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Dirty Data
Real-world datasets, particularly those from multiple sources,
tend to be dirty.

Inaccuracy Multiple records that refer to the same entity

Inconsistency Violation of integrity constraints

Incompleteness Missing data values

Name Street City Phone
John Leonard NY 518-457-5181
John Lenard NY 518-457-5181
Kevin LA 213-974-3211
Mike Main Phil 518-457-5181

The ubiquitous dirty data: 40% of companies have suffered
losses, problems, or costs due to data of poor quality [Eck02].
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Data Cleaning

Data cleaning aims at detecting and removing errors,
duplications, missing values, and inconsistencies to improve
data quality.

• Data deduplication

• Data inconsistency repair

• Data imputation

Data cleaning is a labor-intensive and complex process. It can
be NP-complete [BFFR05].
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Data-Cleaning-as-a-Service

Outsourcing the data to a third-party data cleaning service
provider provides a cost-effective way. E.g., Google’s
OpenRefine, Melissa Data.

ServerClient (Data Owner)

Dirty Dataset DD

Clean Dataset D′D′

Client with limited computational resources
Server computationally powerful
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Security Concerns

The third-party server is untrusted.

Result integrity The server may return incorrect data
cleaning result.
• Software bugs
• Intention to save computational cost

Data privacy The outsourced data may include sensitive
personal information.
• Medical information
• Financial record
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My Thesis

Thesis topic: Privacy-preserving and authenticated data
cleaning on outsourced databases

My Thesis

Security & Privacy

Privacy

Authentication

Data Cleaning

Inconsistency
Repair

Deduplication
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• Privacy-preserving Outsourced Data Inconsistency

Repair

3 Research beyond the Thesis
4 Future Plan
5 Conclusion

12 / 61



Authentication of
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Data Deduplication
Data deduplication Eliminate near-duplicate copies.

• Record matching: Detect near-duplicate
copies.

D

sqsq

{s|s ∈ D,DST (s, sq) ≤ θ}
θ

θ: similarity threshold
DST : edit distance
θ: similarity threshold
DST : edit distance
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Data Deduplication

Data deduplication Eliminate near-duplicate copies.
• Record matching: Detect near-duplicate
copies.

RID Name Street City Age
r1 John Leonard NY 45
r2 Kevin Wicks LA 31
r3 Mike Main Phil 22

sq = (John, Lenard, NY, 45)

θ = 2
{r1}
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Outsourcing Framework
The client (data owner) outsources the record matching
service to the untrusted server.

Client

(sq,θ)

RS = {s|s ∈ D,DST (s, sq) ≤ θ}

Server

D

Assumption: The client is aware of the edit distance metric.
We want to make sure that RS is both sound and complete.
Soundness ∀s ∈ RS , s ∈ D and DST (s, sq) ≤ θ.
Completeness ∀s ∈ D s.t. DST (s, sq) ≤ θ, s ∈ RS .
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Authentication
We aim at an authentication framework that satisfies the
following objectives.

Authentication

Objective

catches

soundness violation

∃s ∈ RS , but DST (s, sq) > θ

completeness violation
∃s ∈ D s.t. DST (s, sq) ≤ θ

supports efficient verification

scales well with big data

∃s ∈ RS , but s #∈ D

but s !∈ RS
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Preliminary - Merkle Tree
Merkle tree is a generalization of hash lists and hash chains.

HAHA
Hash(DA)Hash(DA)

HBHB
Hash(DB)Hash(DB)

HCHC
Hash(DC)Hash(DC)

HDHD
Hash(DD)Hash(DD)

HABHAB
Hash(HA||HB)Hash(HA||HB)

HCDHCD
Hash(HC ||HD)Hash(HC ||HD)

HABCDHABCD
Hash(HAB ||HCD)Hash(HAB ||HCD)

• It allows efficient and secure verification of the contents of
large data structures.

• Hash is computationally more efficient than edit distance
calculation. 18 / 61



Preliminary - Bed-Tree

Bed -Tree [ZHOS10] is a string indexing structure.

