〈ld, ud〉) is the minimum bounding hyper-rectangle

(MBH) of P if li = mintk=1(Pk[i]) and ui = maxtk=1(Pk[i]), for 1 ≤ i ≤ d, where

Pk[i] is the i-dimensional value of Pk. For any point P and any hyper-rectangle

R(〈l1, u1〉, . . . , 〈ld, ud〉), the minimum Euclidean distance between P and R is

dstmin(P,R) =

√∑
1≤i≤d

m[i]2,

where m[i] = max{li − p[i], 0, p[i] − ui}. Intuitively, if the node P is inside R, the

minimum distance between P and R is 0. Otherwise, we pick the length of the

shortest path that starts from P to reach R. We have:

Lemma 2. Given a point P and a hyper-rectangle R, for any point P ′ ∈ R, the

Euclidean distance dst(P ′, P ) ≥ dstmin(P,R).
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The proof of Lemma 2 is trivial. We omit the details due to the space limit.
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Figure 5.2: An example of VO construction by E-V S2 method

Now we are ready to define distant bounding hyper-rectangles (DBHs). Given

a target record sq, let Pq be its embedded point in the Euclidean space. For any

hyper-rectangle R in the same space, R is a distant bounding hyper-rectangle

(DBH) of Pq if dstmin(Pq, R) > θ.

Given a DBH R, Lemma 2 guarantees that dst(Pq, P ) > θ for any point
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Figure 5.3: Illustration: Proof of Theorem 7

P ∈ R. Recalling the contractive property of the SparseMap method, we have

dst(Pi, Pj) ≤ DST (si, sj) for any string pair si, sj and their embedded points Pi and

Pj. Thus we have the following theorem:

Theorem 5. Given a target record sq, let Pq be its embedded point. Then for any

record s, s must be dissimilar to sq if there exists a DBH R of Pq such that P ∈ R,

where P is the embedded point of s.

Based on Theorem 5, to prove that the C-strings are dissimilar to the target

record sq, the server can build a number of DBHs to the embedded Euclidean

points of these C-strings. We must note that not all C-strings can be included into

DBHs. This is because the embedding function may introduce false positives, i.e.,

there may exist a false hit string s of sq whose embedded point P becomes close

to Pq, where Pq is the embedded point of sq. Given a target record sq, we say a

C-string s of sq is an FP-string if dst(P, Pq) ≤ θ, where P and Pq are the embedded

Euclidean points of s and sq. Otherwise (i.e. dst(P, Pq) > θ), we call s a DBH-string.

We have:
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Theorem 6. Given a target record sq, for any DBH-string s, its embedded point P

must belong to a DBH.

The proof of Theorem 6 is straightforward. For any DBH-string whose em-

bedded point cannot be included into a DBH with other points, it constructs a hyper-

rectangle H that only consists of one point. Obviously H is a DBH.

Therefore, given a target record sq and a set of C-strings, first, the server

classifies them into FP- and DBH-strings, based on the Euclidean distance be-

tween their embedded points and the embedded point of sq. Apparently the em-

bedded points of FP-strings cannot be put into any DBH. Therefore, the server only

considers DBH-strings and builds DBHs. The VO of DBH-strings is computed from

DBHs. In order to minimize the verification cost at the client side, the server aims

to minimize the number of DBHs. Formally,

MDBH Problem: Given a set of DBH-strings {s1, . . . , st}, let P = {P1, . . . , Pt}

be their embedded points. Construct a minimum number of DBHsR = {R1, . . . , Rk}

such that: (1) ∀Ri, Rj ∈ R, Ri and Rj do not overlap; and (2) ∀Pi ∈ P, there exists

a DBH R ∈ R such that Pi ∈ R.

Next, we present the solution to the MDBH problem. We first present the

simple case for the 2-D space (i.e. d = 2). Then we discuss the scenario when

d > 2. For both settings, consider the same input that includes a query point Pq

and a set of Euclidean points P = {P1, . . . , Pt} which are the embedded points of

a target record sq and its DBH-strings respectively.

When d = 2. We construct a graph G = (V,E) such that for each point Pi ∈ P, it

corresponds to a vertex vi ∈ V . For any two vertices vi and vj that correspond to

two points Pi and Pj, there is an edge (vi, vj) ∈ E if dstmin(Pq, R) > θ, where R is

the MBH of Pi and Pj. We have:
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Theorem 7. Given the graph G = (V,E) constructed as above, for any clique C in

G, let R be the MBH constructed from the points corresponding to the vertice in C.

Then R must be a DBH.

Proof. We prove it by induction. Let |C| denote the number of vertices in the clique.

It is trivial to show that the theorem holds if |C| < 3. Next, we mainly discuss

|C| ≥ 3.

Base case. When |C| = 3, let vi, vj and vk denote the vertices in the clique C.

Let Rij, Rjk, and Rik be the MBHs constructed from the pairs (vi, vj), (vj, vk), and

(vi, vk) respectively. LetRijk be the MBH constructed from vi, vj, and vk. Apparently

Rijk = Rij ∪Rjk ∪Rik. Given the fact that dstmin(p,Rij) > θ, dstmin(p,Rik) > θ, and

dstmin(p,Rjk) > θ, it must be true that

dstmin(p,Rijk) > θ. Therefore, R must be a DBH.

Induction step. If we add v′ into C, we get a new clique C ′. Let RC′ be the MBH

constructed from C ′. Next, we prove that RC′ is always a DBH. We prove this for

three cases: (1) P ′ ∈ RC , (2) P ′ falls out of the range of RC at one dimension, and

(3) P ′ falls out of the range of RC at both dimensions.

Case 1. P ′ ∈ RC . This case is trivial as it is easy to see that RC′ = RC . So

RC′ must be a DBH.

Case 2. At exactly one dimension, P ′ falls out of RC . Then it must be true

that either P ′[i] < lCi or P ′[i] > uCi , for either i = 1 or i = 2. Without loss of

generality, we define the four boundary nodes of RC as P 1, P 2, P 3, and P 4 (as

shown in Figure 5.3 (b)). Also we assume that P ′[1] ∈ [lC1 , u
C
1 ] and P ′[2] < lC2 . It is

easy to see that RC′ = (< lC1 , u
C
1 >,< P ′[2], uC2 >) = RC ∪ R(P ′, P 2) ∪ R(P ′, P 3).

Apparently, RC is covered by RC′.

Before we prove that RC′ is a DBH, we present a lemma.
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Lemma 3. Given two rectangles R1(< l11, u
1
1 >, . . . , < l1d, u

1
d >) and R2(< l21, u

2
1 >

, . . . , < l2d, u
2
d >) in the same Euclidean space, if R1 is covered by R2, i.e. l2i ≤ l1i ≤

u1
i ≤ u2

i for any i = 1, . . . , d, then dstmin(P,R1) ≥ dstmin(P,R2) for any point P .

Lemma 3 states that if R1 is covered by R2, for any point P , its minimum

distance to R1 is no less than the minimum distance to R2.

Next, let’s consider RC′ that is constructed from adding the point P ′ to the

existing DBH RC . We pick a point Pi ∈ RC′ (1 ≤ i ≤ t) s.t. Pi[1] = lC1 and Pi[2] ∈

[lC1 , u
C
1 ]. Apparently, R(P ′, P 2) is covered by R(P ′, Pi). Because there is an edge

between v′ and vi in the graph G, it must be true that dstmin(Pq, R(P ′, Pi)) > θ. Fol-

lowing Lemma 3, we can infer that dstmin(Pq, R(P ′, P 2)) > θ. Similarly, there must

be a point Pj with Pj[1] = uC1 and Pj[2] ∈ [lC1 , u
C
1 ]. Because R(P ′, P 3) is covered by

R(P ′, Pj) and dstmin(Pq, R(P ′, Pj)) > θ, we can prove that dstmin(Pq, R(P ′, P 3)) > θ.

Thus, we prove that dstmin(Pq, RC′) > θ and RC′ is a DBH.

Case 3. On both dimensions, P ′ falls out of RC . Formally, either p′[i] <

lCi or P ′[i] > uCi , for both i = 1, 2. Without loss of generality, we assume that

P ′[0] ∈ [lC1 , u
C
1 ] and P ′[2] < lC2 . It is easy to see that RC′ = (< P ′[1], uC1 >,<

P ′[2], uC2 >) = RC ∪ R(P ′, P 1) ∪ R(P ′, P 3). There must exists a Pi(1 ≤ i ≤ t) s.t.

Pi[2] = uC2 and Pi[1] ∈ [lC1 , u
C
1 ]. In other words, R(P ′, P 1) is covered by R(P ′, Pi). As

dstmin(Pq, R(P ′, Pi)) > θ, it must be true that dstmin(Pq, R(P ′, P 1)) > θ. Similar to

Case 2, we can prove that dstmin(Pq, R(P ′, P 3)) > θ based on Pj. Thus, we prove

that dstmin(Pq, RC′) > θ and RC′ is a DBH.

Based on Theorem 7, the MDBH problem is equivalent to the well-known

clique partition problem, which is to find the smallest number of cliques in a graph

such that every vertex in the graph belongs to exactly one clique. The clique parti-

tion problem is NP-complete. Thus, we design the heuristic solution to our MDBH
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problem. Our heuristic algorithm is based on the concept of maximal cliques. For-

mally, a clique is maximal if it cannot include one more adjacent vertex. The max-

imal cliques can be constructed in polynomial time [44]. It is shown that every

maximal clique is part of some optimal clique-partition [44]. Based on this, finding

a minimal number of cliques is equivalent to finding a number of maximal cliques.

Thus we construct maximal cliques of G iteratively, until all the vertices belong to

at least one clique.

We have the pseudocode in Algorithm 5.3. To solve the MDBH problem,

we first construct the graph G (Line 1). Then we initialize a clique with a single

node whose degree is the minimum (Line 4-5). This is because the vertex of small

degree is difficult to put into a large clique. Thus we start with the most difficult

vertex and build a maximal clique for it. In Line 6 and 7, we define U1 and U2, the

union of which is the set of vertices that are not in any partition yet. Specifically,

U1 contains the set of vertices that have the potential to be added to the current

clique C, because every vertex in U1 is connected with all the nodes in C in the

graph G. In Line 17, from all the vertices in U1, we pick the one of smallest degU2 as

it is the one that is most difficult to be grouped into other cliques. After we extend

the clique C by one vertex, we update the set U1 and U2 accordingly (Line 20). We

repeatedly add vertices to C until it is maximal, i.e., not extendable. We repeat the

steps to find maximal cliques until all vertices are in a clique. The DBHs can be

constructed by building MBHs for the points of the vertices in every clique.

There is a special case where the MDBH problem can be solved in poly-

nomial time: when the embedded points of all DBH-strings lie on a single line, we

can construct a minimal number of DBHs in the complexity of O(`), where ` is the

number of DBH-strings. Let L be the line that the embedded points of DBH-strings

lie on. We draw a perpendicular line from Pq to L. Let dst(Pq,L) be the distance
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between Pq and L. Depending on the relationship between θ and dst(Pq,L), there

are two cases:

Case 1: dst(Pq,L) > θ. We construct the MBH of all the embedded points

of DBH-strings.

Case 2: dst(Pq,L) ≤ θ. The perpendicular line splits all points of DBH strings

into two subsets, PL and PR, where PL includes the embedded points that are at

one side of L, and PR be the points at the other side. A special case is that Pq lies

on L. For this case, Pq still splits all points on L into two subsets, PL and PR. It

is possible that PL or PR is empty. For each non-empty PL or PR, we construct a

corresponding MBH.

We have the following theorem.

Theorem 8. The MBH constructed following the above approach must be a DBH.

Proof. For Case 1, if dst(Pq,L) > θ, for any point P located on L, it must be true

that dst(Pq, P ) ≥ dst(Pq,L) > θ. For Case 2, if PL is non-empty, then dstmin(Pq, PL) ≥

min{dst(Pq, P )|P ∈ PL} > θ. So PL must be a DBH. The same reasoning holds

for PR.

When d > 2. Unfortunately, Theorem 7 can not be extended to the case of d > 2.

There may exist MBHs of the pairs (vi, vj), (vi, vk), and (vj, vk) that are DBHs.

However, the MBH of the triple (vi, vj, vk) is not a DBH, as it includes a point w

such that w is not inside R(vi, vj), R(vi, vk), and R(vj, vk), but dst(Pq, w) < θ.

To construct the DBHs for the case d > 2, we slightly modify the clique-

based construction algorithm for the case d = 2. In particular, when we extend

a clique C by adding an adjacent vertex v, we check if the MBH of the extended

clique C ′ = C ∪ {v} is a DBH. If not, we delete the edge (u, v) from G for all u ∈ C
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(Line 9-20 of Algorithm 5.3). This step ensures that if we merge any vertex into a

clique C, the MBH of the newly generated clique is still a DBH.

For both cases d = 2 and d > 2, the complexity of constructing DBHs from

DBH-strings is O(n3
DS), where nDS is the number of DBH-strings.

Require: The query point Pq, all the TP -points {p1, . . . , pt}
Ensure: The set of DBHs R

1: Construct G = (V,E) from {p1, . . . , pt}
2: C = ∅
3: while V 6= ∅ do
4: Find the node v with smallest degree deg(v)
5: Set a new clique C = {v}
6: U1 = {u|∀u ∈ V , ∀C ∈ C, u 6∈ C and ∀v ∈ C (u, v) ∈ E}
7: U2 = {u|∀u ∈ V , ∀C ∈ C, u 6∈ C and ∃v ∈ C (u, v) /∈ E}
8: while U1 6= ∅ do
9: if d > 2 then

10: if |C| ≥ 2 then
11: for all u ∈ U1 do
12: C ′ = C ∪ {u}
13: if DSTmin(rect(C ′), p) ≤ θ then
14: U1 = U1 − {u}
15: U2 = U2 ∪ {u}
16: Remove (u, v) from E for each v ∈ C
17: end if
18: end for
19: end if
20: end if
21: Pick u ∈ U1 with smallest degU2(u) = |{v|v ∈ U2 and (u, v) ∈ E}|
22: V = V − {u}
23: C = C ∪ {u}
24: Update U1 and U2

25: end while
26: C = C ∪ C
27: end while
28: R = {MBH(C)|C ∈ C}
29: return R

Algorithm 5.3: Build a small number of DBHs to cover TP -strings

Now we are ready to describe V O construction by the E-V S2 approach.
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Given a dataset D and a target record sq, let MS and F be the similar strings and

false hits of sq respectively. V S2 groups F into C-strings and NC-strings. E-V S2

further groups C-strings into FP-strings and DBH-strings. Then E-V S2 constructs

V O from MS, NC-strings, FP-strings, and DBH-strings. Formally,

Definition 7. Given a target record sq, let MS be the returned similar strings of sq.

Let NC be the NC-strings, and DS the DBH-strings. Let T be the MB-tree, MF

be the maximum false hit trees of NC. Let R be the set of DBH constructed from

DBH. Then the V O of sq consists of: (i) string s, for each s ∈ D −NC −DS (i.e., s

is either a similar string or a FP-string); (ii) a pair (N, h1→f ) for each non-leaf MF

that is rooted at node N , where N takes the format of [Nb, Ne], with [Nb, Ne] the

string range associated with N , and h1→f = h(hC1 || . . . ||hCf
), with C1, . . . , Cf being

the children of N ; (iii) R; and (iv) a pair (s, pR) for each s ∈ DS, where pR is the

pointer to the DBH in R that covers the Euclidean point of s; Furthermore, in V O,

a pair of square bracket is added around the strings that share the same parent in

T .

Example 5.2.3. Consider the MB-tree in Figure 5.2 (a). The target record is sq.

The similar strings MS = {s2}. The NC-strings NC = {s7, . . . , s12}. The C-strings

C = {s1, s3, s4, s5, s6}. Consider the embedded Euclidean space shown in Figure

5.2 (b). Apparently s6 is a FP-string as dst(pq, p6) < θ. So the DBH-strings are

{s1, s3, s4, s5}. The DBHs of these DBH-strings are shown in the rectangles in

Figure 5.2 (b). The V O of target record sq is

V O = {((((s1, pR1), s2, (s3, pR2)), ((s4, pR2), (s5, pR1), s6)), ([s7, s12], h7→12)), {R1, R2}},

where h7→12 = h(hN6||hN7).
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Phase Measurement V S2 E-V S2

Pre-processing
Time O(n) O(cdn2)

Space O(n) O(n)

VO construction
Time O(n) O(n+ n3

DS)
V O Size (nR + nC)σS + nMFσM (nR + nC)σS + nMFσM + nDBHσD

Verification Time O((nR + nMF + nC)CEd)O((nR + nMF + nFP )CEd + nDBHCEl)

Table 5.1: Complexity comparison between V S2 and E-V S2

( n: # of strings in D; c: a constant in [0, 1]; d: # of dimensions of Euclidean space;
σS: the average length of the string; σM : Avg. size of a MB-tree node;
σD: Avg. size of a DBH; nR: # of strings in MS; nC : # of C-strings;
nFP : # of FP-strings; nDS: # of DBH-strings; nDBH : # of DBHs;

nMF : # of MF nodes; CEd: the complexity of an edit distance computation; CEl:
the complexity of Euclidean distance calculation.)

Authentication Phase

After receiving V O from the server, the client extracts MS and uses V O to verify if

MS is sound and complete. The verification of E-V S2 consists of four steps. The

first three steps are similar to the three steps of the V S2 approach. The fourth step

is to re-compute a set of Euclidean distance. Next, we discuss the four steps in

details.

Step 1 & 2: These two steps are exactly the same as Step 1 & 2 of V S2.

Step 3: Re-computing necessary edit distance. Similar to V S2, first, for each

s ∈ MS, the client verifies DST (s, sq) ≤ θ. Second, for each range [Nb, Ne] ∈ V O,

the client verifies whether DSTmin(sq, N) > θ, where N is the corresponding MB-

tree node associated with the range [Nb, Ne]. The only difference of the E-V S2

approach is that for each FP-string s, the client verifies if DST (sq, s) > θ. If not, the

client concludes that MS is incomplete.

Step 4: Re-computing of necessary Euclidean distance. Step 3 only verifies

the dissimilarity of FP- and NC-strings. In this step, the client verifies the dissimi-

larity of DBH-strings. First, for each pair (s, pR) ∈ V O, the client checks if Ps ∈ R,
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where Ps is the embedded point of s, and R is the DBH that pR points to. If all pairs

pass the verification, the client ensures that the DBHs in V O covers the embedded

points of all the DBH-strings. Second, for each DBH R ∈ V O, the client checks if

dstmin(Pq, R) > θ. If it is not, the client concludes that the returned results are not

correct.

Note that we do not require to re-compute the edit distance between any

DBH-string and the target record. Instead we only require the computation of the

Euclidean distance between a set of DBHs and the embedded points of the tar-

get record. Since the Euclidean distance computation is much faster than that of

the edit distance, E-V S2 saves much verification cost compared with V S2. More

comparison of V S2 and E-V S2 can be found in Section 5.2.3.

Example 5.2.4. Following the running example in Example 5.2.3, after calculat-

ing the root hash h′root from V O and comparing it with the one decrypted from

the signature sig received from the data owner, the client performs the following

computations: (1) for MS = {s2}, compute DST (sq, s2); (2) for NC-strings NC =

{s7, . . . , s12}, compute DSTmin(sq, N3); (3) for FP-strings FP = {s6}, compute

DST (sq, s6); and (4) for DBH-strings DS = {s1, s3, s4, s5}, compute dstmin(Pq, R1)

and dstmin(Pq, R2). Compared with the V S2 approach which computes 7 edit dis-

tances, E-V S2 computes 3 edit distances, and 2 Euclidean distances. Note that

the Euclidean distances computation is much cheaper than the edit distance com-

putation.

Security Analysis

Similar to the security discussion for the V S2 approach (Sec. 7.3), the server

may perform three types of cheating behaviors, i.e., tampered values, soundness
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violation, and completeness violation. E-V S2 can catch the cheating behaviors of

tampered values by re-computing the root hash value ofMB-tree (i.e., Step 2 of the

authentication procedure). Next, we mainly focus on how to catch the soundness

and completeness violation by the E-V S2 approach.

Soundness. To violate soundness, the server returns MS = M ∪ FS, where

FS ⊆ F (i.e., FS is a subset of false hits). We consider two possible ways that

the server constructs V O: (Case 1.) the server constructs the V O of the correct

result M , and returns {MS, V O} to the client; and (Case 2.) the server constructs

the V O of MS, and returns {MS, V O} to the client. Note that the strings in FS can

be NC-strings, FP-strings, and DBH-strings. Next, we discuss how to catch these

three types of strings for both cases.

For Case 1, for any NC-string s ∈ FS, s can be caught in the same way as by

V S2 approach (i.e., Step 1 of authentication). For any FP-string s ∈ FS, s can be

caught by re-computing the edit distance DST (s, sq) (i.e., Step 3 of authentication).

For any DBH-string s ∈ FS, let Ps be the embedded point of s. Since the VO is

constructed from the correct M and F , there must exist a DBH in VO that includes

Ps. Therefore, s can be caught by verifying whether there exist any DBH that

includes the embedded points of s (Step 4 of the authentication procedure).

For Case 2, the NC-strings and FP-strings in FS can be caught in the same

way as in Case 1. The DBH-strings cannot be caught by Step 4 now, as: (1) the

DBHs constructed from a subset of DBH-strings are still DBHs, and (2) no string

in FS is included in a DBH in the VO. However, these DBH-strings are treated as

FP-strings (i.e., not included in any DBH), and thus can be caught by Step 3.

Completeness. To violate the completeness requirements, the server returns re-

turns MS = M − SS, where SS ⊆ M . Let V and V ′ be the VO constructed from

M and MS respectively. We again consider the two cases as for the discussion of
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soundness violation.

For Case 1, where the VO is constructed from the correct result M , any

string s ∈ SS is a FP-string, as s is not included in M . Then by calculating

DST (s, sq), (i.e., Step 3 of the authentication procedure), the client discovers that

s is indeed similar to sq and thus catch the incomplete results.

For Case 2, where the VO is constructed from MS, any string s ∈ SS is

either a FP-string or a DBH-string. If s is treated as a FP-string, it can be caught

by recomputing of edit distance (Step 3 of the authentication procedure). If s is a

DBH-string, then its Euclidean point Ps must be included in a DBH R. We have the

following theorem.

Theorem 9. Given a target record sq and a DBH R (i.e., dstmin(Pq, R) > θ), then for

any string s such that s 6'E sq, adding the embedded point of s to R must change

R to be a non-DBH.

Proof. The proof of Theorem 9 is straightforward. Let R′ be the hyper-rectangle

after adding Ps to R. It must be true that dstmin(Pq, R) ≤ dst(Pq, P ) ≤ dst(sq, s) ≤ θ.

Then R′ cannot be a DBH.

Following Theorem 9, for any string s ∈ SS, including its embedded point

into any DBH R will change R to be a non-DBH. Then the client can easily catch it

by re-computing the euclidean distance (Step 4 of verification).

5.2.3 Complexity Analysis

In this section, we compare V S2 and E-V S2 approaches in terms of the time and

space of the pre-processing, V O construction, and verification phases. The com-

parison results are summarized in Table 5.1. Regarding the V O construction over-

head at the server side, the DBH construction introduces O(n3
DS) complexity. This
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makes the VO construction complexity of E-V S2 higher than that of V S2. However,

in our empirical study, nDS is around a tenth of n. Besides, the computing capability

at the server side is solid. Thus the overhead O(n + n3
DS) of the E-V S2 approach

is still acceptable.

Regarding the VO size, the VO size of the V S2 approach is calculated as

the sum of two parts: (1) the total size of the similar strings and C-strings (in string

format), and (2) the size of MF nodes. Note that σM = 2σS + |h|, where |h| is the

size of a hash value. In our experiments, it turned out that σM/σS 6'E 10. The VO

size of the E-V S2 approach is calculated as the sum of three parts: (1) the total

size of the similar strings and C-strings (in string format), (2) the size of MF nodes,

and (3) the size of DBHs. Our experimental results show that σD is small, and the

VO size of E-V S2 is comparable to that of V S2.

Regarding the complexity of verification time, note that nC = nFP + nDS,

where nC , nFP and nDS are the number of C-strings, FP-strings, and DBH-strings

respectively. Usually, nDBH << nDS as a single DBH can cover the Euclidean

points of a large number of DBH-strings. Also note that CEd (i.e., complexity of an

edit distance computation) is much more expensive than CEl (i.e, the complexity of

Euclidean distance calculation). Our experiments show that the time to compute

one single edit distance can be 20 times of computing one Euclidean distance.

Therefore, compared with V S2, E-V S2 significantly reduces the verification over-

head at the client side. We admit that it increases the overhead of pre-processing

at the data owner side and the V O construction at the server side. We argue that,

as the pre-processing phase is a one-time operation, the cost of constructing the

embedding function can be amortized by a large number of queries from the client.

And as the server is equipped with strong computing resources, it is of the highest

priority to reduce the verification complexity at the client side.
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5.3 VO Construction for Multiple Target Records

So far we have discussed the authentication of record matching of a single tar-

get string (record). To authenticate the matching result for multiple target strings

(records) S = {s1, . . . , s`}, a straightforward solution is to create VO for each string

si ∈ S and its similarity result MS(si). Apparently this solution may lead to V O of

large sizes in total. Thus, we aim to reduce the size of VOs. Our V O optimization

method consists of two main strategies. We discuss both schemes in details.

5.3.1 Optimization by Triangle Inequality

It is well known that the string edit distance satisfies the triangle inequality, i.e.

|DST (si, sk) − DST (sj, sk)| ≤ DST (si, sj) ≤ DST (si, sk) + DST (sj, sk). There-

fore, consider two strings si, sj ∈ D, assume the the server has executed the

approximate matching of si and prepared the VO of the results. Then consider

the authentication of the search results of string sj, for any string s ∈ D such that

DST (s, si) − DST (si, sj) > θ, there is no need to prepare the proof of s showing

that it is a false hit for sj. A straightforward method is to remove s from the MB-tree

T for V O construction for the string sj. Now the question is whether removing s

always lead to V O of smaller sizes. We have the following theorem.

Theorem 10. Given a string s and a MB-tree T , let N ∈ T be the corresponding

node of s, and NP be the parent of N in T . Let C(NP ) be the set of children of P

in T , and N ′P be the node constructed from C(NP )\N (i.e., the children nodes of

Np excluding N ). Then if NP is a non-candidate, it must be true that N ′P must be a

non-candidate.

Proof. Let [Nb, Ne] be the range of NP . The proof of Theorem 10 considers two
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cases: (1) s 6= Nb and s 6= Ne. Removing s will not change Nb and Ne, which

results in that both N ′p and Np have the same range [Nb, Ne]. (2) s = Nb or s = Ne.

Removing s from C(NP ) changes the range of NP to be [N ′b, N
′
e]. Note that it must

be true [N ′b, N
′
e] ⊆ [Nb, Ne]. Therefore, N ′P must be a non-candidate.

Based on Theorem 10, removing the MB-tree nodes that correspond to any

dissimilar string does not change the structure of the MB-tree. Therefore, we can

optimize the VO construction procedure by removing those strings covered by the

triangle inequality from the MB-tree.

Another possible optimization is that for any two target strings si and sj,

for any string s ∈ D such that DST (s, si) + DST (si, sj) ≤ θ, the client does not

need to re-compute DST (s, sj) to prove that si is a similar string in the results.

In Algorithm 5.4 we show the pseudocode of VO constuction at the server side.

Intuitively, M [i, j] = k if and only if DST (si, sk) +DST (sj, sk) ≤ θ, while N [i, j] = k

if and only if |DST (si, sk) −DST (sj, sk)| > θ. RTRI(si) (FHTRI(si) resp.) includes

the set of similar (dissimilar resp.) strings to si which can be verified by the triangle

inequality. From Line 9 to 20, the server constructs RTRI(si) and FHTRI(si) based

on the matrix M and N . In Line 21 to 32, the server updates M and N using

the similarity search result of si. In Algorithm 5.5, we display the pseudocode for

the client to do verification. Basically, for any string si, the client does not need to

check the verification objects for RTRI(si) and FHTRI(si). Instead, the verification

can be accomplished by using an easy arithmetic based on the triangle inequality.

5.3.2 Optimization by Overlapped Dissimilar Strings

Given multiple-string search query, the key optimization idea is to merge the VOs

of individual query strings. This is motivated by the fact that any two query strings
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si and sj may share a number of dissimilar strings. These shared dissimilar strings

can enable to merge the VOs of si and sj. Note that simply merging all similar

strings of si and sj into one set and constructing MB-tree of the merged set is not

correct, as the resulting MB-tree may deliver non-leaf MFs that are candidates to

both si and sj. Therefore, given two query strings si and sj such that their false

hits overlap, let NCi (NCj, resp.) and DBHi (DBHj, resp.) be the NC-strings and

DBH-strings of si (sj resp.), the server finds the overlap of NCi and NCj, as well

as the overlap between DBHi and DBHj. Then the server constructs V O that

shares the same data structure on these overlapping strings. In particular, first,

given the overlap O1 = NCi ∩ NCj, the server constructs the non-leaf MFs from

O1, and include the constructed MFs in the VOs of both si and sj. Second, given

the overlap O2 = DBHi ∩ DBHj, the server constructs the DBHs from O2, and

include the constructed DBHs in the VOs of both si and sj.

5.4 Experiments

In order to evaluate the efficiency of our string similarity search authentication ap-

proaches, we run an extensive set of experiments on real-world datasets. In this

section, we report the experiment results.

5.4.1 Experiment Setup

Datasets and queries. We use two real-world datasets : (1) the Actors dataset

from IMDB 1 that contains 260K last names. The maximum length of a name is

63, while the average is 14.627; and (2) the Authors dataset from DBLP 2 including

1,000,000 researcher names. The maximum length of a name is 99 while the
1http://www.imdb.com/interfaces
2http://dblp.uni-trier.de/xml/

http://www.imdb.com/interfaces
http://dblp.uni-trier.de/xml/
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Require: the set of search strings S = {s1, s2, . . . , s`}, the string dataset
D = {s1, s2, . . . , sn}, the similarity threshold value θ

Ensure: The set of verification objects for S
1: let M,N be two ` ∗ n matrix
2: for i ∈ [1, `] do
3: for j ∈ [1, n] do
4: M [i, j] = −1
5: N [i, j] = −1
6: end for
7: end for
8: for all si ∈ S do
9: for all sj ∈MS(si) do

10: if M [i, j] 6= −1 then
11: MS

TRI(si) = MS
TRI(si) ∪ {(sj ,M [i, j])}

12: MS(si) = MS(si)− {sj}
13: end if
14: end for
15: for all sj ∈ FH(si) do
16: if N [i, j] 6= −1 then
17: FHTRI(si) = FHTRI(si) ∪ {(sj , N [i, j])}
18: FH(si) = FH(si)− {sj}
19: end if
20: end for
21: for all sj , sk ∈MS(si) and j 6= k do
22: if M [j, k] = −1 AND DST (si, sj) +DST (si, sk) ≤ θ then
23: M [j, k] = i
24: M [j, k] = i
25: end if
26: end for
27: for all sj ∈ FH(si), sk ∈ FH(si) ∪R(si) do
28: if N [j, k] = −1 AND |DST (si, sj)−DST (si, sk)| > θ then
29: N [j, k] = i
30: N [k, j] = i
31: end if
32: end for
33: construct V O(Si) for MS(si) and FH(si)
34: V O(si) = V O(si) ∪MS

TRI(si) ∪ FHTRI(si)
35: end for
36: return the set of VOs for Q

Algorithm 5.4: Multi V O Construct(S, D, θ))

average length is 14.732. As both datasets are very large, it is too time-consuming

to execute approximate matching for all records in these two datasets. Thus, we
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Require: the set of search strings S = {s1, s2, . . . , s`}, the set of VOs
VO = {V O(s1), V O(s2), . . . , V O(s`)}, the similarity threshold value θ

Ensure: the correctness of the result
1: for all si ∈ S do
2: for all (sj , k) ∈MS

TRI(si) do
3: if DST (si, sk) +DST (sj , sk) > θ then
4: catch server’s soundness cheating
5: end if
6: end for
7: for all (sj , k) ∈ FHTRI(si) do
8: if |DST (si, sk)−DST (sj , sk)| ≤ θ then
9: catch server’s completeness cheating

10: end if
11: end for
12: end for
13: return the set of VOs for S

Algorithm 5.5: Multi V O V erify(S,VO, θ))

picked 10 target strings for approximate matching. For the following results, we

report the average performance of matching of the 10 target strings.

Experimental environment. We implement the V S2 and E-V S2 approaches in

C++. The hash function we use is the SHA256 function from the OpenSSL library.

We execute the experiments on a machine with 2.4 GHz CPU and 48 GB RAM,

running Linux 3.2.

Baseline. As the baseline method, we implement the brute-force approximate

string matching algorithm that calculates the edit distance between every string in

the dataset and the target string sq.

Parameter setup. The parameters include: (1) string edit distance threshold θ,

and (2) the fanout f of MB-tree nodes (i.e., the number of entries that each node

contains). The details of the parameter settings can be found in Table 5.2.

In the discussions, we use the following notations: (1) n: the number of

strings in the dataset, (2) nR: the number of similar strings, (3) nMF : the number

of MFs, and (4) nC : the number of C-strings. We use σS to indicate the average
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Parameter setting
Similarity threshold θ 2,3,4,5,6,7

MB-tree fanout f 10, 100, 1000, 10000

Table 5.2: Parameter settings

string size, and σM as the size of MB-tree node.

5.4.2 VO Construction Time

First, we measure the impact of distance threshold θ on the VO construction time.

In Figure 5.4, we show the VO construction time with regard to different θ values

on both datasets. First, we observe that E-V S2 consumes more time on construct-

ing VOs than V S2, especially when θ is a small value. This is because besides

traversing the MB-tree like V S2, E-V S2 constructs DBHs for the DBH-strings. The

number of DBH-strings nDS is large when θ is small. For example, on the Authors

dataset, when θ = 1, nDS = 510, 185; while when θ = 6, nDS = 111, 129. As a result,

the DBH construction complexity is higher when the threshold is small. Second,

with the increase of θ, there is a slight increment in the VO construction time of

V S2. The reason lies in the decrease in the number of MFs. When θ is small,

a node N may be a MF , because DSTmin(sq, N) > θ. While with a larger θ val-

ues, the node N becomes a candidate. For instance, on the Actors dataset, when

θ = 1, nMF = 247; when θ = 2, nMF = 22. Consequently, V S2 needs to search

deep in the MB-tree to find the MF nodes, if there is any. However, compared

with n, the increase of nMF is not significant. Third, there is a dramatic decrease

in V O construction time of E-V S2 when θ increases. The reason lies in the sharp

reduction in nDS. Since the complexity of V O construction is cubic to nDS, the total

V O construction time decreases intensively when nDS decreases. Fourth, the VO

construction time on the Authors dataset is larger than that on the Actors dataset.
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This is because with the same fanout f , the MB-tree’s size of the Authors dataset

is larger, due to the greater data size.
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Figure 5.4: VO construction time w.r.t. distance threshold θ
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Figure 5.5: VO construction time w.r.t. MB-tree fanout f

We also measured the impact of the MB-tree structure on the VO construc-

tion time. From Figure 5.5, we observe that V S2 requires smaller VO construction

time than E-V S2 regardless of the fanout of the MB-tree. The underlying reason

resides in the DBH construction cost of E-V S2. Besides, in all the experiments,

the VO construction time increases with the fanout value f . Even though the total

number of nodes in the MB-tree decreases with larger fanout values, the decrease

in the number of MFs nMF is more intense. For example, on the Authors dataset,

when f = 100, nMF = 5, 420; while when f = 1, 000, nMF = 57. The reason behind
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the significant reduction in nMF is that when f is large, DSTmin(sq, N) becomes

a loose lower-bound for any MB-tree node N . This leads to a significant portion

of the MB-tree nodes to become candidates. The observation from Figure 5.5

suggests that small fanout values fit our V S2 and E-V S2 methods better.

5.4.3 VO Size
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Figure 5.7: VO size w.r.t. MB-tree fanout f

We measure the impact of the distance threshold θ on the VO size. The

results are shown in Figure 5.6. We notice that the VO size of V S2 and E-V S2

is very close. The reason is two manifold. On the one hand, the size of each
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DBH is very small. On the other hand, the number of DBHs nDBH is also very

small. In the experiments, nDS/nDBH 6'E 26. In other words, each DBH covers the

Euclidean points of 26 DBH-strings. Due to these two reasons, even though E-V S2

introduces DBHs additionally to the VO, the increment in VO size is small, and the

overall VO size is roughly the same as that of V S2. Another observation is that the

VO size increases with the growth of θ value, especially when θ increases from 1

to 2. Apparently, larger θ values lead to more similar strings (i.e., larger nR), fewer

MFs (i.e., smaller nMF ), and fewer C-strings (i.e., smaller nC). In V S2, the VO

size is decided by (nR + nC)σS + nMFσM , where σM
σS
6'E 20. When we increase θ,

even though nMF reduces, the intensive growth of nR and nC leads to the increase

of VO size. For example, on the Actors dataset, when θ = 1, nR + nC = 137, 655,

nMF = 247. While when θ = 3, nR + nC = 249, 373, nMF = 22.

Furthermore, we measure the impact of the MB-tree fanout f on the VO

size. Following the same reason as before, we notice in Figure 5.7 that V S2 and

E-V S2 produce VO of similar size. For both approaches, the VO size increases

with the growth of f . Recall that in V S2, the V O size is (nR + nC)σS + nMFσM .

When f increases, nR is unchanged. Meanwhile, nC dramatically increases with f

(e.g., on the Actors dataset, when f increases from 100 to 1, 000, nC increases by

122, 515). Moreover, when f increases, nMF decreases by a small degree (when f

changes from 100 to 1, 000, nMF decreases by 2, 937). Considering that σM
σS
6'E 20,

the intensive increase of nC leads to a larger VO size.

5.4.4 VO Verification Time

In this section, we measure the VO verification time at the client side. We compare

the VO verification time with the performance of our baseline algorithm, aiming to
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show that the client’s verification effort is less than by doing string matching locally.
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Figure 5.10: VO verification time w.r.t. MB-tree fanout f
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In Figure 5.8, we report the VO verification time of V S2 and E-V S2 with

regard to various distance threshold values. First, we observe that the VO veri-

fication time is always smaller than the baseline. In particular, it can save up to

53% computational effort at the client side if she verifies the approximate matching

result using V S2 rather than using the baseline. E-V S2 can save even 96% of the

client’s verification effort. This proves that our verification method is suitable for the

outsourcing setting. Second, the verification time of E-V S2 is always much smaller

than that of V S2, which proves the efficiency of E-V S2. Third, the VO verification

time increases when θ increases. Recall that the complexity of VO verification is

O((nR + nC + nMF )CEd) for V S2 and O((nR + nMF + nFP )CEd + nDBHCEl) for E-

V S2. When θ increases, nMF decreases, while nR, nC and nFP increase. As nR,

nC and nFP increase faster than the decrease of nMF , it leads to more edit distance

calculations. Therefore, the total verification time increases.

We observe that when θ is smaller, E-V S2 wins more over V S2. We conduct

deeper study to explore the reason. We find that rather than θ, the key factor to

verification time is the fraction of DBH-strings (denoted as pDS), where pDS = nDS

n
.

In Figure 5.9, we compare the VO verification time of V S2 and E-V S2 with regard to

various pDS values. In particular, let t1 and t2 be the verification time of of V S2 and

E-V S2 respectively. We report the ratio r = t2
t1

under different pDS values. Intuitively,

smaller r values show the effectiveness of E-V S2 in saving the verification time at

the client side. The main observation is that r is smaller for larger pDS value. This

is because with E-V S2, the client replaces the edit distance calculation for DBH-

strings by efficiently computing the Euclidean distance of a small amount of DBHs.

The larger pDS is, the larger fraction of edit distance calculations that the client can

avoid. In particular, E-V S2 can save up to 91% verification cost at the client side

than V S2 (r = 9%). This demonstrates the strength of E-V S2 in reducing the VO
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verification complexity.

We also measure the VO verification time with various MB-tree fanout f .

On both datasets, the VO verification is always more efficient than the baseline

method. In particular, when the fanout reaches 10, V S2 and E-V S2 can save up

to 90% and 92% computational effort at the client side respectively. Besides, the

verification time increases when f grows. This is straightforward as larger f results

in the growth of the number of C-strings for V S2 and F -strings for E-V S2. This

requires more edit distance calculations.

In sum, the experiment results suggest that V S2 and E-V S2 are efficient

authentication approaches to verify the result of outsourced record matching com-

putations. In particular, E-V S2 alleviates the verification effort at the client side

better, but demands more VO construction endeavor at the server side.



109

Chapter 6

Privacy-preserving Outsourced Data Inconsistency Repair with Adversarial

FD Knowledge

In this chapter, we discuss how to protect the data privacy when outsourcing the

data inconsistency repair tasks to a server with functional dependency (FD) knowl-

edge about the original dataset. We allow the client to express content-based

security granularity (i.e., the sensitive information) in the format of security con-

straints (SCs). We consider the server tries to infer the sensitive information via

the FD knowledge. We study the security threats by the adversarial functional

dependencies and design efficient partial encryption schemes to defend against

the FD-based attack with small overhead. This work has been published in the

proceedings of IEEE International Conference on Big Data Security on Cloud (Big-

DataSecurity), April, 2016.

6.1 Preliminaries

In this section, we introduce the background knowledge.

6.1.1 Query Types

We consider D as a relational table that consists of m attributes and n records. We

use r[X] to specify the value of record r on the attribute(s) X. Since D may contain

sensitive information and the server is not fully trusted, the data owner encrypts D

to D̂ using symmetric encryption algorithms like AES [35] and DES [32], and sends

D̂ to the server. Only authorized users have the key to decrypt D̂. It is worth noting
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that it is possible that only a portion of D is sensitive. The non-sensitive data of D

is allowed to be accessible by any third party, including the server.

NM SEX AGE DC DS
Alice F 53 CPD5 HIV
Carol F 30 VPI8 Breast Cancer
Ela F 24 VPI8 Breast Cancer

(a) The original dataset D
NM SEX AGE DC DS

Alice F 53 CPD5 α

Carol F 30 VPI8 Breast Cancer
Ela F 24 VPI8 γ

(b) The unsafe encrypted dataset D̄

Figure 6.1: An example of data instance (FD: DC→ DS)

After the server receives the outsourced dataset D̂, it accepts SQL queries

from the users, and evaluate the queries on D̂. The data owner can be one of the

data users. We consider two types of query Q:

• Point query: Q consists of the value-based constraint that is specified in the

format ∪1≤i≤mAi = ai, where Ai is an attribute of D, and ai is a specific value

of Ai. Considering Figure 6.1, an example of point query is “SELECT NM

FROM D WHERE AGE = 30”. This query returns all patients whose age is

30;

• Range query: Q consists of the value-based constraint in the format ∪1≤i≤mAi ∈

[ai, bi], where Ai is an attribute of D, and ai, bj are two specific values of Ai.

Again, according to the table in Figure 6.1, an example of range query is “SE-

LECT NM FROM D WHERE AGE ∈ [20, 40]”. This query returns all patients

whose age is between 20 and 40.

For both types of queries, the server returns the records that satisfy Q.
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6.1.2 Security Constraints

We propose security constraints (SCs) as a means for the data owner to specify the

data that she intends to protect from the untrusted service provider. We adapt the

selection-projection queries [17] as the format of the SCs. Formally, the security

constraint is defined in the format ΠY σc, where

• ΠY denotes the projection of a relation on attributes Y ;

• σc denotes the selection condition in which C is a conjunction of equalities of

format A = B or A = a such that A,B are attributes and a is a constant.

For any SC S : ΠY σc, we use Proj(S) to denote the projection attribute list

Y of ΠY , and Sel(S) to denote the list of the attributes in its selection condition

σc. We allow Sel(S) to be empty. For example, consider the security constraint S:

ΠBσC=c1, then Proj(S) = {B}, and Sel(S) = {C}.

Selection-projection queries enable SCs to be expressed in SQL statements

so that the data owner can easily enforce the SCs (by executing the SQL state-

ments) over her dataset. For a given dataset D and a SC S, we use S(D) to

denote the sensitive cells that is required to be protected. We consider encryption

as the way to enforce SCs.

For a given dataset D and a set of SCs S, we define the basic scheme as

following. We use ∪S∈S(S(D)) to denote the union of sensitive cells of all SCs.

Definition 6.1.1. [Basic Scheme] Given a dataset D and a set of security con-

straints S, the basic scheme of enforcing S on D is to encrypt ∪S∈S(S(D)).

Example 6.1.1. Consider the dataset D in Figure 7.1 (a). Apparently, there is a FD

A → B in D. Consider the security constraint SC ΠBσC=c1. The basic encryption

scheme D̄ according to the SC is shown in Figure 7.1 (b).
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We focus on the deterministic encryption mechanism (i.e., the same plain-

text is always encrypted as the same ciphertext for a given key). In particular,

we use AES as the deterministic encryption algorithm. The algorithm is applied

at cell level, i.e., the cells in the relation D are encrypted individually. The ad-

vantage of using cell-level encryption is to support execution of point queries on

the encrypted data. The execution of range queries can be supported by order-

preserving encryption (e.g., [4, 14]) or homomorphic encryption [100]. We use

these two encryption algorithms to support efficient query evaluation, especially

range queries. We are aware that both the deterministic encryption and order pre-

serving encryption can lead to data leakage [90]. This is the trade-off between

security and efficiency.

6.1.3 Attack Model

In this thesis, we consider the server that can be compromised and thus acts as the

attacker. We assume the server is semi-honest, i.e., honestly follow the protocol

but curious to obtain the sensitive information. Thus it may try to infer the plaintext

values from the ciphertext. We only focus on FDs as the adversary knowledge.

Other types of adversary knowledge (e.g., frequency distribution of the plaintext

data) is out of scope of this section.

6.1.4 Our Approaches in a Nutshell

We perform the foundational study of security vulnerabilities by adversarial FDs,

and formalize the FD attack. Following this, we design an efficient algorithm to find

the data cells that are necessarily to be encrypted to defend against the FD attack.

We prove that finding the optimal scheme that encrypts the minimum number of
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data cells is NP-complete. Therefore, we design efficient greedy algorithms to find

a small amount of non-sensitive data cells to be encrypted (together with sensi-

tive data cells), under the presence of one or multiple FDs. In order to facilitate

the query processing over the partially encrypted data, we design a secure query

rewriting scheme that enables the service provider to answer point and range SQL

queries on the encrypted data with provable security guarantee.

6.2 Difference between Our Approach and the Existing Work

In this section, we briefly introduce some existing work in eliminating inference

channel from the dataset and discuss their problems in our setting.

The problem of using the association between attributes to infer sensitive

information has been widely explored in the last two decades. One solution is

to block the inference channel by increasing the security level of certain attributes

[116, 17]. The other is to split the data into multiple fragments to break the sensitive

associations between attributes [28, 128]. Next, we compare our approach with

these two methods.