Christina Christine Christion Christi Donatello Elizabeth Gabrielle Ø Harrison Hollands Huffmann H Jim Grace Jim Grady Jim Gregg Jim Gr

Ø

N5N4

Ø

N6 N7

pN7
pN6

pN4
pN5

N2 N3

Ø

N1

pN2
pN3

• Sort the strings in dictionary order.

• Store the longest common prefix (LCP) of the enclosed strings
in every node.
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Preliminary - Bed-Tree

Bed -Tree [ZHOS10] is a string indexing structure.

Christina Christine Christion Christi Donatello Elizabeth Gabrielle Ø Harrison Hollands Huffmann H Jim Grace Jim Grady Jim Gregg Jim Gr

Ø

N5N4

Ø

N6 N7

pN7
pN6

pN4
pN5

N2 N3

Ø

N1

pN2
pN3

0

0

3 0 1

0

6

sq=“Celestine”

θ=4

• ∀N, calculate MIN_DST (sq,N.LCP).
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Preliminary - Bed-Tree
Bed -Tree [ZHOS10] is a string indexing structure.

Christina Christine Christion Christi Donatello Elizabeth Gabrielle Ø Harrison Hollands Huffmann H Jim Grace Jim Grady Jim Gregg Jim Gr

Ø

N5N4

Ø

N6 N7

pN7
pN6

pN4
pN5

N2 N3

Ø

N1

pN2
pN3

0

0

3 0 1
MF-node

0

Similar strings C-strings
dissimilar and non NC-strings

NC-strings
dissimilar strings covered by MF-node

sq=“Celestine”

θ=4

6

• If MIN_DST (sq,N.LCP) > θ, then N is a MF-node.

• All strings covered by a MF-node must be dissimilar to sq.

• Avoid the edit distance calculation for NC-strings.

• Perform well with memory constraints. 21 / 61



Preliminary - Embedding
Embedding maps strings into Euclidean points in a
similarity-preserving way.

S1 S2 S3

• Euclidean distance calculation is much more efficient than edit
distance computing, i.e., O(dst(pi , pj)) << O(DST (si , sj)).

• SparseMap[HS] is a contractive embedding approach, i.e.,
dst(pi , pj) ≤ DST (si , sj).

• The complexity is O(cn2), where c is a small constant, and n
is the number of strings. 22 / 61



Solution in a Nutshell

We require the server to construct verification object (VO) to
demonstrate the soundness and completeness of the result.

Client

Server

D

(RS , V O) ← search(D, sq, θ)

sq, θ

σ ← setup(D)

(RS/ ⊥) ← verify(RS , V O, σ)

The client is able to efficiently detect any unsound or
incomplete result returned by the server by checking the VO.
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VS2 - Setup
We propose an authenticated string indexing structure, named
MB-tree (Merkle Bed -tree).

pN3
pN3

pN2
pN2 LCPN1

LCPN1
hN1
hN1

hN1
= h(hN2

||hN3
||h(LCPN1

))

Sig(T ) = sign(hN1
)

N1

pN5
pN5

pN4
pN4 LCPN2

LCPN2
hN2
hN2

hN2
= h(hN4

||hN5
||h(LCPN2

))

N2

pN7
pN7

pN6
pN6 LCPN3

LCPN3
hN3
hN3

N3

s6s6s5s5s4s4 LCPN5
LCPN5

hN5
hN5

N5

s9s9s8s8s7s7 LCPN6
LCPN6

hN6
hN6

N6

s12s12s11s11s10s10 LCPN7
LCPN7

hN7
hN7

N7

s3s3s2s2s1s1 LCPN4
LCPN4

hN4
hN4

N4

hN4
= h(h(s1)||h(s2)||h(s3)||h(LCPN4

))

• The client signs the hash value in the root, and only keeps the
signature of the MB-tree locally.