Inference Control The problem of inference channel via FDs has been investi-

gated in the context of multilevel secure relational database management system

(MDB) [116, 17]. The existing work can be classified into two types: (1) at query

time; and (2) at design time. The security mechanisms that enforce protection

at query time [17] mainly reject or modify the queries that may incur security vi-

olations. Such mechanisms are not suitable for the outsourcing paradigm as the

service provider may be compromised and fail to perform the protection when it

evaluates the queries. On other hand, the at-design mechanisms (e.g. [116]) de-

tect and eliminate the inference channels via encryption during database design
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time. However, the encryption is applied at an attribute level (i.e., all values of the

attribute are encrypted). Such coarse encryption granularity may bring tremen-

dous encryption overhead. In Example 7.2.4, we will show that by encrypting a

small amounts of non-sensitive data besides the sensitive one can disable the in-

ference based on adversarial FDs with lightweight encryption overhead.

TID A B C
1 a1 b1 c1
...

...
...

...
999 a1 b1 c2

1000 a1 b1 c2

1001 a1 b1 c3

1002 a2 b2 c3
...

...
...

...
2000 a2 b2 c3

TID A B C
1 a1 β1 c1
...

...
...

...
999 a1 β1 c2

1000 a1 β1 c2

1001 a1 b1 c3

1002 a2 b2 c3
...

...
...

...
2000 a2 b2 c3

(a) Original table D (FD : A→ B, (b) Basic encryption D̄ (not safe
S1 : ΠBσC=c1 , S2 : ΠBσC=c2) against FD attack)

TID A B C
1 α1 β1 c1

...
...

...
...

999 α1 β1 c2

1000 α1 β1 c2

1001 α1 b1 c3

1002 α2 b2 c3

...
...

...
...

2000 α2 b2 c3

TID A B C
1 a1 β1 c1
...

...
...

...
999 a1 β1 c2

1000 a1 β1 c2

1001 α1 b1 c3

1002 a2 b2 c3
...

...
...

...
2000 a2 b2 c3

(c) State-of-the-art [116] (overhead: 2000) (d) Our approach (overhead: 1)

Figure 6.2: An example that compares the existing work with our approach
(encrypted cells are shown in bold; encrypted non-sensitive cells are shown in

boxes)

Example 6.2.1. Consider the dataset D in Figure 6.2 (a). Assume it has FD F :

A → B. Consider two security constraint rules S1 : ΠBσC=c1 and S2 : ΠBσC=c2 on

D, which specify that for all records whose value of attribute C is c1 or c2, their
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value of attribute B is sensitive. The encryption scheme D̄ that enforces S1 and

S2 is shown in Figure 6.2 (b). Apparently, by the reasoning of F and the (a1, b1)

pair of Tuple 1001 in D̄, the attacker can infer that the cipher value β1 of Tuple

1, . . . , 1000 is indeed mapped to the plaintext value. To fix this, state-of-the-art

approach [116] encrypts the A attribute of all the tuples (cells in Figure 6.2 (c) that

are put in rectangles), which leads to 2000 non-sensitive cells to be encrypted. Our

approach (Figure 6.2 (d)) only encrypts the A attribute of Tuple 1001, leading to

one single non-sensitive data cell to be encrypted. The encryption overhead (i.e.,

the number of non-sensitive tuples being encrypted) of our approach is only 0.05%

of the existing methods [17, 116].

Example 7.2.4 shows that there exists a trade-off between the amounts

of encryption overhead and the data owner’s computational efforts. The existing

methods for the MDB model (e.g., [116, 17]) do not require the client to traverse

the data, with the price of high encryption overhead, while our approach reduces

the encryption overhead dramatically but with the owner’s efforts to find appropri-

ate non-sensitive data to encrypt. We argue that such efforts at the client side are

indeed affordable for some outsourcing models, for example, the cloud comput-

ing paradigm, in which organizations may actually possess much computational

resources [54]. Besides, since our approach introduces much smaller encryption

overhead, the client would enjoy a great improvement in data utility and significant

saving of decryption cost.

Data Fragmentation An alternative to protecting data with the existence of adver-

sary data associations is to decompose the data into smaller fragments [28, 128].

The fragmentation scheme is decided by the confidentiality constraints, which state

the set of attributes that should not appear together. Compared with this work, first,
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our security constraints are more flexible as they allow arbitrary associations be-

tween attributes and/or data values. Second, the fragmented data introduces addi-

tional overhead for processing queries that need to join multiple fragments. Third,

consider a cost model that measures the query processing overhead, the problem

of finding an optimal fragmentation scheme with minimum cost is NP-hard. As

pointed out in [128], the size of the search space for the problem exponentially

grows with m, where m is the number of attributes.

6.3 FD Attack

The basic idea of the FD attack is to find the sensitive and evidence records. We

first define the sensitive/evidence records and sensitive cells.

Definition 6.3.1. [Sensitive Cells/Records, Evidence Records] Given the dataset

D and a set of security constraints S, let D̄ be the basic scheme of enforcing S on

D. Let F : X → Y be a FD of D. Then for each record r ∈ D̄, if r[Y ] is encrypted,

we call r a sensitive record, and r[Z] a sensitive cell, for any Z that is a single

attribute of Y . Given a sensitive record r, for each record r′ 6= r that none of r′[X]

and r′[Y ] in D̄ is encrypted, but r′[X] = r[X], we call r′ an evidence record of r[Y ].

As an example, consider the table D and its basic scheme D̄ in Figure 7.1

(a) and (b). The record r1 is a sensitive record, with r1[B] as a sensitive cell.

The records r2 and r3 are the evidence records of r1[B]. It is worth noting that a

sensitive record can contain both sensitive and non-sensitive cells. Take r1 as an

example. It contains the sensitive cell r1[B], and non-sensitive cells r1[A] and r1[C].

Given an FD F : X → Y , consider a record r ∈ D̄ such that r[Y ] is encrypted

but r[X] is not. The attacker can launch the FD attack to break the encryption on

r[Y ]. In particular, for any sensitive (and encrypted) value r[Y ] ∈ D̄, the FD attack
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TID A B C
r1 a1 b1 c1

r2 a1 b1 c2

r3 a1 b1 c3

r4 a2 b2 c3

TID A B C
r1 a1 β1 c1

r2 a1 b1 c2

r3 a1 b1 c3

r4 a2 b2 c3

(a) Original table D (FD : A→ B, (b) Basic encryption D̄ (not robust)
SC: ΠBσC=c1)

TID A B C
r1 α1 β1 c1

r2 a1 b1 c2

r3 a1 b1 c3

r4 a2 b2 c3

TID A B C
r1 a1 β1 c1

r2 a1 β1 c2

r3 α1 b1 c3

r4 a2 b2 c3

(c) Solution 1 D̂1 (overhead: 1) (d) Solution 2 D̂2 (overhead: 2)

Figure 6.3: An example of FD attack and two fix approaches
(encrypted cells are shown in bold; encrypted non-sensitive cells are shown in

boxes)

on r[Y ] consists of the following steps:

Step 1: Search for the record r′ ∈ D̄ such that: (1) both r′[X] and r′[Y ] are

not encrypted, and (2) r′[X] = r[X]. Obviously these records are the evidence of

r[Y ];

Step 2: If any evidence record exists, replace r[Y ] (in ciphertext format) with

r′[Y ] (in plaintext format).

As an example, consider the base table D in Figure 7.1 (a) that has the FD

F : A → B. Also consider the security constraint ΠBσC=C1 and the basic scheme

D̄ shown in Figure 7.1 (b). The attacker can easily find tuple r2 as the evidence

of r1[B], and replaces r1[B] in D̄ (Figure 7.1 (b)) to be b1 accordingly. We say a

record r is FD-compromised if any of its encrypted sensitive cells can be replaced

with a plaintext value via the FD attack. We say an encrypted dataset D̄ is robust

against the FD attack if no record in D̄ is FD-compromised. Otherwise D̄ is unsafe

against the FD attack.
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6.4 Defending Against FD Attack

In this section, we discuss how to design robust schemes against the FD attack.

6.4.1 Robustness Checking of Basic Encryption

The basic scheme encrypts all sensitive cells according to the given security con-

straints. First, we discuss how to check whether the basic scheme is robust against

the FD attack. A naive method is to traverse the dataset to find whether there exist

an encrypted cell in the basic scheme that has any evidence record. The complex-

ity is O(tn), where t is the number of sensitive cells and n is the size of D. Though

correct, this approach can be costly for large datasets. Therefore, we design a

method that can decide whether the basic scheme is robust by using FDs and SCs

only, without traversing the dataset.

Our method relies on the sufficient condition of FD attack. [116] presents a

sufficient condition for preventing the security leakage by FD inference as to ensure

that for any FD F : X → Y , the security level of X should be no lower than that of

Y . We argue that this is not a complete set of sufficient conditions. We have the

following lemma to show our complete sufficient conditions.

Lemma 4. Consider a dataset D and its FD F : X → Y . An scheme D̄ is robust

against the FD attack if for each record in D̄ such that r[Y ] is sensitive, it satisfies

one of the two conditions below:

• Condition 1. There exists at least one attribute A ∈ X such that r[A] is

encrypted;

• Condition 2. r[X] is plaintext, and there does not exist a record r′ 6= r ∈ D̄

such that both r′[X] and r′[Y ] are plaintext and r′[X] = r[X].
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Condition 1 of Lemma 4 is equivalent to the sufficient condition of [116],

requiring that both r[X] and r[Y ] must be encrypted at the same time. It is not

necessary that all attributes of r[X] must be encrypted; at least one attribute being

encrypted is sufficient. Condition 2 addresses the case that r[X] can remain to be

plaintext as long as there is no evidence tuple of r[Y ] in D̄. This condition is not

covered by [116].

Following Lemma 4, we design the robustness checking method for the basic

encryption scheme. First, we consider the case that there is a single security

constraint (SC). We have the following theorem to check if the basic scheme is

robust against the FD attack when one single SC is present.

Theorem 11. Given a dataset D, a security constraint S, and an FD F : X →

Y , the basic scheme D̄ of D is robust against the FD attack w.r.t. F if one of

the following conditions is met: (a) X ∩ Proj(S) 6= ∅; (b) Y 6⊆ Proj(S); and (c)

Sel(S) ⊆ X ∪ Y .

Proof. We prove the correctness by showing that the three conditions in the theo-

rem makes the two conditions in Lemma 4 being satisfied. In particular, Condition

(a) enforces Condition 1 of Lemma 4, as at least one attribute of X will be consid-

ered as sensitive and thus encrypted. Condition (b) basically requires that Y values

are not considered as sensitive. Condition (c) enforces Condition 2 of Lemma 4,

since all records on which F holds are sensitive and thus encrypted.

Example 6.4.1. Consider the base table in Figure 7.1 (a), with FD F : A→ B and

SC S : ΠBσC=c1. To be explicit, X = {A}, Y = {B}, Proj(S) = {B}, Sel(S) = {C}.

The basic scheme (Figure 7.1 (b)) does not satisfy any of the three conditions in

Theorem 11. Therefore it is not robust against the FD attack. As another example,

assume we have a dataset D as in Figure 6.4 (a), with FD F : {A,B} → C and SC
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TID A B C D
r1 a1 b1 c1 d1

r2 a1 b1 c1 d2

r3 a1 b2 c2 d2

r4 a2 b1 c1 d3

r5 a2 b1 c1 d1

TID A B C D
r1 a1 b1 γ1 d1

r2 a1 b1 γ1 d2

r3 a1 b2 c2 d2

r4 a2 b1 γ1 d3

r5 a2 b1 γ1 d1

(a) Original table D (b) Basic encryption D̄
(FD: {A,B} → C, (robust)

SC: ΠCσB=b1)

Figure 6.4: An example illustrating Theorem 11

S : ΠCσB=b1. In this case, X = {A,B}, Y = {C}, Proj(S) = {C}, Sel(S) = {B}.

The third condition of Lemma 11 is satified. As the selection condition is B = b1,

the attribute value of C of records {r1, r2, r4, r5} are sensitive and encrypted. It is

true that for the four records, Condition 1 of Lemma 4 is not satisfied. However,

there does not exist any record whose attribute values of FD are not encrypted and

whose attribute values of {A,B} matches any of the four records. In other words,

Condition 2 of Lemma 4 is met. Thus, the basic encryption scheme is robust aginst

FD attack.

The reasoning of robustness checking for one single SC can be easily ex-

tended to multiple SCs. We have the following theorem.

Theorem 12. Given a dataset D, a set of security constraints S, and an FD F :

X → Y of D, the basic scheme D̄ of D is robust against the FD attack w.r.t.

F if one of the following conditions is met: (1) ∀S ∈ S, X ∩ Proj(S) 6= ∅; (2)

Y 6⊆ ∪S∈SProj(S); (3) ∪S∈SSel(S) ⊆ X ∪ Y .
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6.4.2 Encryption Against FD attack

If the basic scheme is not robust against the FD attack, we would fix the basic

encryption. The key idea of our fix method is to encrypt a set of non-sensitive cells

besides the sensitive cells that have to be encrypted. In this section, we explain

how to find those non-sensitive cells.

One Single SC. The success of the FD attack is the existence of evidence records.

Therefore, we aim to find the evidence records and fix the encryption on them.

First, we explain how to find the sensitive/evidence records efficiently. For a given

security constraint S : ΠY σc, in which Y is the RHS of the given FD F , first, we

re-write S to be S ′ : Π(X,Y )σc, where X and Y are LHS and RHS of F . Second,

we apply S ′ on D, and bucketize S ′(D) by its values. All (X, Y ) pairs of the same

values are put into the same bucket. Each bucket represents a unique sensitive

cell and its associated X value. Third, for each bucket B(X = x, Y = y), we

construct two selection-projection queries SS : ΠTIDσ(X=x,Y=y)∪c, where c is the

selection condition in S, and SE : ΠTIDσ(X=x,Y=y). After applying them on D, ap-

parently SS(D) contains sensitive records of Y = y withX = x, and SE(D) contains

sensitive and evidence records of Y = y where X = x.

Example 6.4.2. Consider the base table D in Figure 6.4 (a). Assume it has a FD

{A,B} → C. Consider the security constraint S : ΠCσD=d1. After applying S(D), we

get two buckets, i.e., B1(a1, b1, c1) and B2(a2, b1, c1). For the bucket B1(a1, b1, c1), we

construct the selection-projection queries SS : ΠTIDσ(A=a1,B=b1,C=c1,D=d1) and SE :

ΠTIDσ(A=a1,B=b1,C=c1). The sensitive record of the bucketB1(A = a1, B = b1, C = c1)

is r1, as it is in SS(D). From SE(D), we find two records {r1, r2}, where r2 is the

evidence record of the bucket B1(A = a1, B = b1, C = c1).

Let nS be the number of records in SS(D) for the bucket B(X = x, Y = y),
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and nE be the size of SE(D). Apparently if nS = nE, then there is no evidence

record of the sensitive cell Y = y that are associated with X = x (i.e., it is robust

against the FD attack). Otherwise, the basic scheme has to be fixed. Next, we

describe two fix approaches:

• Scheme 1: for each record r in the SS(D), randomly pick one attribute A ∈ X

and encrypt r[A]. We allow that different A is picked for different records.

• Scheme 2: for each record r′ in SE(D) − SS(D) (i.e., r′ in SE(D) but not in

SS(D)), encrypt r′[X] or r′[Y ].

We have the following theorem.

Theorem 13. Consider a dataset D, an FD F : X → Y , and a set of SC S,

applying one of the two schemes above always delivers a robust scheme against

the FD attack.

Both fix schemes require to encrypt some non-sensitive cells. We measure

the number of those non-sensitive cells as the encryption overhead against the FD

attack. Formally,

Definition 6.4.1. [Encryption Overhead] Given a dataset D and a set of SCs

S, let D̄ be the basic scheme, and D̂ be the dataset that is robust against the

FD attack. Let e and e′ be the number of encrypted cells in D̄ and D̂. Then the

encryption overhead against the FD attack on D is o = e′ − e.

Our goal is to find an scheme that is robust against the FD attack with min-

imal encryption overhead. Apparently, for each sensitive cell, the encryption over-

head of Scheme 1 is nS, while the overhead of Scheme 2 is nE − nS. We pick the
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scheme whose overhead equals

mino = min(nS, nE − nS) (6.1)

to decide the scheme of less encryption overhead. We do this for each sensitive

cell. Due to the fact that the sensitive/evidence records of different sensitive cells

do not overlap, the final scheme is guaranteed to return the minimal encryption

overhead. The complexity is O(n2), where n is the size of D.

Example 6.4.3. In Figure 7.1, apparently, D̄ is not robust against the FD attack.

Figure 7.1 (c) & (d) show two solutions to fix D̄ by our two fix schemes afore-

mentioned. In particular, Scheme 1 (Figure 7.1 (c)) encrypts the a1 value of the

sensitive record r1, with the encryption overhead 1, while Scheme 2 (Figure 7.1

(d)) encrypts the B attribute of the evidence record r2 and the A attribute of the

evidence record r3, , with the encryption overhead 2. We pick Scheme 1 due to its

smaller overhead.

Multiple SCs. When there are k > 1 SCs S = {S1, . . . , Sk}, the brute-force so-

lution is to enumerate all possible encryption solutions, and pick the one of the

smallest encryption overhead. There are 2tk schemes in total, where t is the av-

erage number of sensitive cells of each SC. As each encryption solution needs

O(n2) complexity to locate the sensitive and evidence records, the complexity of

the brute-force method is O(2tkn2), where n is the size of the dataset. This could

be prohibitive if k is large.

A seemly straightforward method is to pick local optimal scheme for each SC

Si ∈ S. However, the local optimality cannot guarantee the global optimal solution

for the k SCs in terms of encryption overhead. We use the following example to

illustrate that.
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Example 6.4.4. Consider a dataset D that has an FD X → Y and two SCs S1 and

S2. Assume S1 considers the Y attribute of records r1 and r2 as sensitive, while

S2 considers the Y attribute of records r3, r4, r5 as sensitive. For S1, the evidence

records are r3, r4, and r5, while for S2, the evidence records are r1, r2, and r3. The

local optimal solution of S1 is to encrypt the X attribute of {r1, r2}, while the local

optimal solution of S2 is to encrypt the X attribute of {r4, r5}. The total encryption

overhead is 4. However, the global optimal solution is to encrypt the X attribute of

{r1, r2, r3} or {r3, r4, r5}. The encryption overhead is 3.

Next, we prove that the problem of finding the optimal scheme of the minimal

encryption overhead with multiple SCs is NP-complete.

Theorem 14. Given a dataset D and k > 1 SCs S, the problem of finding the op-

timal robust scheme that enforces S on D against the FD attack with the minimum

encryption overhead is NP-complete.

Proof. For each SC Si, and each of its sensitive cell vi,j, let si,j and ei,j be its set of

sensitive records and evidence records. According to our scheme (Section 6.4.2),

it requires to encrypt either si,j or ei,j. Based on this, we can state our problem

of finding the scheme with minimal encryption overhead for multiple security con-

straints (MSC) below.

Problem MSC: Given a set of SCs S = {S1, . . . , Sn}, in which each Si is

associated with a set of pairs {(si,1, ei,1), . . . , (si,ki , ei,ki)}, where si,j (ei,j, resp.) is

a set of sensitive records (resp. evidence records), find a robust scheme with the

minimal overhead.

We can map this problem to the well-known weighted vertex cover (WV C)

problem.

Problem WVC: Let G be an undirected graph, V a set of nodes, W be the
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weighte associated with the nodes, and E a set of edges defined over those nodes.

Find the minimum-weight subset of nodes V ′ ⊂ V such that ∀e = {u, v} ∈ E, u ∈ V ′

or v ∈ V ′.

Next we prove that the problem of finding the smallest weighted vertex cover

G′ is equivalent to finding a robust scheme with the minimal overhead. Given a

set of SCs S = {S1, . . . , Sn}, in which each Si is associated with a set of pairs

{(si,1, ei,1), . . . , (si,ki , ei,ki)}, we construct a graph G: (1) for each si,j, we construct

a corresponding node with weight |si,j| in G, (2) for each ei,j, we construct a cor-

responding node with weight |ei,j| in G, and (3) for each (si,j, ei,j), we construct an

edge that connects the corresponding nodes of si,j and ei,j. Clearly this transfor-

mation can be finished in polynomial time.

First, let V ′ be the minimal vertex cover of the constructed G. Our scheme

is as follows. For any v ∈ V ′, if there exists an e(v, v′) ∈ E, we pick Scheme 1

(Section 6.4.2) for v. Otherwise, we pick Scheme 2 (Section 6.4.2) for v. Clearly

this scheme is robust. Since the encryption overhead equals to the total weight of

V ′, it is minimal.

Next, assume that we have a robust scheme for MSC with the minimal over-

head. Let R′ be the records that are encrypted by the scheme. We can construct

V ′ in the following way: for each node v ∈ V , if its corresponding records are a

subset of R′, we insert v to V ′. V ′ a vertex cover because each edge e(v, v′) ∈ E

corresponds to a pair (si,j, ei,j). Either si,j or ei,j must exist in R′. Therefore, V ′ is

a valid vertex cover of the graph G. The total weight of V ′ is also minimum as R′

contains minimum number of records.

This transformation can be finished in polynomial time. The constructed G′

is a minimal cover of G. From the above proof, we are able to reduce the well-

known Weighted Vertex Cover problem to our MSC problem in polynomial time.
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Therefore, the MSC problem is also NP-complete.

Require: the set of potentially unsafe security constraints S, the FD X → Y
Ensure: The scheme to ensure no information leakage based on FD-attack.
1: for all Si ∈ S do
2: Find the set of sensitive cells {vi,j}
3: for all vi,j do
4: Find the sensitive records si,j and the evidence records ei,j
5: end for
6: Let Hi = {(vi,j , si,j , ei,j)}
7: end for
8: while Hi 6= ∅ ∀i ∈ 1, . . . , k do
9: Let minc = min∀vi,j∈Hi

min(|si,j |, |ei,j |)
10: Let minv be the sensitive cell that delivers minc
11: Let sv and ev be the sensitive and evidence records of minv
12: if |sv| < |ev| then
13: minse = sv
14: Pick a random attribute A ∈ X, encrypt attribute A in all records of sv
15: else
16: minse = ev
17: Pick a random attribute A ∈ X ∪ Y , encrypt attribute A in all records of ev
18: end if
19: for all Hi do
20: for all (vi,j , si,j , ei,j) ∈ Hi do
21: if vi,j = minv then
22: si,j = si,j −minse
23: ei,j = ei,j −minse
24: if si,j = ∅ or ei,j = ∅ then
25: Remove (vi,j , si,j , ei,j) from Hi

26: end if
27: end if
28: end for
29: end for
30: end while

Algorithm 6.1: GMM (S = {S1, S2, . . . , Sk}, X → Y )

Given the NP-completeness result, we design an efficient greedy algorithm

(GMM) to find an scheme to defend against the FD attack with small encryption

overhead. The pseudo code of the GMM algorithm is shown in Algorithm 6.1.
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The key idea of GMM algorithm is to repeatedly pick minimum number of sensi-

tive/evidence records, until the picked records cover all SCs. In particular, given

k SCs S = {S1, . . . , Sk} for which the basic scheme is not robust, for each Si ∈ S

(1 ≤ i ≤ k), it is associated with a set of triples Hi = {(vi,j, si,j, ei,j)}, where vi,j

is the j-th sensitive cell of Si, and si,j (ei,j, resp.) is a set of sensitive records

(resp. evidence records) of vi,j. We store the record IDs in si,j and ei,j (Line 1 to

7 in Algorithm 6.1). We use |si,j| (|ei,j|, resp.) to denote the number of records

in si,j (ei,j, resp.). For a given Hi, we define minc = min∀vi,j∈Hi
min(|si,j|, |ei,j|).