• The hash function is more efficient than edit distance
calculation.
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VS2-VO Construction
The server searches for the similar strings and constructs VO
by traversing the MB-tree.

pN3
pN3

pN2
pN2 LCPN1

LCPN1
hN1
hN1

Sig(T ) = sign(hN1
)

N1

pN5
pN5

pN4
pN4 LCPN2

LCPN2
hN2
hN2

N2

pN7
pN7

pN6
pN6 LCPN3

LCPN3
hN3
hN3

N3

s6s6s5s5s4s4 LCPN5
LCPN5

hN5
hN5

N5

s9s9s8s8s7s7 LCPN6
LCPN6

hN6
hN6

N6

s12s12s11s11s10s10 LCPN7
LCPN7

hN7
hN7

N7

s3s3s2s2s1s1 LCPN4
LCPN4

hN4
hN4

N4 6103

0 0

0

Similar Strings C-Strings NC-Strings

MF-Node

RS = {s1, s2}

V O = {(((s1, s2,s3), (s4, s5, s6)), ((s7, s8, s9), (LCPN7 , hN7)))}

sq=“Celestine”

θ=4

• Include all the C-strings and similar strings in VO.

• Substitute the large amount of NC-strings with the MF-nodes.
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VS2 - VO Verification
The client checks the soundness of completeness of RS by
verifying the VO.

catches

soundness violation

∃s ∈ RS , but DST (s, sq) > θ

completeness violation
∃s ∈ D s.t. DST (s, sq) ≤ θ

∃s ∈ RS , but s #∈ D

but s !∈ RS

Compute Sig(T ) from V OCompute Sig(T ) from V O

pN3
pN3

pN2
pN2 LCPN1

LCPN1 hN1hN1

Sig(T ) = sign(hN1
)

N1

pN5
pN5

pN4
pN4 LCPN2

LCPN2 hN2hN2

N2

pN7
pN7

pN6
pN6 LCPN3

LCPN3 hN3hN3

N3

s6s6s5s5s4s4 LCPN5
LCPN5 hN5hN5

N5

s9s9s8s8s7s7 LCPN6
LCPN6 hN6hN6

N6

s12s12s11s11s10s10 LCPN7LCPN7
hN7
hN7

N7

s3s3s2s2s1s1 LCPN4
LCPN4 hN4hN4

N4

RS = {s1, s2}

V O = {(((s1, s2,s3), (s4, s5, s6)), ((s7, s8, s9), (LCPN7 , hN7)))}

sq=“Celestine”

θ=4
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VS2 - VO Verification
The client checks the soundness and completeness of RS by
verifying the VO.

catches

soundness violation

∃s ∈ RS , but DST (s, sq) > θ

completeness violation
∃s ∈ D s.t. DST (s, sq) ≤ θ

∃s ∈ RS , but s #∈ D

but s !∈ RS

Compute Sig(T ) from V OCompute Sig(T ) from V O

pN3
pN3

pN2
pN2 LCPN1

LCPN1 hN1hN1

Sig(T ) = sign(hN1
)

N1

pN5
pN5

pN4
pN4 LCPN2

LCPN2 hN2hN2

N2

pN7
pN7

pN6
pN6 LCPN3

LCPN3 hN3hN3

N3

s6s6s5s5s4s4 LCPN5
LCPN5 hN5hN5

N5

s9s9s8s8s7s7 LCPN6
LCPN6 hN6hN6

N6

s12s12s11s11s10s10 LCPN7LCPN7
hN7
hN7

N7

s3s3s2s2s1s1 LCPN4
LCPN4 hN4hN4

N4

RS = {s1, s2}

V O = {(((s1, s2,s3), (s4, s5, s6)), ((s7, s8, s9), (LCPN7 , hN7)))}

Check if Sig(T )Sig(T ) matches the local copy
sq=“Celestine”

θ=4
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VS2 - VO Verification
The client checks the soundness and completeness of RS by
verifying the VO.

catches

soundness violation

∃s ∈ RS , but DST (s, sq) > θ

completeness violation
∃s ∈ D s.t. DST (s, sq) ≤ θ

∃s ∈ RS , but s #∈ D

but s !∈ RS

Compute Sig(T ) from V OCompute Sig(T ) from V O

∀s ∈ RS , check if DST (s, sq) ≤ θ∀s ∈ RS , check if DST (s, sq) ≤ θ

∀C-string s, check if DST (s, sq) > θ

∀MF-node N , check if MIN DST (N.LCP, sq) > θ

RS = {s1, s2}
V O = {(((s1, s2,s3), (s4, s5, s6)), ((s7, s8, s9), (LCPN7 , hN7)))}

for C-strings

DST (s3, sq) = 5 > 4
DST (s4, sq) = 9 > 4
DST (s5, sq) = 9 > 4
DST (s6, sq) = 8 > 4
DST (s7, sq) = 8 > 4
DST (s8, sq) = 8 > 4
DST (s9, sq) = 8 > 4

for MF-node MIN DST (LCPN7 , sq) = 6 > 4

for similar strings
DST (s1, sq) = 4
DST (s2, sq) = 3 < 4

10 DST calculations

Naive approach: 12 DST calculations

sq= “ Celestine ”

θ=4
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E -VS2 - Setup

• The client constructs the MB-tree.
• The client applies SparseMap to embed strings into
Euclidean points.

pN3
pN3

pN2
pN2 LCPN1

LCPN1
hN1
hN1

hN1
= h(hN2

||hN3
||h(LCPN1

))

Sig(T ) = sign(hN1
)

N1

pN5
pN5

pN4
pN4 LCPN2

LCPN2
hN2
hN2

hN2
= h(hN4

||hN5
||h(LCPN2

))

N2

pN7
pN7

pN6
pN6 LCPN3

LCPN3
hN3
hN3

N3

s6s6s5s5s4s4 LCPN5
LCPN5

hN5
hN5

N5

s9s9s8s8s7s7 LCPN6
LCPN6

hN6
hN6

N6

s12s12s11s11s10s10 LCPN7
LCPN7

hN7
hN7

N7

s3s3s2s2s1s1 LCPN4
LCPN4

hN4
hN4

N4

hN4
= h(h(s1)||h(s2)||h(s3)||h(LCPN4

))

S1 S2 S3

Key idea For any C-string s, if dst(p, pq) > θ, it must be
true that DST (s, sq) > θ.
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E -VS2 - VO Construction

Distant Bounding Hyper-rectangle (DBH) A
hyper-rectangle R in the Euclidean space is a
DBH if min_dst(pq,R) > θ.

DBH-String For any C-string s, if dst(p, pq) > θ, we call it a
DBH-string.

FP-String For any C-string s, if dst(p, pq) ≤ θ, we call it a
FP-string.

Key idea • To save the verification cost at the client side,
the server should organize the set of
DBH-strings into a small number of DBHs.

• By only checking the Euclidean distance between
the query point pq and the DBHs, the client
assures that all DBH-strings are dis-similar to sq.
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E -VS2 - VO Construction

pN3
pN3

pN2
pN2 LCPN1

LCPN1 hN1hN1

Sig(T ) = sign(hN1
)

N1

pN5
pN5

pN4
pN4 LCPN2

LCPN2 hN2hN2

N2

pN7
pN7

pN6
pN6 LCPN3

LCPN3 hN3hN3

N3

s6s6s5s5s4s4 LCPN5
LCPN5 hN5hN5

N5 s9s9s8s8s7s7 LCPN6
LCPN6 hN6hN6

N6 s12s12s11s11s10s10 LCPN7
LCPN7 hN7hN7

N7s3s3s2s2s1s1 LCPN4
LCPN4 hN4hN4

N4

6103

0 0

0

Similar Strings DBH-Strings NC-Strings

MF-Node

sq= “ Celestine ”

θ=4

FP-Strings

C-Strings

p3

p5

p6

p8

p4

p7

pq

p1
p9

p10

p11

p12

θ

p2
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E -VS2 - VO Construction

pN3
pN3

pN2
pN2 LCPN1

LCPN1 hN1hN1

Sig(T ) = sign(hN1
)