We use minv to denote the sensitive cell of minc, and minse to denote the set

of sensitive/evidence records of minv that deliver minc (Line 9 and 10). For in-

stance, consider Hi = {((x1, y1),{r1, r2}, {r3, r4, r5}), ((x2, y2), {r3, r4}, {r5})}. Then

minc = 1, minv = {(x2, y2)}, and minse = {r5}. Let H= {H1, . . . , Hk}. If minse

consists of minv’s sensitive records, we apply the encryption based on Scheme 1.

Otherwise, we pick a random attribute following Scheme 2 (Line 11 to 18). Initially

we mark every Hi in H as uncovered. First, we select Hi ∈ H whose minc is the

smallest among all uncovered Hi (1 ≤ i ≤ k). Let mins and mine be the set of

sensitive records and evidence records of the picked minv. Second, for all triples

(vi,j, si,j, ei,j) ∈ H, if v′i,j = minv, we update si,j = si,j−minse, and ei,j = ei,j−minse.

If there exist any Hi such that for each triple in Hi, si,j or ei,j becomes empty, we

mark Hi as covered (Line 19 to 28). We repeat these two steps until all His in

H are covered. The complexity of the GMM algorithm is O(ktn2), where k is the

number of SCs, t is the average number of sensitive cells, and n is the number of

records in D.

Example 6.4.5. Consider the base table in Figure 6.5 (a) with a FD DC → DS.

Suppose there exist two SCs, S1 = ΠDSσAGE<30 and S2 = ΠDSσSEX=F . After ba-
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TID NM SEX AGE DC DS
r1 Joe M 28 CPD5 HIV
r2 Alice F 24 CPD5 HIV
r3 Maggy F 33 CPD5 HIV
r4 Phil M 43 CPD5 HIV
r5 Peter M 39 CPD5 HIV
r6 Ray M 52 CPD5 HIV
r7 Steve M 31 CPD5 HIV

TID NM SEX AGE DC DS
r1 Joe M 28 CPD5 α

r2 Alice F 24 CPD5 α

r3 Maggy F 33 CPD5 α

r4 Phil M 43 CPD5 HIV
r5 Peter M 39 CPD5 HIV
r6 Ray M 52 CPD5 HIV
r7 Steve M 31 CPD5 HIV

(a) Orignial table D (b) Basic encryption D̄
FD: DC → DS (not robust)
S1 : ΠDSσAGE<30 H1 = {((CPD5, HIV ), {r1, r2}, {r4, r5, r6, r7})}
S2 : ΠDSσSEX=F H2 = {((CPD5, HIV ), {r2, r3}, {r4, r5, r6, r7})}

TID NM SEX AGE DC DS
r1 Joe M 28 β α

r2 Alice F 24 β α

r3 Maggy F 33 CPD5 α

r4 Phil M 43 CPD5 HIV
r5 Peter M 39 CPD5 HIV
r6 Ray M 52 CPD5 HIV
r7 Steve M 31 CPD5 HIV

TID NM SEX AGE DC DS
r1 Joe M 28 β α

r2 Alice F 24 β α

r3 Maggy F 33 β α

r4 Phil M 43 CPD5 HIV
r5 Peter M 39 CPD5 HIV
r6 Ray M 52 CPD5 HIV
r7 Steve M 31 CPD5 HIV

(c) D1 after one iteration (d) D2 after two iterations
H1 = ∅ (Robust against FD attack)

H2 = {((CPD5, HIV ), {r3}, {r4, r5, r6, r7})}

Figure 6.5: An example of GMM

sic encryption, we have H1 = {((CPD5, HIV ), {r1, r2}, {r4, r5, r6, r7})} and H2 =

{((CPD5, HIV ), {r2, r3}, {r4, r5, r6, r7})}. In the first iteration of GMM , we find

minc = 2, minv = {((CPD5, HIV ))}, and minse = {r1, r2}. After applying Scheme

1, we get a table in Figure 6.5 (c), whichH1 = ∅ andH2 = {((CPD5, HIV ), {r3}, {r4,

r5, r6, r7})}. In the second round, minc = 1, minv = {((CPD5, HIV ))}, and

minse = {r3}. After applying Scheme 1 on r3, we get a table in Figure 6.5 (d),

which is secure against FD attack.
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6.5 Multiple FDs

There may exist multiple FDs in a given dataset. It is well known that the FDs

can interact; new FDs can be inferred from the existing ones. Formally, given a

set of FDs F , one can use Armstrong’s axioms [8] to derive the closure F+ that

includes both F and the new FDs that can be inferred from F . Intuitively, we have

to consider the security leakage by the FD attack based on F+. However, it has

been proven that if F is safe against the FD attack, then F+ is safe against the FD

attack [116]. Therefore, for the following discussions, we only consider F but not

F+.

The robustness checking of the basic scheme against multiple FDs can be

achieved by checking whether the basic scheme is robust against each FD (The-

orem 12). For the following discussions, we only consider FDs that may enable

potential leakage on the basic scheme.

As shown in [116], for the SCs that are specified at the attribute-level granu-

larity, finding an optimal scheme of minimal encryption overhead is an NP-complete

problem. Thus given the SCs that support arbitrary granularity, our problem is also

NP-complete. Therefore, we aim to design an efficient heuristic approach that gen-

erates the robust scheme against the FD attack with small encryption overhead.

Next, we present our heuristic solution named GMM-MFD algorithm.

Before deciding which records to be encrypted, we determine on which set

of attributes we apply encryption. Intuitively, to reduce encryption overhead, we

prefer this attribute set to be small. Formally,

Definition 6.5.1. [Minimum Attribute Cover (MAC)] We say a set of attributes A

covers an FD F : X → Y if A ∩ (X ∪ Y ) 6= ∅. An attribute cover A is the minimum

attribute cover (MAC) if any proper subset of A cannot cover F .
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Our problem is the following: given a set of FDs F , find aMAC A that covers

F .

Require: The set of FDs F = {F1, . . . , Ff}
Ensure: Find a minimum attribute cover of F
1: A = ∅;
2: for all A ∈ R do
3: A.weight = 0
4: end for
5: for all F ∈ F ′ do
6: for all A ∈ LHS(F ) do
7: A.weight+ +
8: end for
9: RHS(F ).weight+ +

10: end for
11: while F ′ 6= ∅ do
12: Take A in R with the largest weight
13: for all F ∈ F ′ such that A ∈ LHS(F ) OR A ∈ RHS(F ) do
14: for all A′ ∈ F do
15: A′.weight−−
16: end for
17: F ′ = F ′ −{F}
18: A.add(A)
19: end for
20: end while
21: return A

Algorithm 6.2: FindMAC(F)

We can map the problem of finding the MAC to the well-known hitting set

problem. In particular, we construct a bipartite graph G(V1 ∪ V2, E), in which each

node in V1 corresponds to a unique attribute in F , each node in V2 corresponds

to an FD F ∈ F , and each edge (u, v) ∈ E denotes the fact that the attribute that

node u corresponds to is included in the FD that the node v corresponds to. Given

the fact that each node in V1 must be connected to at least a node in V2, and the

fact that |V1| ≥ |V2|, the problem of finding the MAC is equivalent to the problem

of finding the minimal hitting set of G (i.e., a minimum cardinality subset of V1

which covers all vertice in V2). Finding a minimum hitting set is a NP-hard problem.
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Therefore, we adapt the greedy algorithm for the hitting set problem to our setting.

Algorithm 6.2 shows the procedure of finding such a minimum attribute cover. The

basic idea is to assign a weight to each attribute where the weight equals to the

number of FDs in F that include the attribute. We sort the attributes in F by their

weights, and pick the attributes of the highest weight. After that we delete all FDs

in F that contain the picked attribute, and update the weights of the remaining

attributes accordingly. We repeat this procedure until F becomes empty. The time

complexity to find a minimum attribute cover is O(f 2), where f is the number of

FDs.

Our GMM-MFD algorithm works as following. First, we discover the MAC

of the given set of FDs F . Then for each attribute A ∈MAC, we identify the set of

FDs F ′ ⊆ F that contain A. For each FD F ∈ F ′, we apply the GMM scheme to

find and encrypt necessary cells on attribute A. The complexity of this heuristics

approach is O(f 2 +n2ktf), where n is the number of records in D, f is the number

of FDs, t is the average number of sensitive cells, and k is the number of SCs.

6.6 Secure Query Evaluation

In this section, first, we discuss the basic query rewriting method. In order to

support range queries, we use order-preserving ecnryption. Then we show the

security weakness of the basic approach, and present the improved approach that

provides provable security guarantee.

The server receives the client’s queries and execute them on D̂. In this

thesis, we consider the queries that take SQL format. The SQL queries can be

specified in the format of ΠY σc, where ΠY denotes the projection of a relation on

attributes Y , and σc denotes the value-based constraints of Q. As D̂ is partially
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encrypted, all the original queries from the authorized clients with access to the

sensitive data require rewriting to be executed on D̂. Given any query Q, we use

C(Q) to denote the value-based constraints in σc. For example, consider Q =

ΠXσ(Y=y1 and Z=z1), then Proj(Q) = {X}, Sel(Q) = {Y, Z}, and C(Q) = {Y =

y1, Z = z1}.

6.6.1 Basic Query Rewriting Approach

Point query. For any point query Q, assume that it contains g ≥ 1 equality con-

straints in σc, denoted as C(Q) = {A1 = a1, . . . , Ag = ag}. Since the values of

Ai(1 ≤ i ≤ g) may be partially encrypted in D̂, Q is translated to Q̂ by the following:

Ai = ai → Ai = ai or Ai = αi,∀i ∈ [1, g],

where αi(1 ≤ i ≤ g) is the ciphertext of ai. To ensure that the client rewrites the

queries in the way consistent with how D is encrypted, she uses the same encryp-

tion key obtained from the data owner (or the authorized third-party) to encrypt the

plaintext values in Q.

Range query. The rewriting procedure of range queries is similar to that of point

queries. For any range query Q, assume that it contains g ≥ 1 range-based con-

straints in σc, denoted as C(Q) = {A1 ∈ [a1, b1], . . . , Ag ∈ [ag, bg]}, Q is translated to

Q̂ as following:

Ai ∈ [ai, bi]→ Ai ∈ [ai, bi] or Ai ∈ [αi, βi],∀i ∈ [1, g],

where αi and βi(1 ≤ i ≤ g) are the ciphertext values of ai and bi respectively.

For both point and range queries, it is easy to see that the query rewriting
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procedure guarantees that Q(D) = Decrypt(Q̂(D̂)), for any given query Q, where

Decrypt is the decryption function.

Security weakness. The basic query procedure guarantees the correctness of

query evaluation. However, it has potential security weakness. In particular, the

server may observe a series of queries, and find out that most queries are of the

same format. For example, for the point queries, the server may observe that Q̂ is

always of the format of a disjunction of value-based constraints with the mixture of

plaintext and ciphertext values of the same attribute (i.e., Ai = ai or Ai = αi). Then

the server may guess that αi is the ciphertext of ai. Therefore, even without the

knowledge of the encryption key, the server learns the mapping between cipher

values and plain values.

6.6.2 Secure Query Rewriting Approach

First, we define our security model regarding query rewriting. Formally,

Definition 6.6.1. [θ-security] Given any original query Q and its rewritten query

Q̂, we say Q̂ satisfies θ-security if the probability that the server can correctly map

a cipher value E to its original value P by observing Q

Prob(E → P |Q̂) ≤ θ,

where θ is a pre-defined value between 0 and 1.

Next, we discuss how to achieve θ-security for both cases that there is a

single query and multiple queries.
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Single Query

We design the following query rewriting method that can provide θ-security. We

define ` = [1
θ
].

Point queries. For any query Q, and for any value-based constraint Ai = ai in

C(Q), the user randomly picks ` − 1 values {a1
i , . . . , a

`−1
i } from the domain of Ai.

We say F = {ai, a1
i , . . . , a

`−1
i } is the plain set of ai. Then the value-based constraint

Ai = ai is rewritten as

Ai = ai or Ai = a1
i . . . or Ai = a`−1

i or Ai = αi,

where αi is the ciphertext value of ai. For any ciphertext value αi, it always can

be mapped to one of the plaintext values in F . Therefore, the server’s probability

Prob(αi → ai) must be no larger than θ. It is easy to see that for any point query

that consists of g value-based constraints, its rewritten query consists of g(` + 1)

constraints.

Range queries. The range queries are translated in the similar way. For each

constraint Ai ∈ [ai, bi], we pick `− 1 unique values from the domain of Ai, and call

these values as ai’s plain set, denoted as P (ai). Similarly we pick bi’s plain set

P (bi). Let P (ai)
− be the minimum value of P (ai) and P (bi)

+ be the maximum value

of P (bi). Then Ai ∈ [ai, bi] is rewritten as Ai ∈ [P (ai)
−, P (bi)

+] or Ai ∈ [αi, βi], where

αi and βi are the ciphertext values of ai and bi respectively. The query rewriting

scheme satisfies θ-security. Besides, as [ai, bi] ⊆ [P (ai)
−, P (bi)

+], the answer of

the rewritten query is a superset of the answer of the original answer. For any

range query that consists of g value-based constraints, its rewritten query consists

of 2g constraints.
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Multiple Queries

The secure query rewriting method may be vulnerable against a sequence of

queries. For example, consider that the user issues two queries, Q1 and Q2, both

of which contains the constraint A = a1. The user rewrites Q1 as Q̂1: {A =

a1 or A = a1
2 . . . or A = a1

` or A = α1}. Similarly, Q2 is translated into Q̂2:

{A = a1 or A = a2
2 . . . A = a2

` or A = α1. The server can observe that Q̂1 and

Q̂2 contain the same ciphertext value A = α1. Then the server can intersect the

two plain sets {a1, a
1
2, . . . , a

1
`} and {a1, a

2
2, . . . , a

2
`}. Let us denote the intersection

as I. Then the probability Prob(α1 → a1) = 1
|I| . As |I| ≤ ` (possibly equals one),

neither Q̂1 nor Q̂2 satisfies θ-security anymore.

Therefore, to guarantee θ-security with the presence of a sequence of queries,

we require that for each specific plaintext value, its plain set is always fixed. To ac-

complish that, for any attribute A whose domain size is |A|, its domain is partitioned

into [ |A|
`

] buckets. For each value ai of A, the bucket that ai belongs to is picked

as its plain set. To enable the client to perform such rewriting, the client has to

acquire the knowledge about the domain values from the data owner. This is a

one-time initialization phase. Once the domain knowledge is acquired, it will be

used repeatedly for query rewriting.

6.6.3 Query Post-processing at Client Side

Apparently Q(D) ⊆ Q̂(D̂), i.e., providing θ-security brings additional overhead for

query evaluation. Now the client needs to post-process the query answer from the

server to get the real answer of her query.

To extract the correct result from Q̂(D̂), we require the server to organize the

records in Q̂(D̂) in the following way. For each record r ∈ Q̂(D̂), we use r[Sel(Q)]
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to denote the attribute values on the attribute set Sel(Q), and Q̂(D̂)[Sel(Q)] to

denote the set of unique values on Sel(Q) in the query result. For each value

v ∈ Q̂(D̂)[Sel(Q)], the server creates a list L containing every record r ∈ Q̂(D̂)

such that r[Sel(Q)] = v. We use (v, L) to denote the attribute value and its record

list. The server returns Q̂(D̂) in the format of L = {(v, L)}. Upon receiving L, the

client can efficiently check the attribute values v and retrive the record lists of the

values v such that v matches C(Q̂). In particular, for each v ∈ C(Q̂), the client

decrypts v, and only keeps its corresponding L if the decrypted value of v appears

in the original query Q.

6.7 Discussion

In this section, we first discuss how to extend our encryption scheme to deal with

the updates on the data. Second, we extend our encryption scheme to defend

against the attacks based on CFDs. After that, we explain how to support more

complex queries. In the last, we discuss in which scenarios our approach is more

preferable to existing methods [116, 17].

6.7.1 Data Updates

After initially outsourcing the encrypted data to a third-party DCaS server, the client

may perform some updates over the original data D, and sends the updated data

(in the encrypted format) to the server. Let ∆D be the update overD. For simplicity,

we only consider pure-insertion and pure-deletion operations. We use |∆D| to

denote the number of records to be altered. In case of deletions, |∆D| is still a

positive number.

By deleting a record, the client does not leak any information. The more
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interesting problem is data insertion. A straightforward method is to encrypt ∆D

in an incremental way: besides encrypting the sensitive cells in ∆D according to

SCs, we apply theGMM algorithm on ∆D to encrypt it. However, doing encryption

separately on D and ∆D may not be robust against the FD-attack.

TID A B C
1 a1 b1 c1

2 a1 b1 c1

3 a1 b1 c2

4 a1 b1 c3

5 a2 b3 c3

TID A B C
6 a1 b1 c4

7 a2 b3 c5

TID A B C
1 a1 β1 c1

2 a1 β1 c1

3 α1 b1 c2

4 α1 b1 c3

5 a2 b3 c3

TID A B C
6 a1 b1 c4

7 a2 β3 c5

(a) Original table D (b) Data update ∆D (c) Encrypted table D̂ (d) Encrypted data
(FD : A→ B, update ∆̂D

SC1: ΠBσC=c1)
SC2: ΠBσC=c5)

Figure 6.6: An Example of FD Attack if D and ∆D are encrypted separately

Example 6.7.1. Consider the base table D in Figure 6.6 (a), which has the FD:

A → B. Also consider its update ∆D shown in Figure 6.6 (b). The encrypted

version of D and ∆D, notated as D̂ and ∆̂D, by applying the GMM algorithm

individually is shown in Figure 6.6 (c) and (d) respectively. It is easy to observe

that tuple T6 in ∆̂D serves as an evidence tuple of tuples T1 and T2 in D̂, while T5

in D̂ is an evidence tuple of Tuple T7 in ∆̂D. These evidence tuples will bring the

leakage of the encrypted cells in T1, T2, and T5.

To encrypt the data updates with provable security guarantee, a straightfor-

ward approach is to execute the GMM algorithm on D̂+∆D, aiming to encrypt the

necessary cells in ∆D with the minimal overhead. The complexity of this approach

is O(f 2 + (n′ + n)2kf) , where f is the number of FDs, k is the number of SCs,

and n and n′ are the number of records in D̂ and ∆D respectively. Therefore, our
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GMM algorithm is able to provide comparable encryption overhead as the opti-

mal approach, since the encryption overhead of ∆D is still close to the minimal

overhead, as long as n′

n
is small.

One weakness of the straightforward approach is that it still needs to access

D̂, which can be inefficient if D̂ is much larger than that of ∆D. To make the

process more efficient, we design an alternative method which does not need to

revisit D̂. The key idea consists of two steps. First, we find the minimum attribute

cover A of F by using the greedy algorithm in Section 6.5. Second, for each

record r ∈ ∆D, we encrypt r[A]. By this approach, the complexity is reduced to

O(f 2 + n′), while the encryption overhead is bounded by n′|A|, where |A| is the

number of attributes in A.

6.7.2 Conditional Functional Dependency (CFD) Constraints

Besides FDs, there is another important type of attribute associations named con-

ditional functional dependency (CFD). Conditional functional dependency binds

specific values with functional dependencies. An example of CFD is the constraint

[Disease=‘ovarian cancer’]→ [Gender=‘Female’]. Formally, a CFD [13] on a given

dataset D is a pair ϕ(X → Y, Tp), where (1) X, Y are sets of attributes from D;

(2) X → Y is a standard FD; and (3) Tp is a tableau with all attributes in X and

Y , where for each A in X or Y and each record r ∈ Tp, r[A] is a constant in the

domain of A, or an unnamed variable “ ”. A CFD ϕ(X → Y, Tp) is called a constant

CFD if its pattern record rp consists of constants only, while it is called a variable

CFD if Tp[Y ] = , i.e., the right-hand side (RHS) of its pattern tuple is the unnamed

variable . For simplicity, we only consider constant CFDs in this thesis.

CFDs provide an inference channel for the attacker to interpret the sensitive
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information in a private dataset, in the similar way to the FD attack. Since the CFD

attack is very similar to the FD attack, the way to design robust schemes against

the CFD attack is similar to that to prevent the FD attack. In this section, we discuss

the encryption algorithms against the CFD attack in terms of their major difference

from that against the FD attack.

First, we discuss the data-independent robustness check of the basic scheme

against the CFD attack. We use C(S) and C(F ) to denote the selection condi-

tions in the SC S and the CFD F respectively. For instance, consider the SC

S = ΠXσ(Y=y1 and Z=z1) and the CFD F : X = x1 → Y = y1, then C(S) = {Y =

y1, Z = z1}, and C(F ) = {X = x1, Y = y1}. We have the following theorem.

Theorem 15. Given a dataset D, a set of security constraints S, and a CFD F :

X = x → Y = y of D, the basic scheme of D is robust against the CFD attack

w.r.t. F if one of the following conditions is met: (1) ∀S ∈ S, X ∩ Proj(S) 6=

∅; (2) Y 6⊆ ∪S∈SProj(S); (3) ∀S ∈ S, Sel(S) 6= ∅, ∪S∈SSel(S) ⊆ X ∪ Y and

∪S∈SC(S) ∩ C(F ) = ∅.

Compared with Theorem 12 for the FD attack, Condition (3) of Theorem 15

additionally requires that no sensitive cell should be covered by the CFDs. The

robustness checking of the basic scheme can be achieved by checking whether

the basic scheme is robust against each CFD.

Unlike the FD attack that requires the existence of evidence records for the

inference, CFDs provide the value association information between X and Y .

Therefore, there is no need to find evidence records from the dataset for addi-

tional encryption. This makes the design of robust scheme much easier than that

of the FD attack. Next, we discuss the details of our scheme.

We first discuss the case that there exists only one CFD. Let F (D) be the
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set of records that comply with the given CFD F : X = x → Y = y. Then, for any

SC S whose basic scheme is not robust against the CFD attack, for each record r

that contains a sensitive cell in S(D)∩F (D), we randomly pick an attribute A ∈ X,

and encrypt r[A]. It is not necessary that different records r and r′ encrypt at the

same attribute. If there exist multiple SCs {S1, . . . , Sk}, we find the records R that

contain at least a sensitive cell in ∪ki=1(Si(D) ∩ F (D)), and encrypt R in the same

way as for the single SC.

If there exist multiple CFDs F , let L = ∪F∈FLHS(F ). First, we identify the

minimum attribute cover of L. Let the cover be MAC. Second, we find the set of

records R that contain at least a sensitive cell in ∪F ∈ F ∪ki=1 (Si(D)∩F (D)). Then

for each record r ∈ R, we randomly pick an attribute A ∈ MAC, and encrypt r[A].

The complexity of the scheme is O(f 2 + nfk), where f is the number of FDs, n is

the number of records in D, and k is the number of SCs.

6.7.3 Complex Queries

Besides the point and range queries, our encryption scheme also provides sup-

port for complex queries like ORDER BY, aggregations (MAX, MIN, COUNT), and

GROUP BY. The main challenge is that the query evaluation needs to handle both

plaintext and ciphertext values, due to the fact that the data is partially encrypted.

In order to support complex queries, we require that the plaintext and ciphertext

values do not share the domain. In this way, the queries can be executed on the

plaintext and ciphertext values separately at the server side first. After that, the

client decrypts the query answer and post-processes it to retrieve the result.

Assume that, in the encrypted dataset D̂, on an attribute A, we have a set

of plaintext values PA and a set of ciphertext values EA. Next, we will discuss the
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query processing for each type of queries.

ORDER BY. Given a query Q with ORDER BY A, the client first rewrites it into

two queries, QP and QE . QP orders the records according to the plaintext values

on attribute A, while QE orders the records by the ciphertext values on attribute A.

The server sends the result QP(D̂) and QE(D̂) to the client. The client first decrypts

QE(D̂). Then it uses merge sort to re-order the decryption results with QP(D̂).

Aggregation. Given a query Q with MAX(A) or MIN(A), the server first retreives

the max/min value from PA and EA. The client decrypts MAX(EA) (or MIN(EA))

and compares it with MAX(PA) (or MIN(PA)) to get the maximum (or minimum)

attribute value. For a query Q with COUNT (A), the server just needs to execute

Q on D̂. However, for a query with distinct count COUNT(DISTINCT A), the server

first needs to execute the query Q’: SELECT DISTINCT A FROM D̂. Then the

client decrypts Q′(D̂) to get the number of distinct values.

GROUP BY. Given a query Q with GROUP BY A, the server first retrieves Q(D̂)

and sends it to the client. The client decrypts the values on attribute A. Then it

re-groups the results based on decrypted values.

6.8 Experiments

6.8.1 Setup

Experiment environment. We implement our approaches in Java. All the ex-

periments were executed on a machine with 2.4GHz Intel Core i5 CPU and 4GB

memory running Mac OS X 10.9. The time performance and encryption overhead

are measured as the average of five runs.

Datasets. We execute our experiments on two real-world datasets named Adult
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dataset1 and the Orders table from the TPC-H benchmark dataset. To measure

the scalability of our approaches, we construct a set of datasets of various sizes,

by using Adult and Orders datasets as the seed. The original Adult datasets con-

tains 32, 561 records. The datasets containing 64K, 128K and 256K records are

constructed by repeatedly picking a record from the original dataset in a random

fashion and inserting a copy of the picked record into the new dataset, until the

data size reaches the requirement. Similarly, the Orders dataset originally have

1.5 million records. We build a set of datasets from the Orders dataset contain-

ing 0.3M , 0.6M , 0.9M , and 1.2M records by taking a subset of records from the

original Orders data.

Let n be the number of records, m the number of attributes, f the number of

functional dependency, t the average number of sensitive cells in each randomly-

generated SC, and w the average number of sensitive and evidence records for

each sensitive cell. The number t is evaluated as following. For each SC, we

count its number of sensitive cells sc. Then t =
∑k

i=1 sci
k

, where k is the number

of SCs. And w =
∑k

i=1

∑sci
j=1(|si,j |+|ei,j |)∑k

i=1 sci
, where |si,j| (|ei,j|, resp.) is the number of

sensitive records ( evidence records, resp.) for the j-th sensitive cell of the i-th

SC. Intuitively, higher t value leads to larger portion of unique data values that

is considered as sensitive and thus must be encrypted, whereas higher w value

means each sensitive cell is associated with more evidence records that need to

be encrypted. We give the data description in Table 6.7.

There are 78 FDs in the Adult dataset. These FDs overlap significantly at

the left hand side. In particular, the fnlwgt attribute appears in 97.4% of FDs. While

in the Orders dataset, the FDs overlap greatly on the right hand side. For exam-
1Adult dataset is available at UCI Machine Learning Repository:

http://archive.ics.uci.edu/ml/index.html.
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Data n m f t w
Adult 32K 32,000 15 78 3877.4 1.016

Adult 64K 64,000 15 78 3989.7 2.03

Adult 128K 128,000 15 78 3990.4 4.059

Adult 256K 256,000 15 78 3988.9 8.129

Orders 0.3M 300,000 9 10 125.8 126.82

Orders 0.6M 600,000 9 10 191.1 306.51

Orders 0.9M 900,000 9 10 229.7 383.12

Orders 1.2M 1,200,000 9 10 259.6 459.99

Orders 1.5M 1,500,000 9 10 288.7 508.37

Figure 6.7: Dataset Description

ple, the right hand side of the 10 FDs only contain two attributes (OrderStatus and

ShipPriority). In the experiments, we randomly pick a subset of these FDs. An im-

portant feature of the Orders dataset is that some of its attributes have a small data

domain, with each data instance of high frequency. For example, the OrderStatus

and OrderPriority attributes only have 3 and 5 unique values respectively. We will

discuss why this feature impacts the encryption performance.

Approaches In the experiments, we implement the following two methods and

evaluate them on the datasets.

• GMM: our heuristics approach;

• OPTIMAL: the exhaustive search algorithm that finds the solution with the

minimum encryption overhead.

We take OPTIMAL as the baseline methods and compare their performance with

our approach.
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6.8.2 One Single FD

For this set of experiments, we randomly pick a single FD and generate 10 SCs

from the two datasets. We follow Theorem 11 to ensure that the generated SCs

are potentially unsafe, meaning their basic scheme is not robust against the FD

attack.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

32k 64k 128k 256k

T
im

e
 (

S
e

c
o

n
d

)

Data Size

OPTIMAL
GMM-1FD

 0

 2

 4

 6

 8

 10

 12

0.3M 0.6M 0.9M 1.2M 1.5M

T
im

e
 (

S
e

c
o

n
d

)

Data Size

OPTIMAL
GMM-1FD

(a) Adult dataset (b) Orders dataset

Figure 6.8: Time Performance of One Single FD

 0

 0.02

 0.04

 0.06

 0.08

 0.1

32k 64k 128k 256k

O
v
e

rh
e

a
d

 R
a

ti
o

 (
%

)

Data Size

OPTIMAL
GMM-1FD

 0

 5

 10

 15

 20

 25

 30

0.3M 0.6M 0.9M 1.2M 1.5M

O
v
e

rh
e

a
d

 R
a

ti
o

 (
%

)

Data Size

OPTIMAL
GMM-1FD

(a) Adult dataset (b) Orders dataset

Figure 6.9: Encryption Overhead of One Single FD

Time Performance. We measure the time of our GMM algorithm on datasets of

various sizes. We report the results in Figure 6.8. From the two figures, we ob-

serve that our GMM approach is much more efficient than the optimal scheme.
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In all circumstances, our GMM approach enjoys a ten times speedup compared

with OPTIMAL. Another observation is that the time performance increases lin-

early with the data size. This is consistent with our expectation. One interesting

observation is that even though the Orders datasets are much more larger than the

Adult datasets, the time performance is comparable. This is mainly because the

SCs of Adult datasets cover a large number of sensitive cells (close to 4, 000), while

the SCs of Orders datasets cover a relatively smaller number of sensitive cells (no

more than 300). Therefore, even though the Adult dataset is smaller, there is no

substantial difference in the execution time on the two datasets.

Encryption Overhead. To measure the encryption overhead, we define encryp-

tion overhead ratio as o = h
n
, where h is the encryption overhead, and n is the

number of records of the dataset. We report the overhead of both our GMM ap-

proach and the OPTIMAL approach in Figure 6.9. First, we observe that our GMM

approach delivers comparable overhead as OPTIMAL. In almost all the cases, the

overhead brought by GMM is no greater than the optimal overhead by 1% (with

only one exception in the Orders dataset of 0.9 million records). This encouraging

result verifies that our GMM approach can efficiently find near-optimal encryption

solution to defend against the FD attack. Second, the encryption overhead ratio is

small, especially on the Adult dataset (no larger than 0.1%). This shows that our

approach can be scaled to large datasets with small amounts of encryption over-

head. Considering the state-of-the-art solution [116] that simply encrypts all data

cells of the RHS of a FD, our GMM approach’s encryption overhead is significantly

smaller. Third, the encryption overhead ratio of the Adult dataset is much smaller

than that of the Orders dataset. The reason why the Adult dataset has a small

overhead ratio is that each sensitive cell is associated with only a small number

(below 10) of sensitive and evidence records. On the contrary, even though the
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number of sensitive cells on the Orders dataset is smaller, the overhead ratio is

larger because its sensitive cells are associated with a large number of sensitive

and evidence records.

6.8.3 Multiple FDs

For this set of experiments, first, we pick a number of FDs randomly from the

FDs of the two datasets (Adult: 78 FDs, Orders: 10 FDs). Then for each set of

FDs, we randomly generate ten unsafe SCs. We measure the time performance

and the encryption overhead for various number of FDs. We do not report the

performance of OPTIMAL as its execution fails in the presence of multiple FDs due

to inadequate memory space. We mainly compare the performance of state-of-

the-art CLA algorithm with our GMM-MFD approach.
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Figure 6.10: Time Performance of Multiple FDs

Time Performance. We vary the number of FDs from 1 to 5. Our results reported

in Figure 6.10 show that the time performance of CLA does not change with the

number of FDs. This is because that CLA mainly relies on the size of minimum

attribute covers (MAC). We observe that the picked FDs on Adult dataset overlap

largely at the left hand side, while the FDs on Orders dataset overlap mainly at
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Figure 6.11: Encryption Overhead of Multiple FDs

the right hand side. This leads to the fact that the discovered MAC is always the

same, which only contains the fnlwgt attribure for Adult dataset and ShipPriority at-

tribute for Orders dataset. Therefore, the time performance is constant for the CLA

approach. Regarding our GMM-MFD approach, its time performance increases

with the rise of the number of FDs, as our algorithm is linear to the number of FDs.

Nevertheless, our GMM-MFD approach is highly efficient. For example, in the

presence of 5 FDs and a dataset of 1.5 million records, the GMM-MFD approach

finishes within 5 seconds.

Encryption Overhead. We measure the encryption overhead ratio of both CLA

and GMM-MFD approaches with various number of FDs. The encryption over-

head ratio is measured in the same way as for the single FD case (Section 6.8.2).

The results are reported in Figure 6.11. The overhead ratio of the CLA scheme

is always 100%. We did further analysis on this, and found out that the discov-

ered MAC is always the same, which only consists of the fnlwgt attribute for Adult

dataset, and the ShipPriority attribute for Orders dataset. CLA basically encrypts

all data values of these attributes, leading 100% overhead ratio. In contrast, the

overhead ratio of the GMM-MFD scheme is much smaller compared to that of CLA
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scheme. In particular, the overhead ratio by our approach is negligible for Adult

dataset, which is at most 0.2% (could not be shown in Figure 6.11 (a)). On the

other hand, the encryption overhead ratio of Orders dataset is higher (40% - 80%).

The reason of higher overhead ratio is due to the fact that in Orders dataset of

size 1.5M , each sensitive cell is associated with approximately 500 sensitive and

evidence records at average (as shown in Figure 6.7). This means that encrypt-

ing one sensitive cell may require to encrypt 500 evidence records in addition for

the worst case. Therefore, the encryption overhead relies on the data distribution.

We also observe that the encryption overhead ratio increases with the number of

FDs. This is not surprising as our approach encrypts more evidence cells for more

adversarial FDs.

6.8.4 Query Evaluation Overhead

We randomly generate 500 point and range queries on the Orders dataset, and

measure both the query execution time and result size for various degree of se-

curity protection. We vary the security threshold θ = 1
10
, 1

30
, 1

50
. We compare the

query execution time and result size with that of evaluating the original query on

the dataset before encryption.

Time Performance First, we measure the query execution time on the original

dataset and the encrypted dataset with different θ values. The results are displayed

in Figure 6.12. Regarding the point query, smaller θ value yields longer execution

time. This is expected as intuitively, smaller θ value leads to higher security and

thus more query evaluation time. However, there is no sharp increase in query

execution time when θ increases. To understand this, we studied the rewritten

queries and its answers, and found out that a large portion of plain sets do not
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Figure 6.12: Query evaluation time on Orders 1.5M
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Figure 6.13: Query result size on Orders 1.5M

have corresponding instances in the dataset. Therefore, the query execution time

does not rise much given the fact that these values return empty result.

For range queries, the query execution time (reported in Figure 6.12 (b))

stays relatively stable for different θ values. This is because the Orders dataset

has two important properties: (1) the data values are of uniformly distributed over

the whole domain, and (2) the frequency of data values is also of uniform distri-

bution. We also observe that our original queries are of large range size (93666

at average). Then adding [1
θ
] data values to the query’s range does not extend it

much. For example, we observe a query with range [176281, 197721], whose rewrit-
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ten range is [176273, 197728] for θ = 1
10

. The original query’s range size is 21440,

and the rewritten query’s range size is 21455. In another word, we only extend the

range size by 0.07%. Even though when θ = 1
50

, the range increase is only 0.4%.

Therefore, the query evaluation time does not change much with the increase of θ.

Result Size We report the query result size on the original and encrypted dataset

in Figure 6.13. We have the similar observation as the query time performance.

For the point query, even if we set the θ value to be 0.02, the query result size

is only expanded with a factor of 2 compared to the result from the original data.

Regarding the range query, the result size of the rewritten queries is very close to

that of the original query. This shows that our query rewriting approach provides

provable security with marginal overhead.
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Chapter 7

Frequency-hiding Dependency-preserving Encryption for Outsourced

Databases

In this chapter, we discuss how to protect the data privacy in the outsourced data in-

consistency repair computations when the server has frequency knowledge about

the original dataset. We consider the scenario where the data is evolving and may

not comply with the functional dependencies (FDs) in the evolvement process. We

assume that the client first sends the initial version of the data where the data is

consistent with all the FDs. The server discovers the FDs from the initial data,

and uses the FDs are the guidelines to repair inconsistency issues when the data

is evolving. As the FDs are critical for the server to detect the inconsistency and

generate the repair solution, we design a frequency hiding, FD-preserving proba-

bilistic encryption scheme, named F 2, that enables the service provider to discover

the FDs from the encrypted dataset and is secure against the frequency analysis

attack. This work has been submitted to the International Conference on Data

Engineering (ICDE), 2017.

7.1 Preliminaries

7.1.1 Attack and Security Model

We consider the curious-but-honest server, i,e., it follows the outsourcing protocols

honestly (i.e., no cheating on storage and computational results), but it is curious to

extract additional information from the received dataset. Since the server is poten-

tially untrusted, the data owner sends the encrypted data to the server. The data
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owner considers the true identity of every cipher value as the sensitive information

which should be protected.

We consider two adversarial attacks: (1) the frequency analysis attack that

is based on frequency distribution information, and (2) the chosen plaintext attack

that is based on the FD-preserving property of F 2, that try to break the encryption

on the outsourced data.

Frequency Analysis Attack (FA)

Frequency analysis attack is one of the most well-known example of an inference

attack to break classical ciphers. In this thesis, we assume that the attacker may

possess the frequency distribution knowledge of data values in D. In reality, the

attacker may possess approximate knowledge of the value frequency in D. How-

ever, in order to make the analysis robust, we adopt the conservative assumption

that the attacker knows the exact frequency of every plain value in D, and tries to

break the encryption scheme by utilizing such frequency knowledge. In particular,

let P and E be the plaintext and ciphertext values. Consider a ciphertext value e

that is randomly chosen from E . Let freqE(e) be the frequency of e, and freq(P)

be the frequency distribution of P. Then e, freqE(e) and freq(P) are given to the

adversary Afreq. We formally define the following adversarial experiment ExpFAΠ

on an encryption scheme Π.

Experiment EXP FA
Π ()

p′ ← AfreqE(e),freq(P)

Return 1 if p′ = Decrypt(k, e)

Return 0 otherwise
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Intuitively, ExpFAΠ returns 1 if the attacker can correctly infer the plaintext of e based

on the frequency distribution of plaintext and ciphertext values. Let ExpFAΠ (A) de-

note the output of the adversary by FA against the encryption scheme Π. We define

the FA advantage as

AdvFAΠ (A) = Prob(EXP FA
Π (A) = 1).

Based on the FA advantage, we formally define α-security, the security model

against FA.

Definition 7.1.1. [α-Security against FA] An encryption scheme Π is α-secure

against FA if for every adversary A it holds that AdvFAΠ (A) ≤ α, where α ∈ (0, 1] is

user specified.

Intuitively, the smaller α is, the stronger security that Π is against the FA. In

this thesis, we aim at designing an encryption scheme that provides α-security.

FD-preserving Chosen Plaintext Attack (FCPA)

Indistinguishability under chosen plaintext attack (IND-CPA) is a property of many

encryption schemes. Intuitively, if a cryptosystem possesses IND-CPA (and thus

semantically secure under chosen plaintext attack), then an adversary will be un-

able to distinguish pairs of ciphertexts based on the message they encrypt. Since

F 2 preserves FDs, it cannot provide indistinguishability under the chosen-plaintext

attack (IND-CPA). Therefore, we define a new security model named indistinguisha-

bility against FD-preserving chosen plaintext attack (IND-FCPA). An IND-FCPA en-

cryption scheme reveals the FD, but everything else remains semantically secure.

We first introduce the FCPA adversary. The FCPA adversary is designed in the
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similar fashion as the left-or-right game [10] for symmetric encryption schemes. In-

tuitively, the adversary chooses two plaintext datasets m0 and m1. We require both

m0 and m1 have the same size and FDs. The challenger encrypts one of them

at random. The adversary tries to guess which one was encrypted by making a

sequence of queries (m1
0,m

1
1), . . . , (mq

0,m
q
1) on the encrypted dataset. Specifically,

let LR(., ., b) denote the function that on inputs m0,m1 returns mb(b ∈ {0, 1}). Given

a dataset D with a FD F : X → Y , for a given symmetric encryption scheme Π,

b ∈ {0, 1}, and a polynomial-time adversary A, consider the following experiment:

Experiment EXP IND−FCPA−b
Π ()

d← AEncrypt(k,LR(.,.,b)),F

Return d

Let ExpIND−FCPA−1
Π (A) (ExpIND−FCPA−0

Π (A), resp.) denote that the adversary A

outputs m1 (m0, resp.). We define the IND-FCPA advantage as

AdvFCPAΠ (A) = |Prob(ExpIND−FCPA−1
Π (A) = 1)

− Prob(ExpIND−FCPA−0
Π (A) = 1)|.

Now we are ready to define IND-FCPA.

Definition 7.1.2. [Indistinguishability against FD-

preserving Chosen Plaintext Attack (IND-FCPA)] An encryption scheme Π is in-

distinguishable against FD-preserving chosen plaintext attack if for any polynomial-

time adversary A, it holds that the IND-FCPA advantage is negligible in λ, i.e.,

AdvFCPAΠ (A) = negl(λ), where λ is a pre-defined security parameter.

Intuitively, IND-FCPA requires that for any polynomial-time adversary that
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has oracle access to the encryption function, it cannot differentiate the ciphertext

value of a pair of plaintext values with a non-negligible probability.

7.1.2 Our Approaches in a Nutshell

We design F 2, a frequency-hiding, FD-preserving encryption scheme based on

probabilistic encryption that allows the data owner to encrypt the data without the

awareness of any FD in the original dataset. To defend against the frequency

analysis (FA) attack on the encrypted data, we apply the probabilistic encryption

in a way that the frequency distribution of the ciphertext values is always flattened.

The complexity of F 2 is much cheaper than FD discovery locally. To preserve

FDs, we discover maximal attribute sets (MASs) on which FDs potentially exist

and apply FD-preserving encoding on each MAS. Multiple MASs may introduce

conflicts due to encoding on each MAS independently, no matter whether these

MASs overlap or not. We provide algorithms for conflict resolution, promising that

the incurred amounts of overhead are bounded. Applying probabilistic encryption

may introduce false positive FDs that do not exist in the original dataset but in the

encrypted data. We eliminate such false positive FDs by adding a small amount

of artificial records. In this way, F 2 guarantees to preserve all FDs in the original

dataset, while avoids to introduce any false positive FDs.

7.2 FD-Preserving Encoding

Our goal is to design efficient FD-preserving data encryption methods that enable

the FDs in the original dataset to be kept in the encrypted dataset. A naive method

is to apply a simple deterministic encryption scheme (i.e. the same plaintext val-

ues are always encrypted as the same ciphertext for a given key) on the attributes
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ID A B C
r1 a1 b1 c1

r2 a1 b1 c2

r3 a1 b1 c2

r4 a1 b1 c3

r5 a2 b2 c3

r6 a2 b2 c4

ID A B C
r1 â1

1 b̂11 ĉ1
1

r2 â1
1 b̂21 ĉ1

2

r3 â2
1 b̂31 ĉ2

2

r4 â2
1 b̂41 ĉ1

3

r5 â1
2 b̂12 ĉ2

3

r6 â2
2 b̂22 ĉ1

4

(a) Base table D (b) D̂1: probabilistic encryption
(FD : A→ B, on A, B, C individually
A 6→ C, B 6→ C) (ciphertext frequency >= 1)

A→ B is not preserved;
ID A B C
r1 â1

1 b̂11 ĉ1
1

r2 â2
1 b̂21 ĉ1

2

r3 â3
1 b̂31 ĉ2

2

r4 â4
1 b̂41 ĉ1

3

r5 â1
2 b̂12 ĉ2

3

r6 â2
2 b̂22 ĉ1

4

ID A B C
r1 â1

1 b̂11 ĉ1
1

r2 â1
1 b̂11 ĉ1

2

r3 â2
1 b̂21 ĉ2

2

r4 â2
1 b̂21 ĉ1

3

r5 â1
2 b̂12 ĉ2

3

r6 â2
2 b̂22 ĉ1

4

(c) D̂2: probabilistic encryption (d) D̂3: probabilistic encryption
on A, B, C individually on attribute set {A,B} and {C}

(ciphertext frequency = 1) (ciphertext frequency >= 1)
Introduce false positive FDs FD-preserving

A→ C, B → C No false positive FDs

Figure 7.1: Examples of (good and bad) probabilistic encryption schemes

with FDs. For instance, consider the base table D in Figure 7.1 (a) that has a FD:

F : A → B. Suppose that D is encrypted by applying a deterministic encryption

scheme on each individual cell of D. Apparently F is preserved in the encrypted

dataset. However, this naive method has drawbacks. One of the main drawbacks is

that since the encryption preserves the frequency distribution, the deterministic en-

cryption scheme is vulnerable against the frequency analysis attack. The attacker

can easily map the ciphertext to the plaintext values based on their frequency.

A straightforward solution to defend against the frequency analysis attack

is to use the probabilistic encryption schemes (i.e., the same plaintext values are
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encrypted as different ciphertext values) instead of the deterministic encryption

schemes, aiming to hide frequency. However, adapting the existing probabilistic

encryption schemes to be FD-preserving is far more than trivial. The following

example will show that applying the probabilistic encryption scheme in a careless

way may either destroy FDs completely or introduce false positive FDs (i.e., the

FDs that do not exist in D).

Example 7.2.1. Consider the table D shown in Figure 7.1 (a). Figure 7.1 (b) shows

an instance D̂1 by applying the probabilistic encryption scheme at the attributes A,

B and C individually, without requiring that each plaintext value must be encrypted

differently (i.e., the frequency of each ciphertext value can be more than 1, e.g.,

â1
1 in Figure 7.1 (b)). We use the notation âji (b̂ji , ĉ

j
i , resp.) as the j-th unique

ciphertext value of ai (bi, ci, resp.) by the probabilistic encryption scheme. Now

the frequency analysis attack fails since the frequency distribution of the plaintext

values is dissimilar to that of the ciphertext values. However, the FD A → B does

not hold on D̂1 anymore, as the same ciphertext value â1
1 of attributeA is associated

with two different cipher values b̂1
1 and b̂2

1 of attribute B. Now let’s consider another

encryption scheme D̂2 (Figure 7.1 (c)) that still applies the probabilistic encryption

scheme at the attributes A, B and C individually, but requiring that all ciphertext

values must be unique (i.e., the frequency of each ciphertext value is always 1).

Now A → B holds on D̂2. However, since each ciphertext value is unique, there

are also two false positive FDs A→ C and B → C in D̂2, which do no exist in D.

Example 7.2.1 shows that the probabilistic encryption scheme, if it is ap-

plied on individual attributes, fails to be a FD-preserving solution, regardless of the

frequency of the ciphertext values. This raises the first challenge of designing FD-

preserving probabilistic encryption schemes: what is the appropriate encryption
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granularity on which the probabilistic encryption is applied? If we revisit Exam-

ple 7.2.1, a correct FD-preserving encryption scheme is to consider FD attributes

{A,B} together as a super attribute, and apply the probabilistic encryption scheme

on the super attribute (as shown in Figure 7.1 (d)). FDs are guaranteed to be pre-

served by this approach. But there lies the challenge of finding those FD attributes

that will be considered as the super attribute for encryption. Previous study has

shown that FD discovery needs intensive computational efforts [62]. We assume

that the data owner may lack of computational resources and/or knowledge to dis-

cover FDs by herself. Therefore, we assume that FDs are not available for the

encryption. In other word, the data owner does not know which attributes will be

considered as a super attribute for FD-preserving encryption.

The key to designing a FD-preserving encryption algorithm is to first identify

the set of attributes on which the probabilistic encryption scheme is applied. We

have the following theorem to show that for any FD F , if the probabilistic encryption

scheme is applied on the attribute set that includes both LHS(F ) and RHS(F ), F

is still preserved.

Theorem 16. Given a dataset D and any FD F of D, let the attribute set A be the

attribute sets on which the probabilistic encryption scheme is applied on, and let D̂

be the encryption result. Then F always holds in D̂ if LHS(F ) ∪RHS(F ) ⊆ A.

Proof. Assume that there is a FD: A→ B which holds in D but not in D̂. It must be

true that there exists at least one pair of records r1, r2 such that r1[A] = r2[A] and

r1[B] = r2[B] in D, while in D̂, r̂1[A] = r̂2[A] but r̂1[B] 6= r̂2[B]. According to the HS

scheme which is applied on an attribute set A s.t. LHS(F ) ∪ RHS(F ) ⊆ A, there

are two cases. First, if r1 and r2 are taken as the same instance, then r̂1 and r̂2

have the same value in every attribute. It cannot happen as r̂1[B] 6= r̂2[B]. Second,
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if r1 and r2 are taken as different instances, then it must be true that r̂1[A] 6= r̂2[A]

and r̂1[B] 6= r̂2[B] according to Requirement 2 of the HS scheme. So r̂1 and r̂2

cannot break the FD: A→ B in D̂.

Example 7.2.2. To continue our running example, consider the base table in Figure

7.1 (a). Figure 7.1 (c) shows an example table D̂2 of applying the probabilistic en-

cryption scheme on the attribute set {A,B}. Using this scheme, the two instances

of (a1, b1) are encrypted as (â1
1, b̂

2
1). Now the FD A→ B still holds on D̂2.

Our FD-preserving probabilistic encryption method consists of four steps:

(1) identifying maximum attribute sets as the super attribute for encryption; (2)

splitting-and-scaling; (3) conflict resolution; and (4) eliminating false positive FDs.

We explain the details of these four steps in the following subsections.

7.2.1 Step 1: Identifying Maximum Attribute Sets

Theorem 16 states that the set of attributes on which the probabilistic encryption

scheme is applied should contain all attributes in FDs. Apparently the set of all

attributes of D satisfies the requirement. However, it is not a good solution. Let

|σA=r[A](D)| denote the number of records in D that have the same value as r[A],

for a specific record r and a set of attributes A. It is highly likely that there does not

exist a probabilistic encryption scheme, due to the reason that f = |σA=r[A](D)| is

more likely to be 1 when A contains more attributes. Now the main challenge is to

decide the appropriate attribute set A that will be considered as the super attribute

on which the probabilistic encryption scheme is be applied on, assuming that the

data owner is not aware of the existence of any FD. To address this challenge,

we define the maximum attribute set on which there exists at least one instance

whose frequency is greater than 1. Formally,
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Definition 7.2.1. [Maximum Attribute Set (MAS)] Given a datasetD, an attribute

set A of D is a maximum attribute set MAS if: (1) there exists at least an instance

a of A such that |σA=a(D)| > 1; and (2) for any attribute set A′ of D such that

A ⊆ A′, there does not exist an instance a′ of A′ s.t. |σA′=a′(D)| > 1.

Our goal is to design the algorithm that finds all MASs of a given dataset

D. Note that the problem of finding MASs is not equivalent to finding FDs. For

instance, consider the base table D in Figure 7.1 (a). Its MASs is {A,B} and

{B,C}. But its FD is A → B. In general, given a set of MASs M and a set of

FDs F , for each FD F ∈ F , there always exists at least an MAS M ∈M such that

(LHS(F )∪RHS(F )) ⊆M . But it is possible that a MAS does not contain any FD.

For example, consider Figure 7.1 (a), there does not exist an FD on the attributes

of MAS {B,C}.

In general, finding MASs is quite challenging given the exponential number

of attribute combinations to check. We found out that our MAS is equivalent to the

maximal non-unique column combination [57]. We adapt the Ducc algorithm [57]

to find MASs. The complexity of Ducc is decided by the solution set size but not

the number of attributes. Due to the space limit, we omit the details of the algorithm

here. For each discovered MAS, we find its partitions [62]. We say two tuples r

and r′ are equivalent with respect to a set of attributes X if r[X] = r′[X].

Definition 7.2.2. [Equivalence Class (EC) and Partitions] [62] The equivalence

class (EC) of a tuple r with respect to an attribute set X, denoted as rX , is defined

as rX = {r′|r[A] = r′[A],∀A ∈ X}. The size of rX is defined as the number

of tuples in rX , and the representative value of rX is defined as r[X]. The set

πX = {rX |r ∈ D} is defined as a partition of D under the attribute set X. That is,

πX is a collection of disjoint sets (ECs) of tuples, such that each set has a unique



161

representative value of a set of attributes X, and the union of the sets equals D.

As an example, consider the dataset D in Figure 7.1 (a), π{A,B} consists

of five ECs whose representative values are (a1, b1), (a2, b1), (a3, b1), (a4, b2), and

(a5, b2), . Apparently, a MAS is an attribute set whose partitions contain at least

one equivalence class whose size is more than 1.

7.2.2 Step 2: Splitting-and-Scaling Encryption

After the MASs and their partitions are discovered, we design two steps to apply

the probabilistic encryption scheme on the partitions: (1) grouping of ECs, and (2)

splitting and scaling on the EC groups. Next, we explain the details.

Step 2.1. Grouping of Equivalence Classes

To provide α-security, we group the ECs in the way that each equivalence class

belongs to one single group, and each group contains at least k ≥ [ 1
α

] ECs, where

α is the threshold for α-security. We use ECG for the equivalence class group in

short.

We have two requirements for the construction of ECGs. First, we prefer to

put ECs of close sizes into the same group, so that we can minimize the number

of new tuples added by the next splitting & scaling step (Section 7.2.2). Second,

we do not allow any two ECs in the same ECG to have the same value on any

attribute of MAS. Formally,

Definition 7.2.3. [Collision ofECs] Given aMAS M and two equivalence classes

Ci and Cj of M , we say Ci and Cj have collision if there exists at least one attribute

A ∈M such that Ci[A] = Cj[A].
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For security reason, we require that all ECs in the same ECG should be

collision-free (more details in Section 7.3).

Require: the set of equivalence groups C = {C1, . . . , Cx} in partition πM , the minimal
ECG size k

Ensure: Every equivalence class is grouped into a valid ECG.
1: Sort Ci(1 ≤ i ≤ x) in descending order by the equivalence class’s frequency;
2: for i = 1 to x do
3: if Ci is not grouped then
4: create a new ECG G containing Ci only
5: for j = i+ 1 to x do
6: if Cj is not grouped AND Cj has no collision with any EC in G then
7: add Cj into G
8: if G.size ≥ k then
9: break

10: end if
11: end if
12: end for
13: end if
14: end for
15: for all ECG G s.t. G.size < k do
16: Add fake collision-free ECs to make G.size ≥ k
17: end for

Algorithm 7.1: Grouping(C, k)

Algorithm 7.1 specifies the detailed procedure to construct ECGs that satisfy

the aforementioned two requirements. First, we sort the equivalence classes by

their sizes in ascending order (Line 1). Second, we group the collision-free ECs

with the closest size into the same ECG, until the number of non-collisional ECs

in the ECG reaches k = [ 1
α

] (Line 2 to 14). It is possible that for some ECGs, the

number of ECs that can be found is less than the required k = [ 1
α

]. In this case,

we add fake collision-free ECs to achieve the size k requirement. The fake ECs

only consist of the values that do not exist in the original dataset (Line 15 to 17).

The size of these fake ECs is set as the minimum size of the ECs in the same

ECG. We must note that the server cannot distinguish the fake values from real
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ones.This is because both true and fake values are encrypted before outsourcing.

EC ID A B
C1 {r2, r3} a1 b1
C2 {r1} a2 b1
C3 {r4} a3 b1
C4 {r5} a4 b2
C5 {r6} a5 b2

ECG EC ID A B

ECG1
C1 {r2, r3} â1

1 b̂11
C4 {r5, r7} â1

4 b̂12

ECG2
C2 {r1} â1

2 b̂21
C5 {r6} â1

5 b̂22

ECG3
C3 {r4} â1

3 b̂31
C6 {r8} â1

6 b̂13
(a) ECs in of MAS = {AB} (b) ECGs after S&S

($ = 2, α = 0.5)

Figure 7.2: An example of splitting-and-scaling

Example 7.2.3. The dataset D in Figure 7.1 (a) has two MASs. Consider the

MAS M = {A,B} and its five ECs shown in Figure 7.2 (a). Assume it is required

to meet 1
2
-security (i.e., α = 1

2
). The three ECGs are ECG1 = {C1, C4}, ECG2 =

{C2, C5}, and ECG3 = {C2, C6}, where C6 is an artificial EC. All the ECGs only

have collision-free ECs, and each ECG contains at least two ECs. Note that C1

and C2 cannot be put into the same ECG as they share the same value b1, similarly

for C1 and C3.

Step 2.2. Splitting-and-Scaling (S&S)

This step consists of two phases, splitting and scaling. In particular, consider an

ECG C = {C1, . . . , Cx}, in which each EC Ci is of size fi (1 ≤ i ≤ x). By splitting,

for each Ci, its fi (identical) plaintext values are encrypted to $ unique ciphertext

values, each of frequency [fi
$

], where $ is the split factor whose value is specified

by the user. The scaling phase is applied after splitting. By scaling, all the ci-

phertext values reach the same frequency by adding additional copies up to [fmax

$
],
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where fmax is the maximum size of all ECs in C. After applying S&S, all ciphertext

values in the same ECG are of the same frequency.

We illustrate how S&S works by using Figure 7.2 (b). Before S&S, ECG1

contains C1 of frequency 2, and C4 of frequency 1. By the S&S step, the record r5

of C4 is duplicated (as record r7), ensuring that C1 and C4 have the same frequency.

Note that before S&S, a1 is the only plaintext value on attribute A whose frequency

is greater than 1. But after S&S, there exist two ciphertext values (â1
1 and â1

4)

whose frequency is greater than 1. Thus, the adversary’s probability of breaking

the encryption of a1 based on the frequency distribution is 1
2
.

The splitting procedure can be implemented by the probabilistic encryption.

For any plaintext value p, it is encrypted as e =< r, Fk(r)⊕p >, where r is a random

string of length λ, F is a pseudo random function, k is the key, and ⊕ is the XOR

operation. The splits of the same EC can easily be generated by using different

random values r. In order to decrypt a ciphertext e =< r, s >, we can recover p

by calculating p = Fk(r) ⊕ s. For security concerns, we require that the plaintext

values that appear in different ECGs are never encrypted as the same ciphertext

value (more details in Section 7.3). Note that for all the records in the same EC,

we can obtain its encrypted values by only encrypting the representative value of

the equivalence class once.

It is not necessary that every EC must be split. Our aim is to find a subset

of given ECs whose split will result in the minimal amounts of additional copies

added by the scaling phase. In particular, given an ECG C = {C1, . . . , Ck} in which

ECs are sorted by their sizes in ascending order (i.e., Ck has the largest size), we

aim to find the split point j of C such that each EC in {C1, . . . , Cj−1} is not split but

each EC in {Cj, . . . , Ck} is split. We call j the split point. Next, we discuss how to

find the optimal split point that delivers the minimal amounts of additional copies
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by the scaling phase. There are two cases: (1) the size of Ck is still the largest

after the split; and (2) the size of Ck is not the largest anymore, while the size of

Cj−1 (i.e., the EC of the largest size among all ECs that are not split) becomes the

largest. We discuss these two cases below.

Require: C = {C1, . . . , Ck} and their frequency f1, . . . , fk, $
Ensure: The best split point j that incur minimal number of inserted duplicates
1: Let jmax = max{j|fj−1 ≤ [fk$ ]}

2: Define ∆jmax = R−R1 =
jmax−1∑
i=1

(fk − fk
$ ) = (jmax − 1)(1− fk

$ )

3: for j = jmax + 1→ k do

4: ∆j = R−R2 =
k∑
i=1

(fk − fi)− (
j−1∑
i=1

(fj−1 − fi) +$
k∑
i=j

(fj−1 − 1
$fi)) =

kfk − ($k − ($ − 1)(j − 1))fj−1

5: end for
6: j′ = {j|∆j = max{∆i}, jmax ≤ i ≤ k}
7: return j′

Algorithm 7.2: FindSplitPoint(C, $)

Case 1: [fk
$

] ≥ fj−1, i.e., the split of Ck still has the largest frequency within

the group. In this case, the total number of copies added by the scaling step is

R1 =

j−1∑
i=1

([
fk
$

]− fi) +
k∑
i=j

(fk − fi).

It can be easily inferred that when j = max{j|fj−1 ≤ [fk
$

]}, R1 is minimized.

Case 2: [fk
$

] < fj−1, which means that Cj−1 enjoys the largest frequency

after splitting. For this case, the number of duplicates that is to be added is:

R2 =

j−1∑
i=1

(fj−1 − fi) +$
k∑
i=j

(fj−1 − [
fi
$

]).

R2 is not a linear function of j. Thus we define jmax = max{j|[fk
$

] > fj−1}. We try

all j ∈ [jmax, k] and return j that delivers the minimal R2.
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Based on the analysis of the two cases, we design an algorithm to find the

best split point in each equivalence class. The pseudo code is shown in Algorithm

7.2. Let jmax be the largest index j such that [fk
$

] ≥ fj−1 (Line 1). According to

the discussion in Case 1, jmax minimizes R1. Let R denote the total amount of

additional copies that are inserted when there is no split, then ∆jmax represents the

number of copies that are saved by setting the split point to be jmax. From Line 3

to 6 in Algorithm 7.2, we enumerate all indices j in Case 2, and calculate ∆j. From

all the indices ranging between jmax and k, we find the one with the largest ∆j, i.e.,

the smallest amount of additional copies.

For any givenECG, the complexity of finding its optimal split point isO(|ECG|).

In practice, the optimal split point j is close to the ECs of the largest frequency (i.e.,

few split is needed). In general, the complexity of the S&S step is O(t2), where t is

the number of equivalence classes of D. As t = O(nq), the complexity is O(n2q2),

where n is the number of tuples in D, and q is the number of MASs.

7.2.3 Step 3: Conflict Resolution

ID A B
r1 â1

2 b̂21
r2 â1

1 b̂11
r3 â1

1 b̂11
r4 â1

3 b̂31
r5 â1

4 b̂12
r6 â1

5 b̂22

ID B C
r1 b̂21 ĉ1

1

r2 b̂21 ĉ1
1

r3 b̂31 ĉ1
2

r4 b̂31 ĉ1
2

r5 b̂12 ĉ2
2

r6 b̂22 ĉ1
3

ID A B C
r1 â1

2 b̂21 ĉ1
1

r2 â1
1 b̂11 ĉ2

1

r3 â1
1 b̂11 ĉ3

2

r4 â1
3 b̂31 ĉ1

2

r5 â1
4 b̂12 ĉ2

2

r6 â1
5 b̂22 ĉ1

3

r7 â2
1 b̂21 ĉ1

1

r8 â3
1 b̂31 ĉ1

2

(a) Enc{A,B}(D) (b) Enc{B,C}(D) (c) D̂: Encryption by
conflict resolution

Figure 7.3: An example of conflict resolution of two overlapping MASs
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So far the grouping and splitting & scaling steps are applied on one single

MAS. In practice, it is possible that there exist multiple MASs. The problem is

that, applying grouping and splitting & scaling separately on each MAS may lead

to conflicts. For instance, consider the example in Figure 7.3, in which Figure 7.3

(a) and (b) show the encryption on two MASs {A,B} and {B,C} individually. The

conflict appears at tuples r2 and r3 on attribute B. For example, r2[B] is encrypted

as b̂1
1, while it is encrypted as b̂2

1.

There are two possible conflicts:

(1) Type-1. Conflicts due to scaling: there exist tuples that are scaled by one MAS

but not so by another MAS; and

(2) Type-2. Conflicts due to shared attributes: there exist tuples whose value on

attribute(s) Z are encrypted differently by multiple MASs, where Z is the overlap

of these MASs.

It initially seems true that there may exist the conflicts due to splitting too;

some tuples are required to be split according to one MAS but not by another. But

our further analysis shows that such conflicts only exist for overlapping MASs, in

particular, the type-2 conflicts. Therefore, dealing with type-2 conflicts covers the

conflicts due to splitting.

The aim of the conflict resolution step is to synchronize the encryption of all

MASs. Given two MASs of the attribute sets X and Y , we say these two MASs

overlap if X and Y overlap at at least one attribute. Otherwise, we say the two

MASs are non-overlapping. Next, we discuss the details of the conflict resolution

for non-overlapping MASs (Section 7.2.3) and overlapping MASs (Section 7.2.3).
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Non-overlapping MASs

Given two MASs of attribute sets X and Y such that X and Y do not overlap, only

the type-1 conflicts (i.e., conflicts due to scaling) are possible. WLOG we assume

a tuple r is required to be scaled by applying scaling on the ECG of rX but not

on any ECG of rY . The challenge is that simply scaling of r makes the ECG of

rY fails to have homogenized frequency anymore. To handle this type of conflicts,

first, we execute the grouping and splitting & scaling over πX and πY independently.

Next, we look for any tuple r such that r is required to have ` (` > 1) copies to be

inserted by splitting & scaling over πX but free of split and scaling over πY . For

such r, we modify the values of the ` copies of tuple r, ensuring that for each copy

r′, r′[X] = r[X] while r′[Y ] 6= r[Y ]. To avoid collision between ECGs, we require

that no r′[Y ] value exists in the original dataset D. By doing this, we ensure that

the ECGs of both rX and rY still achieve the homogenized frequency distribution.

Furthermore, by assigning new and unique values to each copy on the attribute

set Y , we ensure that MASs are well preserved (i.e., both MASs X and Y do not

change to be X ∪ Y ). The complexity of dealing with type-1 conflicts is O(n′q),

where n′ is the number of the tuples that have conflicts due to scaling, and q is the

number of MASs.

Overlapping MASs

When MASs overlap, both types of conflicts are possible. The type-1 conflicts can

be handled in the same way as for non-overlapping MASs (Section 7.2.3). In the

following discussion, we mainly focus on how to deal with the type-2 conflicts (i.e.,

the conflicts due to shared attributes). We start our discussion from two overlap-

ping MASs. Then we extend to the case of more than two overlapping MASs.
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Two overlapping MASs. We say two ECs Ci ∈ πX and Cj ∈ πY are conflicting

if Ci and Cj share at least one tuple. We have the following theorem to show that

conflicting ECs never share more than one tuple.

Theorem 17. Given two overlapping MASs X and Y , for any pair of ECs Ci ∈ πX
and Cj ∈ πY , |Ci ∩ Cj| ≤ 1.

Proof. The correctness of Theorem 17 is straightforward: if |Ci∩Cj| > 1, there must

exist at least one equivalence class of the partition πX∪Y whose size is greater than

1. Then X ∪ Y should be a MAS instead of X and Y .

Theorem 17 ensures the efficiency of the conflict resolution, as it does not

need to handle a large number of tuples.

A naive method to fix type-2 conflicts is to assign the same ciphertext value

to the shared attributes of the two conflicting ECs. By re-visiting the example in

Figure 7.1 (a), if we follow the naive solution to resolve the conflict appears at tuples

r2 and r3 on attribute B, only one value is picked for tuples r2 and r3 on attribute B.

This scheme is incorrect as the FD F : A→ B does not hold anymore.

We design a robust method to resolve the type-2 conflicts for two overlapping

MASs. Given two overlapping MASs X and Y , let Z = X ∩ Y , for any tuple r,

let rX [Z] and rY [Z] (rX [Z] 6= rY [Z]) be the value constructed by encryption over X

and Y independently. We use X − Z (Y − Z, resp.) to denote the attributes that

appear in X (Y , resp.) but not Z. Then we construct two tuples r1 and r2:

• r1: r1[X − Z] = r[X − Z], r1[Y − Z] = vX , and r1[Z] = rX [Z];

• r2: r2[X − Z] = vY , r2[Y − Z] = r[Y − Z], and r2[Z] = rY [Z].

where vX and vY are two values that do not exist in D. Note that both X −Z

and Y − Z can be sets of attributes, thus vX and vY can be set of values. Tuples
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r1 and r2 replace tuple r in D̂. As an example, consider the tables in Figure 7.3 (a)

and (b), the encryption after conflict resolution is shown in Figure 7.3 (c). Tuple r2

and r7 in Figure 7.3 (c) are the two records constructed for the conflict resolution

of r2 in Figure 7.3 (a) and (b). Our conflict resolution method guarantees that the

ciphertext values of each ECG of X and Y are of homogenized frequency.

However, it requires to add additional records. Next, we show that the num-

ber of records added by resolution of both types of conflicts is bounded.

Theorem 18. Given a dataset D, let D̂1 be the dataset after applying grouping and

splitting & scaling on D, and D̂2 be the dataset after conflict resolution on D̂1, then

|D̂2| − |D̂1| ≤ hn, where h is the number of overlapping MAS pairs, and n is the

size of D.

Proof. Due to the space limit, we only give the proof sketch here. Note that the

resolution of type-1 conflicts does not add any fake record. Thus we only prove the

bound of the new records for resolution of type-2 conflicts. This type of conflicts is

resolved by replacing any conflicting tuple with two tuples for each pair of conflicting

ECs. Since two overlapping MASs have n conflicting equivalence class pairs at

most, there will be at most hn new records inserted for this type of resolution for h

overlapping MAS pairs.

We must note that hn is a loose bound. In practice, the conflicting ECs

share a small number of tuples. The number of such tuples is much smaller than

n. We also note that when h = 0 (i.e., there is no overlapping MAS), no new record

will be inserted.

More than Two Overlapping MASs. When there are more than two overlapping

MASs, one way is to execute the encryption scheme that deals with two overlap-

ping MASs repeatedly for every two overlapping MASs. This raises the question
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in which order the MASs should be processed. We have the following theorem to

show that indeed the conflict resolution is insensitive to the order of MASs.

Theorem 19. Given a dataset D that contains a set of overlapping MASs M , let

D̂1 and D̂2 be the datasets after executing conflict resolution in two different orders

of M , then |D̂1| = |D̂2|.

Proof. It is easy to show that no new record is inserted by resolution of type-1

conflicts. To fix type-2 conflicts, for each overlapping MAS pair, every conflicting

tuple is replaced by two tuples. The number of conflicting tuples equals the num-

ber of conflicting equivalence class pairs of the two overlapping MASs. Assume

there are q such overlapping MAS pairs, each having oi pairs of conflicting equiv-

alence class pairs. The conflict resolution method adds O =
q∑
i=1

oi records in total.

The number of records is independent from the orders of MASs in which conflict

resolution is executed.

Since the order of MASs does not affect the encryption, we pick the overlap-

ping MAS pairs randomly. For each overlapping MAS pair, we apply the encryp-

tion scheme for two overlapping MASs. We repeat this procedure until all MASs

are processed.

7.2.4 Step 4. Eliminating False Positive FDs

Before we discuss the details of this step, we first define false positive FDs. Given

the dataset D and its encrypted version D̂, we say the FD F is a false positive

if F does not hold in D but holds in D̂. We observe that the encryption scheme

constructed by Step 1 - 3 may lead to false positive FDs. Next, we show an example

of false positive FDs.
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EC B C f

ECG1
C1 b1 c1 2
C2 b2 c2 1

ECG2
C3 b1 c2 2
C4 b2 c3 1

B C f

ECG1

b̂21 ĉ1
1 2

b̂12 ĉ2
2 2

ECG2
b̂31 ĉ1

2 2
b̂22 ĉ1

3 2

A B C f
â6 b̂3 ĉ4 1
â7 b̂3 ĉ5 1
â8 b̂4 ĉ6 1
â9 b̂4 ĉ7 1

(a) Base table D (b) D̂: encryption by Step (c) Constructed ∆D
(B → C does not hold) 1 - 3 (B → C becomes to remove false

false positive) positive FD B → C

Figure 7.4: An example of eliminating false positive FDs

ABC:{}

AB:C AC:B BC:A

ABD:{}

AB:DAD:B BD:A

A:C B:C A:BC:B B:AC:A A:DB:DD:B D:A

Figure 7.5: An example of FD lattice

Example 7.2.4. Consider the table D in Figure 7.4 (a) generated from the dataset

in Figure 7.1 (a). Apparently the FD F : B → C does not exist in D, as the two

ECs C1 and C3 have collisions. However, in the encrypted dataset D̂ constructed

by Step 1 - 3 (Figure 7.4 (b)), since no split of any two ECs have collision anymore,

F : B → C holds in D̂.

Indeed, we have the following theorem to show that free of collision among

ECs is the necessary and sufficient conditions for the existence of FDs.

Theorem 20. For any MAS X, there must exist a FD on X if and only if for any two

ECs Ci and Cj of πX , Ci and Cj do not have collision.

Proof. The proof of Theorem 20 is straightforward. As X is a MAS, there must

exist at least an EC eq ∈ ΠX such that |eq| > 1. As there does not any pair of ECs

with collision, for any attribute A ∈ X, it must be true that X \{A} → A is a FD.
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Following Theorem 20, the fact that Step 1 - 3 construct only collision-free

ECs may lead to a large number of false positive FDs, which hurts the accuracy

of dependency discovering by the server.

The key idea to eliminate the false positive FDs is to restore the collision

within the ECs. Note that eliminating the false positive FD F : X → Y naturally

leads to the elimination of all false positive FDs F ′ : X ′ → Y such that X ′ ⊆ X.

Therefore, we only consider eliminating the maximum false positive FDs whose

LHS is not a subset of LHS of any other false positive FDs.

We use the FD lattice to help restore the ECs with collision and eliminate

false positive FDs. The lattice is constructed in a top-down fashion. Each MAS

corresponds to a level-1 node in the lattice. We denote it in the format M : {},

where M is the MAS that the node corresponds to. The level-2 nodes in the lattice

are constructed as following. For each level-1 nodeN , it has a set of children nodes

(i.e., level-2 nodes) of format X : Y , where Y corresponds to a single attribute of

D, and X = M − {Y }, where M is the MAS that node N corresponds to. Starting

from level 2, for each node X : Y at level ` (` ≥ 2), it has a set of children nodes

of format X ′ : Y ′, where Y ′ = Y , and X ′ ⊂ X, with |X|′ = |X| − 1 (i.e., X ′ is the

largest subset of X). Each node at the bottom of the lattice is of format X : Y ,

where both X and Y are 1-attribute sets. An example of the FD lattice is shown in

Figure 7.5.

Based on the FD lattice, the data owner eliminates the false positive FDs

by the following procedure. Initially all nodes in the lattice are marked as “un-

checked”. Starting from the second level of lattice, for each node N (in the format

X : Y ), the data owner checks whether there exists at least two ECs Ci, Cj ∈ πM
such that Ci[X] = Cj[X] but Ci[Y ] 6= Cj[Y ], where M is the MAS that N ’s parent

node corresponds to. If it does, then the data owner does the following two steps.
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First, the data owner inserts k = d 1
α
e artificial record pairs {P1, . . . , Pk}, where α is

the given threshold for α-security. The reason why we insert k such pairs will be

explained in Section 7.3. Each Pi consists of two records r1
i and r2

i :

• r1
i : r1

i [X] = xi, r1
i [Y ] = a1

i , and r1
i [MAS −X − {Y }] = v1

i ;

• r2
i : r2

i [X] = xi, r2
i [Y ] = a2

i , and r2
i [MAS −X − {Y }] = v2

i .

where xi, a1
i , a

2
i , v

1
i and v2

i are artificial values that do not exist in D̂ constructed

by the previous steps. We require that a1
i 6= a2

i , and v1
i 6= v2

i . We also require

that all artificial records are of frequency one. Second, the data owner marks the

current node and all of its descendants in the lattice as “checked” (i.e., the current

node is identified as a maximum false positive FD). Otherwise (i.e., the ECs do not

have collisions), the data owner simply marks the current node as “checked”. After

checking all the nodes at the level `, the data owner moves to the level ` + 1 and

applies the above operation on the “un-checked” lattice nodes. The data owner

repeats the procedure until all nodes in the lattice are marked as “checked”.

Let ∆D be the artificial records that are constructed by the above iterative

procedure. It is easy to see that for any FD X → Y that does not hold in D, there

always exist two ECs C ′i and C ′j in ∆D, where C ′i[X] = C ′j[X] but C ′i[Y ] 6= C ′j[Y ].

This makes the FD X → Y that does not hold in D fails to hold in D̂ too.

Example 7.2.5. To continue our Example 7.2.4, we show how to construct ∆D. It

is straightforward that the MAS {B,C} contains the ECs that have collision (e.g.

C1 and C3 in Figure 7.4 (a)). Assume α = 1/2. Then ∆D (shown in Figure 7.4 (c))

consists of two pairs of artificial tuples, each pair consisting of two records of the

same value on attribute B but not on C. The false positive FD F : B → C does not

exist in D̂ + ∆D any more.
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Next, we show that the number of artificial records added by Step 4 is

bounded.

Theorem 21. Given a dataset D, let M1, . . . ,Mq be the MASs of D. Let D̂1 and D̂2

be the dataset before and after eliminating false positive FDs respectively. Then

2k ≤ |D̂2| − |D̂1| ≤ min(2km

(
m− 1

[m−1
2

]

)
, 2k

q∑
i=1

|Mi|
(|Mi| − 1

[ |Mi|−1
2

]

)
),

where k = d 1
α
e (α as the given threshold for α-security), m is the number of at-

tributes of D, q is the number of MASs, and |Mi| as the number of attributes in

Mi.

Proof. Due to the limited space, we show the proof sketch here. We consider

two extreme cases for the lower bound and upper bound of the number of artifi-

cial records. First, for the lower bound case, there is only one MAS whose ECs

have collisions. It is straightforward that our construction procedure constructs

2k artificial records, where k = d 1
α
e. Second, for the upper bound case, it is

easy to infer that the maximum number of nodes in the FD lattice that needs to

construct artificial records is
∑q

i=1 |Mi|
( |Mi|−1

[
|Mi|−1

2
]

)
. For each such lattice node, there

are 2k artificial records. So the total number of artificial records is no larger than

2k
∑q

i=1 |Mi|
( |Mi|−1

[
|Mi|−1

2
]

)
. On the other hand, as for each maximum false positive FD,

its elimination needs 2k artificial records to be constructed. Therefore, the total

number of artificial records added by Step 4 equals 2ku, where u is the number of

maximum false positive FDs. It can be inferred that u ≤ m
(
m−1

[m−1
2

]

)
. Therefore, the

number of artificial records cannot exceed min(2k
∑q

i=1 |Mi|
( |Mi|−1

[
|Mi|−1

2
]

)
, 2km

(
m−1

[m−1
2

]

)
).

Note that the number of artificial records is independent of the size of the original

dataset D. It only relies on the number of attributes of D and α.
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The time complexity of eliminating false positive FDs for a single MAS M is

O(2|M |t), where |M | is the number of attributes in M , and t is the number of ECs

of M . In our experiments, we observe t << n, where n is the number of records

in D. For instance, on a benchmark dataset of 15 million records, the average

value of t is 11, 828. Also, the experiment results on all three datasets show that

at most |M | = m
2

. With the existence of q > 1 MASs, the time complexity is

O(
∑q

i=1 2|Mi|ti), where ti is the number of equivalence classes in Mi, and |Mi| is

the number of attributes of MAS Mi. Considering that ti << n, the total complexity

is comparable to O(nm2).

We have the following theorem to show that the FDs in D̂ and D are the

same.

Theorem 22. Given the dataset D, let D̂ be the dataset after applying Step 1 - 4

of F 2 on D, then: (1) any FD of D also hold on D̂; and (2) any FD F that does not

hold in D does not hold in D̂ either.

Proof. First, we prove that the grouping, splitting & scaling and conflict resolution

steps keep the original FDs. We prove that for any FD X → A that holds on

D, it must also hold on D̂. We say that a partition π is a refinement of another

partition π′ if every equivalence class in π is a subset of some equivalence class

(EC) of π′. It has been proven that the functional dependency X → A holds if

and only if πX refines π{A}[62]. For any functional dependency X → A, we can

find a MAS M such that (X ∪ {A}) ⊂ M . Obviously, πM refines πX , which means

for any EC C ∈ πM , there is an EC Cp ∈ πX such that C ⊂ Cp. Similarly, πM

refines π{A}. So for any equivalence class C ∈ πM , we can find Cp ∈ πX and

Cq ∈ π{A} such that C ⊂ Cp ⊂ Cq. First, we prove that our grouping over M

keeps the FD: X → A. It is straightforward that grouping ECs together does not



177

affect the FD. The interesting part is that we add fake ECs to increase the size

of a ECG. Assume we add a fake equivalence class Cf into πM . Because Cf

is non-collisional, πX = πX ∪ {Cf} and π{A} = π{A} ∪ {Cf}. Therefore, πX still

refines π{A}. The FD is preserved. Second, we show that our splitting scheme

does not break the FD: X → A. Assume that we split the equivalence class C ∈

πM into $ unique equivalence classes C1, . . . , C$. After the split, Cp = Cp − C,

Cq = Cq − C. This is because the split copies have unique ciphertext values. As a

result, πX = πX ∪ {C1, . . . , C$} and π{A} = π{A} ∪ {C1, . . . , C$}. It is easy to see

that πX is still a refinement of π{A}. The scaling step after splitting still preserves

the FD, as it only increases the size of the equivalence class C ∈ πM by adding

additional copies. The same change applies to both Cp and Cq. So Cp is still a

subset of Cq. As a result, the FD: X → A is preserved after splitting and scaling.

Lastly, we prove that our conflict resolution step keeps the FDs. First, the way of

handling non-overlapping MASs is FD-preserving because we increase the size

of an equivalence class in a partition while keeping the stripped partitions of the

other MASs. Second, the conflict resolution for overlapping MASs is also FD-

preserving. Assume C ∈ πM and C ′ ∈ πN conflict over a tuple r. According to

our scheme, we use r1 and r2 to replace r with r1[M ] = rM [M ], r2[N ] = rN [N ],

r1[N −M ] and r2[M − N ] having new values. The effect is to replace r ∈ C with

r1. This change does not affect the fact that Cp ⊂ Cq. Therefore the FDs are still

preserved. Here we prove that by inserting artificial records, all original FDs are

still kept while all the false positive FDs are removed.

Next, we prove that insertion of artificial records preserves all original FDs.

The condition to insert fake records is that there exists equivalence classes Ci and

Cj such that Ci[X] = Cj[X] but Ci[Y ] 6= Cj[Y ] on the attribute sets X and Y . For

any FD that holds on D, this condition is never met. Hence the real FDs in D will
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be kept.

Last, we prove that any FD F : X → Y that does not hold in D is also not

valid in D̂. First we show that if there does not exist a MAS M such that X∪{Y } 6⊂

M , X → Y can not hold in D̂. Since our splitting & scaling procedure ensures that

different plaintext values have different ciphertext values, and each value in any

equivalence class of a MAS is encrypted to a unique ciphertext value, the set of

MASs in D must be the same as the set of MASs in D̂. As a consequence, in D̂,

there do not exist any two records ri, rj such that ri[X] = rj[X] and ri[Y ] = rj[Y ].

Therefore, X → Y cannot be a FD in D̂. Second, we prove that for any MAS M

such that X ∪ {Y } ⊂M , if F does not hold on D, then F must not hold on D̂.

7.3 Security Analysis

In this section, we analyze the security of F 2 against both the frequency analysis

attack (FA) and the FD-preserving chosen plaintext attack (FCPA).

7.3.1 Frequency Analysis Attack

Frequency analysis (FA) attack is the most basic and well-known inference attack.

It is formally defined in [90]. We refer the readers to [90] for more details. For any

e ∈ E be a ciphertext value, let G(e) = {p|p ∈ P , freqP(p) = freqE(e)} be the set

of distinct plaintext values having the same frequency as e. It has been shown in

[106] that for any adversary A and any ciphertext value e, the advantage of the

frequency analysis attack is AdvFAF 2 (A) = 1
|G(e)| , where |G(e)| is the size of G(e). In

other words, the size of G(e) determines the advantage AdvFAF 2 (A).

Apparently, the scaling step of F 2 ensures that all the equivalence classes

in the same ECG have the same frequency. Hence, for any encrypted equivalence
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class EC ′, there are at least |ECG| plaintext ECs having the same frequency.

Recall that we do not allow any two equivalence classes in the same ECG to have

the same value on any attribute. Therefore, for any attribute A, a ECG contains k

distinct plaintext values on A, where k is the size of ECG. Thus for any e ∈ E , it

is guaranteed that |G(e)| = k. As k ≥ [ 1
α

], it is guaranteed that G(e) ≥ [ 1
α

]. In this

way, we have AdvFAF 2 (A) ≤ α. Thus F 2 provides α-security against the FA attack.

In our empirical study, we implemented the FA attack in [90], and compared

the attack accuracy of F 2 with three different encryption schemes: (1) frequency-

hiding order-preserving encryption [70]; (2) AES, a well-known symmetric encryp-

tion algorithm; and (3) Pallier, a probabilistic asymmetric algorithm. More details

can be found in Section 7.4.

7.3.2 FD-preserving Chosen Plaintext Attack (FCPA)

Given a dataset D with a FD X → Y , consider the following FCPA adversary A

against F 2. Let LR(., ., b) denote the function that on inputs m0,m1 returns mb (b ∈
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{0, 1}).

Experiment ExpIND−FCPAF 2 (k, LR(., ., b))

r1, r2, r3, r4 ∈ D

r1[X, Y ] = r3[X, Y ] = (x1, y1)

r2[X, Y ] = (x2, y2)

r4[X, Y ] = (x3, y3)

c1 ← Encrypt(k, LR(r1, r2, b))[X, Y ]

c2 ← Encrypt(k, LR(r3, r4, b))[X, Y ]

Return 0 if c1 = c2

Return 1 otherwise

Intuitively, if both r1 and r3 (i.e., the left side of (r1, r2) and (r3, r4)) are en-

crypted, the adversary can infer that b = 0 as F 2 is FD-preserving. Otherwise

b = 1. Next, we analyze the security guarantee of F 2 against the FCPA adversary

A. Let Exp(A) denote the output of experiment.

When b = 1, c1 = Encrypt(k, r2)[X, Y ] = Encrypt(k, (x2, y2)), and c2 =

Encrypt(k, (x3, y3)). Thus Prob(Exp(A) = 1|b = 1) = Prob(Encrypt(k, (x2, y2)) 6=

Encrypt(k, (x3, y3))) = 1−negl(λ). This is because the probability that two different

plaintext values x2, y2 and (x3, y3) are encrypted to the same ciphertext value is

negligible.

When b = 0, c1 = Encrypt(k, r1)[X, Y ], and c2 = Encrypt(k, r2)[X, Y ]. Ac-

cording to F 2, it is possible that r1 and r2 have different ciphertext values on [X, Y ],

even though they have the same plaintext values. Next, we infer the probability

that c1 = c2. Let M be the MAS that include both X and Y . We define a set of
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equivalence classes EQ = {eq ∈ πM |eq[X, Y ] = (x1, y1)}, and g as the number

of equivalence classes in the partition of M whose attribute values on [X, Y ] is

(x1, y1). It must be true that r1 ∈ eqi ∈ EQ and r2 ∈ eqj ∈ EQ, where 1 ≤ i, j ≤ g.

Based on the relationship between i and j, we have the following cases for the

adversary to output 1 (i.e., c1 = c2).

Case 1: i 6= j. When r1 and r2 belong to different equivalence classes of πM ,

their ciphertext values must be different. This is because according to Step 2.1, eqi

and eqj must fall into different ECGs, as there exist collision between them. We

also require that the same plaintext values that appear in different ECGs are never

encrypted as the same ciphertext value. Therefore, Prob(c1 6= c2|i 6= j) = 1. As

Prob(i 6= j) = 1− Prob(i = j) = 1− 1
g
, Prob(Exp(A) = 1, i 6= j|b = 0) = 1− 1

g
.

Case 2: i = j. When r1 and r2 belong to the same equivalence class of πM , it is still

possible for them to have different ciphertext values. Let the equivalence class be

eq. Based on our Splitting-and-scaling scheme, when eq is split and when r1 and

r2 belong to different split copies, r1 and r2 are encrypted to be different ciphertext

values. In other words, Prob(Exp(A) = 1, i = j|b = 0) = Prob(E1, E2)∗ 1
g
, where E1

is the event that eq is split, and E2 is the event that r1 and r2 belong to different split

copies. Let y be the split point in the ECG, we have Prob(E1) = y
k
, where k = [ 1

α
].

This is because in the ECG, we pick y out of k equivalence classes to split. Let

$ be the split factor. Then Prob(E2|E1) = 1 − 1
$

, since the probability that r1 and

r2 are encrypted as the same split copy is 1
$

. Therefore, we have Prob(Exp(A) =

1, i = j|b = 0) = Prob(E1, E2) = Prob(E2|E1) ∗ Prob(E1) = (1− 1
$

) ∗ y
gk

.

Based on the two cases, Prob(Exp(A) = 1|b = 0) = 1 − 1
g

+ ($−1)y
gk$

. Thus,

the adversary’s advantage on F 2 is

AdvFCPAF 2 (A) =
$k − ($ − 1)y

g$k
− negl(λ).
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In practice, we find that in most cases, y is close to 0, so

AdvFCPAF 2 (A) ≈ 1

g
.

In general, when g is large (i.e., the equivalent classes are of large size), AdvFCPAF 2 (A)

is negligible, and thus F 2 can provide IND-FCPA. In our experiments on real-world

datasets, g can be 5,000,000 for a dataset that contains 15 million records. When

g is small, we can always reach IND-FCPA by inserting artificial records to make g

sufficiently large. It is possible that the number of artificial records may be signifi-

cant; but that is the price we pay for the security.

7.4 Experiments

In this section, we discuss our experiment results and provide the analysis of our

observations.

7.4.1 Setup

Computer environment. We implement our algorithm in Java. All the experiments

are executed on a PC with 2.5GHz i7 CPU and 60GB memory running Linux.

Datasets. We execute our algorithm on the Customer dataset from TPC-C bench-

mark, the Orders dataset from TPC-H benchmark, and one synthetic dataset. The

Orders dataset contains 9 attributes and 1.5 million records (size 1.67GB). Orders

dataset contains nine maximal attribute sets MASs. All MASs overlap pairwise.

Each MAS contains either four or five attributes. The Customer dataset includes

21 attributes and 960K records (size 282MB). There are fifteen MASs in Customer

dataset. The size of these MASs (i.e., the number of attributes) ranges from nine
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to twelve. All MASs overlap pairwise. The synthetic dataset contains 7 attributes

and 4 million records (size 224MB). The synthetic dataset has two MASs, one of

three attributes, while the other of six attributes. The two MASs overlap at one

attribute.

Evaluation. We evaluate the efficiency and practicality of our encryption scheme

according to the following criteria:

• Encryption time: the time for the data owner to encrypt the dataset (Sec. 7.4.2);

• Space overhead: the amounts of artificial records added by F 2 (In our experi-

ments, the number of artificial records never exceeds 12% of the original data

size. Due to the space limitation, we omit the details of this set of results);

• FD-preserving accuracy: the fraction of original FDs that are preserved in the

encrypted dataset (Sec. 7.4.4);

• Security against the FA attack: the fraction of the encrypted values that can be

mapped to the original plaintext by the FA attack (Sec. 7.4.5);

• Outsourcing versus local computations: (1) the time of discovering FDs versus

encryption by F 2, and (2) the FD discovery time on the original data versus that

on the encrypted data (Sec. 7.4.6).

Baseline approaches. We implement three baseline encryption methods, includ-

ing AES, Paillier, and frequency-hiding order-preserving encryption (FHOP) [70],

to encode the data at cell level. The AES baseline approach uses the well-known

AES algorithm with key length of 256 bits for the deterministic encryption. We use

the implementation of AES in the javax.crypto package1. The Paillier baseline ap-

proach uses the asymmetric Paillier encryption with key length of 256 bits for the

probabilistic encryption. We use the UTD Paillier Threshold Encryption Toolbox2.
1https://docs.oracle.com/javase/7/docs/api/javax/crypto/package-summary.html
2http://cs.utdallas.edu/dspl/cgi-bin/pailliertoolbox/.

https://docs.oracle.com/javase/7/docs/api/javax/crypto/package-summary.html
http://cs.utdallas.edu/dspl/cgi-bin/pailliertoolbox/
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FHOP is based on a binary search tree structure. For any plaintext value (not nec-

essarily distinct), its ciphertext value is generated by inserting a new node to the

tree. We compare F 2 with AES, Paillier, FHOP in terms of FD-preserving accuracy,

security, and time performance.

7.4.2 Encryption Time

In this section, we measure the time performance of F 2 to encrypt the dataset.

First, we evaluate the impact of security threshold α on the running time. We mea-

sure the time of our four steps of the algorithm: (1) finding maximal attribute sets

(MAX), (2) splitting-and-scaling encryption (SSE), (3) conflict resolution (SYN), and

(4) eliminating false positive FDs (FP), individually. We show our results on both

Orders and the synthetic datasets in Figure 7.6. First, we observe that for both

datasets, the time performance does not change much with the decrease of α

value. This is because the running time of the MAX, SYN and FP steps is inde-

pendent on α. In particular, the time of finding MASs stays stable with the change

of α values, as its complexity relies on the data size, not α. Similarly, the time

performance of FP step is stable with various α values, as its complexity is only

dependent on the data size and the data schema. The time performance of SYN

step does not vary with α value because we only need to synchronize the encryp-

tion on the original records, without the worry about the injected records. It is worth

noting that on the Orders dataset, the time took by the SYN step is negligible. This

is because the SYN step leads to only 24 artificial records on the Orders dataset (of

size 0.325GB). Second, the time of SSE step grows for both datasets when α de-

creases (i.e., tighter security guarantee). This is because smaller α value requires

larger number of artificial equivalence classes to form ECGs of the desired size.
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This addresses the trade-off between security and time performance. We also ob-

serve that the increase in time performance is insignificant. For example, even for

Orders dataset of size 0.325GB, when α is decreased from 0.2 to 0.04, the execution

time of the SSE step only increases by 2.5 seconds. This shows that F 2 enables to

achieve higher security with small additional time cost on large datasets. We also

observe that different steps dominate the time performance on different datasets:

the SSE step takes most of the time on the synthetic dataset, while the MAX and

FP steps take the most time on the Orders dataset. This is because the average

number of ECs of all the MASs in the synthetic dataset is much larger than that

of the Orders dataset (128,512 v.s. 1003). Due to the quadratic complexity of the

SSE step with regard to the number of ECs, the SSE step consumes most of the

time on the synthetic dataset.
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Figure 7.6: Time performance for various α

Second, to analyze the scalability of our approach, we measure the time

performance for various data sizes. The results are shown in Figure 7.7. It is not

surprising that the time performance of all the four steps increases with the data

size. We also notice that, on both datasets, the time performance of the SSE step

is not linear to the data size. This is due to the fact that the time complexity of
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the SSE step is quadratic to the number of ECs. With the increase of the data

size, the average number of ECs increases linearly on the synthetic dataset and

super-linearly on the Orders dataset. Thus we observe the non-linear relationship

between time performance of SSE step and data size. On the synthetic dataset,

the dominant time factor is always the time of the SSE step. This is because of

the large average number of ECs (can be as large as 1 million) and the quadratic

complexity of the SSE step. In contrast, the average number of ECs is at most

11, 828 on the Orders dataset. So even though the synthetic dataset has fewer and

smaller MASs than the Orders dataset, the vast difference in the number of ECs

makes the SSE step takes the majority of the time performance on the synthetic

dataset.

To sum up the observations above, our F 2 approach can be applied on the

large datasets with high security guarantee, especially for the datasets that have

few number of ECs on the MASs. For instance, it takes around 30 minutes for F 2

to encrypt the Orders dataset of size 1GB with security guarantee of α = 0.2.
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Figure 7.7: Time performance for various data sizes

We also compare the time performance of F 2 with AES and Paillier. The

result is shown in Figure 7.8. It is not surprising that F 2 is slower than AES, as it
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Figure 7.8: Time performance Comparison

has to handle with the FD-preserving requirement. On the other hand, even though

F 2 has to take additional efforts to be FD-preserving (e.g., finding MASs, splitting

and scaling, etc.), its time performance is much better than Paillier. This shows

the efficiency of our probabilistic encryption scheme. It is worth noting that on the

Orders dataset, Paillier takes 1247.27 minutes for the data of size 0.325GB, and

cannot finish within one day when the data size reaches 0.653GB. Thus we only

show the time performance of Paillier for the data size that is below 0.653GB.

7.4.3 Amounts of Artificial Records

In this section, we measure the amounts of the artificial records added by F 2 on

both the Orders and Customer datasets. We measure the amounts of the artifi-

cial records added by Step 2.1 grouping (GROUP), Step 2.2 splitting-and-scaling

encryption (SCALE), Step 3 conflict resolution (SYN), and Step 4 eliminating false

positive FDs (FP) individually. For each step, we measure the data size before and

after the step, let them be s and s′, and calculate the space overhead r = s′−s
s

.

On the Customer dataset, we measure the overhead under various α values

in Figure 7.9 (a). We observe that the GROUP and FP steps introduce most of the
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Figure 7.9: Amounts of Artificial Records Added by F 2

overhead. The overhead increases when α decreases, since smaller α value re-

quires larger ECGs, and thus more collision-free equivalence classes. But in gen-

eral, the overhead is very small, always within in 5%. This is because the domain

size of the attributes in MASs of the Customer dataset is large. For instance, both

the C Last and C Balance attribute have more than 4,000 unique values across

120,000 records. Under such setting, different MASs are unlikely collide with each

other. As a consequence, the number of artificial records added by the GROUP

step is very small. When α < 0.2, the GROUP step does not even introduce any

overhead. The overhead brought by the FP step increases with the decrease of

α value. This is because for each maximum false positive FD, F 2 inserts 2k ar-
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tificial records, where k = d 1
α
e. As k increases, the number of inserted records

decreases. But even for small α value such as 1
10

, the overhead brought by the FP

step is still very small (around 1.5%). In any case, the space overhead of F 2 on

the Customers dataset never exceeds 5%. We also measure the space overhead

with various α values on the Orders dataset. The result is shown in Figure 7.9

(b). First, the GROUP step adds dominant amounts of new records. The reason

is that the domain size of attributes in MASs on the Orders dataset is very small.

For example, among the 1.5 million records, the OrderStatus and OrderPriority at-

tributes only have 3 and 5 unique values respectively. Therefore the ECs of these

attributes have significant amounts of collision. This requires F 2 to insert quite a

few artificial records to construct the ECGs in which ECs are collision-free. Nev-

ertheless, the amounts of artificial records is negligible compared with the number

of original records. The space overhead is 4.5% at most.

In Figure 7.9 (c) and (d), we show the space overhead of both datasets of

various sizes. On the Customer dataset, the overhead reduces with the increase

of data size. Such overhead decreases for both GROUP and FP steps. Next we

give the reasons. Regarding the GROUP step, this is because in the Customer

dataset, the collision between ECs is small. It is more likely that the GROUP step

can find collision-free ECs to form the ECGs, and thus smaller number of the

injected artificial records. Regarding the FP step, its space overhead decreases

when the data size grows is due to the fact that the number of artificial records

inserted by the FP step is independent of the data size. This makes the number of

artificial records constant when the data size grows. Therefore, the overhead ratio

decreases for larger datasets. On the Orders dataset, again, the GROUP step

contributes most of the injected artificial records. However, contrary to the Orders

dataset, the overhead increases with the data size. This is because the ECs of



190

Approach Precision Recall
F 2 (before Step 4) 0.5385 0.7
F 2 (after Step 4) 1 1

FHOP 0 0
Pallier 0 0
AES 1 1

Table 7.1: FD discovery accuracy

Orders have significant amounts of collision. Thus, the number of ECs increases

quadratically with the dataset size. Therefore, the space overhead of the GROUP

step increases for larger datasets.

Combining the observations above, our F 2 method introduces insignificant

amounts of artificial records. For instance, the amounts of artificial records takes

at most 6% for the Orders dataset, and 12% for the Customer dataset.

7.4.4 FD Discovery Accuracy

We evaluate the FD discovery accuracy of F 2 and the three baseline approaches.

We launch this set of experiments on the first 30, 000 records from the Orders

dataset. In particular, let F be the set of FDs discovered from the original dataset

D, and F ′ be the FDs discovered from the encrypted dataset D̂. We use precision

and recall to evaluate the accuracy of FD discovery. Formally, the precision is de-

fined as |F∩F
′|

|F ′| (i.e., the fraction of the FDs in D̂ that also exist in D), while recall is
|F∩F ′|
|F| (i.e., the fraction of original FDs in D that can be discovered in D̂). Intuitively,

an encryption approach is FD-preserving only if both precision and recall are 1. To

measure the impact of Step 4 of F 2 on false positive FDs, we also measure the

precision and recall before and after Step 4 of F 2.

We report the precision and recall results in Table 7.1. First, we observe

that the precision and recall of F 2 (after Step 4) are 1, which demonstrates that



191

F 2 is FD-preserving. In particular, it shows that Step 4 is effective to remove false

positive FDs and recover the real FDs that were eliminiated by the false positive

FDs. The other two probabilistic encryption schemes, Pallier and FHOP, cannot

preserve any FD at all. AES, a deterministic encryption scheme, is able to retain

all the original FDs.

7.4.5 Security Against FA Attack

We implement the frequency analysis (FA) attack in [90], and launch the FA attack

on the attribute values. Given any attribute, let h be the number of ciphertext

values that are successfully mapped to their plaintext values by the FA attack.

The accuracy of the FA attack is defined as acc = h
n
, where n is the amount of

column values. Intuitively, the higher acc is, the weaker the encryption scheme is

against the FA attack. We execute the FA attack on all the 9 attributes of the first

30, 000 records from the Orders dataset that has been encrypted by F 2 and three

baseline schemes respectively, and report the average accuracy in Table 7.2. We

notice that F 2 can provide comparable security against the FA attack as FHOP

and Pallier, even for the weaker security guarantee as α = 0.25. When we choose

smaller values for α, the security provided by F 2 can be magnificently better than

FHOP and Pallier. It proves the elegance of F 2 in defending against FA attack. In

contrast, FA attack can recover much more information from the ciphertext value

encrypted by AES. In the worst case, in our experiment, we find that the FA attack

can successfully recover all the plaintext values from the ciphertext by AES.
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Approach Attack accuracy
F 2(α = 0.02) 0.01417
F 2(α = 0.05) 0.03192
F 2(α = 0.1) 0.0719
F 2(α = 0.25) 0.1056

FHOP 0.1214
Pallier 0.1002
AES 0.3395

Table 7.2: Security against FA attack

7.4.6 Outsourcing VS. Local Computations

First, we compare the data owner’s performance of finding FDs locally and en-

cryption for outsourcing. We implemented the TANE algorithm [62] and applied it

on our datasets. First, we compare the time performance of finding FDs locally

(i.e. applying TANE on the original dataset D) and outsourcing preparation (i.e.,

encrypting D by F 2). It turns out that finding FDs locally is significantly slower than

applying F 2 on the synthetic dataset. For example, TANE takes 1,736 seconds on

the synthetic dataset whose size is 25MB to discover FDs, while F 2 only takes 2

seconds.
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Figure 7.10: FD Discovery Time Overhead

Second, we compare the performance of discovering FDs from the origi-

nal and encrypted data, for both Customer and Orders datasets. We define the
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dependency discovery time overhead o = T ′−T
T

, where T and T ′ are the time of

discovering FDs from D and D̂ respectively. The result is shown in Figure 7.10.

For both datasets, the time overhead is small. It is at most 0.4 for the Customers

dataset and 0.35 for the Orders dataset. Furthermore, the discovery time over-

head increases with the decrease of α value. This is because with smaller α, the

GROUP and FP steps insert more artificial records to form ECGs for higher secu-

rity guarantee. Consequently the FD discovery time increases. This is the price to

pay for higher security guarantee.



194

Chapter 8

Future Work

In this section, I discuss my future work.

8.1 Privacy-preserving Outsourced Data Inconsistency Repair based on Ap-

proximate Functional Dependencies

Integrity constraints such as functional dependencies (FD) play an important role in

database design. So far, we only consider the scenarios where the FDs are either

available to the client, or hold exactly in an initial version of the dataset (Chapter 6

and 7). However, in an operational database, these constraints are often violated

due to various reasons, e.g., by data integration from other resources or careless

maintenance. Under this circumstance, the original functional dependencies do

not exist any more. Instead, they hold approximately on the dirty database (i.e.

they hold exactly on a large portion of the dirty data). We call them approximate

functional dependencies (AFDs) [62]. There are a couple of metrics to measure if

a AFD holds in a database. Among them, we use the g3 error:

g3(X → Y ) = 1−
∑

EC∈ΠX

max{|EC ′| | EC ′ ∈ ΠX∪Y and EC ′ ⊂ EC}/n, (8.1)

where n is the number of records in the dataset, EC is an equivalence class de-

noting the set of tuples with the same attribute values on X, and ΠX is the partition

of attribute set X that consists of all the equivalence classes. Equation 8.1 mea-

sures the minimum fraction of records to be deleted from database for the AFD :

X → Y to hold exactly. Given a dirty database D, an AFD : X → Y holds if
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and only if g3(X → Y ) ≤ θ, where θ ∈ (0, 1) is a user-specified value. The data

inconsistency repair algorithm [31, 12, 24] attempts to find low cost changes by

which these AFDs hold exactly on the repaired database. We assume that the

client has no knowledge about the AFDs. Thus, the server is expected to discover

the AFDs and repair the data so that the AFDs hold exactly. It has been shown

[31] that the inconsistency repair process is computationally expensive even when

the AFDs are known. Therefore, the DCaS paradigm fits the client’s need to repair

the inconsistencies in her dirty data.

The data privacy attracts our attention in the outsourced data inconsistency

repair because there may exist sensitive personal information in the data. How to

encrypt the data so that the server is able to perform inconsistency repair becomes

a problem. There have been very few efforts on finding data integrity constraints

and cleaning of inconsistent data in private settings. We consider the server has

prior knowledge about the frequency distribution of data to be outsourced and aim

at designing an encryption scheme in this scenario. From our perspective, the

problem is challenging in the following ways. First, the encryption scheme must

preserve the original AFDs without the awareness of them. Second, we need to

change the frequency distribution in the outsourced data. However, the alterna-

tions in the frequency could lead to the arbitrary variation of g3 error of a AFD,

which may eliminate some AFDs that originally exist. Third, we do not want to

introduce any additional AFDs as the server can produce a different inconsistency

repair result from new AFDs.

In order to resolve these challeges, we plan to apply the encryption on the

superset of AFDs, like the F 2 approach in Chapter 7. The g3 error of an attribute set

X is defined as g3(X) = 1− |ΠX |
n

, where |ΠX | is the number of equivalence classes

in the partition of X, and n is the number of tuples. In other words, |ΠX | measures
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the number of distinct attribute values on X. A nice property about the g3 error

between an attribute set and an AFD is g3(X → Y ) ≤ g3(X) [62]. We can apply

this property to find the appropriate granularity to apply encoding. To be specific,

we find the maximal attribute set X s.t. g3(X) ≤ θ, where θ is the user-specified

threshold value to determine if an AFD holds or not. Intuitively, for any attribute A 6∈

X, X → A must be an AFD. This is because g3(X → A) ≤ g3(X) ≤ θ. We apply

frequency-hiding encryption on the attribute set X to defend against the frequency

analysis attack. To preserve the AFDs, we make sure that after encryption, g3(X)

remains smaller than θ. This can be accomplished by intensionally inserting a

certain amount of artificial equivalence classes with small frequency (can be equal

to 1).

8.2 Authenticated Outsourced Data Inconsistency Repair

Data inconsistency repair mainly consists of two steps. The first step involves

discovering (approximate) functional dependencies from the dirty dataset. In the

second step, a minimal-repair strategy is proposed to make the data and the func-

tional dependencies consistent. It has been well known that both steps demand

extensive computational efforts. Therefore, it becomes a cost-effective solution for

the data owner (client) to outsource the inconsistency repair service to a server.

The server conducts the essential computation to return a consistent version of

the data which is minimally different from the original dataset. Bohannon et al. [12]

design a cost-based model to fix the inconsistency problem by value modification

with small repair cost. The key idea of [12] is to eliminate the inconsistency by

resolving the conflicting equivalence classes, where an equivalence class is a set

of tuples with the same values on a certain attribute set. To deliver small cost, the
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algorithm iteratively finds the equivalence classes with the smallest repair cost, and

assigns a new value which yields the smallest cost. As the server is not trusted, it

is essential to provide the client an efficient authentication framework to verify the

correctness of outsourced data inconsistency repair result.

However, the authentication of outsourced inconsistency repair is a complex

procedure. As the first step, we need to authenticate the discovered approximate

functional dependencies (AFDs). As the complexity of AFD discovery is exponen-

tial to the number of attributes, it is very difficult to design an efficient verification

method to check the correctness of the AFDs discovered by the server. Moreover,

given a set of conflicting equivalence classes, it is possible that there exist multi-

ple values with the smallest repair cost. In other words, it is a non-deterministic

procedure to calculate the fixing value. Therefore, we need to design a determinis-

tic authentication algorithm to verify the non-deterministic procedure. The study in

[12] proved that given a single AFD, it is NP-complete to find a repair with the small-

est cost. In our setting, with high probability, there exist multiple AFDs. Thus, the

inconsistency repair is actually NP-complete. It is extremely challenging to design

an efficient authentication scheme to verify a NP-complete process.

The authentication of inconsistency repair can be split into two steps. In the

first step, we verify the correctness of the discovered AFDs. X → A is taken as an

AFD if g3(X → A) ≤ θ, and for any attribute B included in X, g3(X \ {B} → A) > θ.

In other words, X is the smallest attribute set such that g3(X → A) ≤ θ. Upon

receiving the set of AFDs from the server, the client can use a probabilistic way

to randomly select a small number of AFDs for verification. Basically the client

calculates the exact g3 errors for X → A and g3(X \ {B} → A), and compare

them with θ to check if X → A is a valid AFD. The probabilistic approach can

catch the misbehavior in AFD discovery with high probability. The second step
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checks that for any group of conflicting equivalence classes, the server finds a

value with the smallest repair cost to resolve the conflict. The procedure becomes

lightweight if we move the verification to Euclidean space. The key idea is that the

client maps the string values into the Euclidean space in a similarity preserving

way [47, 68, 59, 79, 60]. The group of conflicting equivalence classes are mapped

into a set of Euclidean points, each associated with a frequency value that denotes

the number of tuples that have the corresponding attribute values. It is the center of

mass that leads to the minimum sum of the squared Euclidean distances to these

embedded points. Therefore, the client can check if the cost of the modified value

is minimal by mapping the value to a Euclidean point, and measuring its closeness

to the center of mass. It is true that this efficient approach can not verify the

correctness of the modified value exactly. However, we can derive a probabilistic

guarantee by adjusting an appropriate threshold value of the Euclidean distance.

8.3 Authenticated Outsourced Data Imputation

Real-word datasets are usually incomplete due to missing values. Missing values

can occur because of the non-response (no information is provided for one or more

items or for a whole unit), or the packet loss in data transmission. Missing data

values can introduce a substantial inaccuracy in data analysis. An easy fix to this

problem is to delete the records with missing fields. In this way, the bias introduced

by missing values is removed. However, it can significantly degrade the analysis

accuracy because of the serious information loss.

In order to fill in the missing fields with plausible values, data imputation is

the process of replacing the missing data with substituted values. Data imputation

has been studied for more than two decades [40, 43, 18]. In the earlier stage, the
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values are assumed to be missing at random, so as to decrease the amount of

bias in the data. To impute the missing values, random value or the mean value

is inserted to the missing fields. But this approach may accidentally remove the

outliers from the dataset by ignoring their specific values in other attributes.

Recently, a novel missing value imputation technique [102] using existing

patterns of the dataset including co-appearences of attribute values, correlations

among the attributes and similarity of values belonging to an attribute is devel-

opped. This process consists of three essential steps. In the first step, a co-

appearance square-matrix C is generated from the incomplete dataset. The di-

mension of the matrix is the sum of domain sizes of all attributes. C[i, j] denotes

the number of occurrences that the i−th and j−th value co-exist in the records.

After that, for each attribute, a similarity matrix is computed by calculating the pair-

wise similarity between all attribute values. In the last step, for each missing value,

we generated an imputed value by considering all the available attribute values of

the specific record, the co-appearence matrix, and the similarity matrix for all the

attributes. The last step is repeated until the there is no change in any imputated

value. This complicated approach [102] achieves significantly better imputation

accuracy than the existing techniques.

Considering that the replacement of missing values has an vital influence

on the data quality, we aim at designing a lightweight authentication framework

to verify the data imputation result returned by the untrusted server. In order to

authenticate the outsourced data imputation based on [102] that achieves sig-

nificantly better imputation accuracy than the existing techniques, we face three

unique challenges. First, the imputation of the missing values is not independent.

The value imputated for x has an impact on the value of y. This makes it impos-

sible to create verification objects (V Os) for different missing values separately.
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Second, it is extremely difficult to design an efficient authenticated data structure

to verify the similarity matrix computed in the second step. This structure must

enable the client to check the correctness of the similarity calculation between any

pair of attribute values with cheap computational cost. Third, the imputation may

iterate for a large amount of loops. To alleviate the computational cost at the client

side, we must design a solution to authenticate the final result without checking the

correctness of each imputation loop.

From the above reasoning, we believe that there is no practical deterministic

solution to authenticated outsourced data imputation. Thus we concentrate on a

probabilistic method to catch the misbehavior in data imputation with high proba-

bility. We notice that the co-appearence matrix plays a vital role in data imputation.

To be specific, if there exist two attributes, namely A and B, and if the attribute

value a is always associated with the value b, then in case of the missing value on

the A attribute in a record which has b on the B attribute, then the original value

on attribute A should be a. Based on this observation, to authenticate the data

imputaiton on the dataset D, we can append two attributes to D. These two at-

tributes must share the same partition, i.e., there is a tight binding between the

values in these two attributes. We intensionally remove a small amount of attribute

values in these two attributes, and let the server imputes the missing values. After

the server finishes the imputation, the client compares the imputated values on the

additional attributes against the original values. If they do not match, then the client

concludes that the server does not execute data imputation faithfully.
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Chapter 9

Conclusion

In this thesis, we present our research on privacy-preserving and authenticated

outsourced data cleaning. When sending the data to an untrusted third party ser-

vice provider for data cleaning, it is necessary to prevent the sensitive information

in the data from leakage. What makes the problem more challenging is that the

server may posses auxiliary information about the private dataset, and exploit it

to infer the sensitive data values. On the other hand, it is paramount to provide

the client with an efficient way to check if the server is executes the data cleaning

computation faithfully. Among various data cleaning tasks, we concentrate on data

deduplication and data inconsistency repair. Data deduplication is becoming in-

creasingly important as the volume and the need to share data explodes. In these

scenarios, data deduplication is the key procedure in combine data residing in dif-

ferent sources. Data inconsistency repair modifies the data to make it consistent

with the integrity constraints.

In the outsourced data deduplication setting, we aim at a privacy-preserving

encoding framework to assure the data privacy, and an efficient authentication

framework for the client to verify the correctness of the results returned by the

server. To reach the privacy-preserving goal, we design two encoding schemes

to transform the original data into another format. Our locality-sensitive hashing

based (LSHB) scheme utilizes locality-sensitive hashing (LSH) to map strings to

hash values such that similar strings share similar hash values with high probability.

The embedding and homophonic substitution (EHS) scheme maps string values

to a Euclidean space and achieve flattened frequency distribution in the Euclidean
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space. We prove the robustness of our two methods against the attacks that exploit

the auxiliary frequency distribution and the knowledge of the encoding algorithms.

At the same time, both approaches guarantee high data deduplication accuracy. In

an effort to authenticate the outsourced data deduplication, we require the server

to return the verification object (VO) to prove the soundness and completeness of

the result. In specific, we design an authentication tree structure named MB-tree.

The server uses MB-tree as an indexing structure to search for matching pairs.

During the tree traversal process, the server can construct the VO that consists

of elements from the tree. By verifying the VO, the client is able to catch the

servers cheating behaviors such as tampered records, as well as soundness and

completeness violations. Theoretical analysis demonstrates that the verification

cost at the client side is much cheaper than a natural execution of deduplication.

In the outsourced data inconsistency repair, we consider that two cases of

adversary and security model. In the first case, only a part of the data values

are sensitive. The adversary has knowledge about the FDs in the dataset, and

thus expliots such information to infer the sensitive values. We prove that it is a

NP-complete problem to find the minimum amount of insensitive data values for

encryption to remove the inference channel based on adversarial FDs. Following

that, we design an efficient heuristic algorithm that only encrypts a small number

of additional values and is safe against the FD-attack. In the second setting, all the

data cells demands protection. The server has the frequency distribution knowl-

edge about the dataset. We design an efficient probabilistic encryption encheme

that provides provable security guarantee against the frequency analysis attack. At

the same time, even without the awareness of the FDs, the encryption scheme is

guaranteed to preserves all the original FDs. Given the weak computational power

at the client side, the encryption scheme is much more efficient than conducting
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inconsistency repair locally.

The proposed encryption and authentication schemes consist of a robust

system for privacy-preserving and authenticated outsourced data cleaning. We

believe that this suit of technology can address the security and privacy concerns in

outsourced computing. By applying the proposed techniques, small- and medium-

sized organizations can enjoy the benefits of cloud computing in a trustful way.
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