N1

pN5
pN5

pN4
pN4 LCPN2

LCPN2 hN2hN2

N2

pN7
pN7

pN6
pN6 LCPN3

LCPN3 hN3hN3

N3

s6s6s5s5s4s4 LCPN5
LCPN5 hN5hN5

N5 s9s9s8s8s7s7 LCPN6
LCPN6 hN6hN6

N6 s12s12s11s11s10s10 LCPN7
LCPN7 hN7hN7

N7s3s3s2s2s1s1 LCPN4
LCPN4 hN4hN4

N4

6103

0 0

0

Similar Strings DBH-Strings NC-Strings

MF-Node

sq= “ Celestine ”

θ=4

FP-Strings

p3

p5

p6

p8

p4

p7

pq

p1
p9

p10

p11

p12

θ

p2

R1

R2
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E -VS2 - VO Construction

Theorem (NP-Completeness of DBH Construction)
Given a query string sq, and a set of DBH-strings {s1, . . . , st},
let {p1, . . . , pt} be their Euclidean points. It is a NP-complete
problem to construct a mimimum number of rectangles
R = {R1, . . . ,Rk} s.t.
(1) ∀i 6= j , Ri and Rj do not overlap; and
(2) ∀pi , there exists a Rj s.t. pi is included in Rj .

• We design an efficient heuristic algorithm for the server to
construct a small amount of DBHs.

• The complexity is cubic to the number of DBH-strings.
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E -VS2 - VO Construction
The server includes the DBHs in the VO.

pN3
pN3

pN2
pN2 LCPN1

LCPN1 hN1hN1

Sig(T ) = sign(hN1
)

N1

pN5
pN5

pN4
pN4 LCPN2

LCPN2 hN2hN2

N2

pN7
pN7

pN6
pN6 LCPN3

LCPN3 hN3hN3

N3

s6s6s5s5s4s4 LCPN5
LCPN5 hN5hN5

N5 s9s9s8s8s7s7 LCPN6
LCPN6 hN6hN6

N6 s12s12s11s11s10s10 LCPN7
LCPN7 hN7hN7

N7s3s3s2s2s1s1 LCPN4
LCPN4 hN4hN4

N4

6103

0 0

0

Similar Strings DBH-Strings NC-Strings

MF-Node

sq= “ Celestine ”

θ=4

FP-Strings

RS = {s1, s2}

V O = {(((s1, s2, (s3, pR1
)), ((s4, pR2

), (s5, pR1
), (s6, pR1

))),

(((s7, pR2
), (s8, pR1

), s9), (LCPN7
, hN7

))), {R1, R2}}

p3

p5

p6

p8

p4

p7

pq

p1
p9

p10

p11

p12

θ

p2

R2

R1
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E -VS2 - VO Verification
The client checks the soundness and completeness of RS by
verifying the VO.

catches

soundness violation

∃s ∈ RS , but DST (s, sq) > θ

completeness violation
∃s ∈ D s.t. DST (s, sq) ≤ θ

∃s ∈ RS , but s #∈ D

but s !∈ RS

Compute Sig(T ) from V OCompute Sig(T ) from V O

pN3
pN3

pN2
pN2 LCPN1

LCPN1 hN1hN1

Sig(T ) = sign(hN1
)

N1

pN5
pN5

pN4
pN4 LCPN2

LCPN2 hN2hN2

N2

pN7
pN7

pN6
pN6 LCPN3

LCPN3 hN3hN3

N3

s6s6s5s5s4s4 LCPN5
LCPN5 hN5hN5

N5

s9s9s8s8s7s7 LCPN6
LCPN6 hN6hN6

N6

s12s12s11s11s10s10 LCPN7LCPN7
hN7
hN7

N7

s3s3s2s2s1s1 LCPN4
LCPN4 hN4hN4

N4

Check if Sig(T )Sig(T ) matches the local copy
sq=“Celestine”

θ=4

RS = {s1, s2}

V O = {(((s1, s2, (s3, pR1
)), ((s4, pR2

), (s5, pR1
), (s6, pR1

))),

(((s7, pR2
), (s8, pR1

), s9), (LCPN7
, hN7

))), {R1, R2}} 37 / 61



E -VS2 - VO Verification
The client checks the soundness and completeness of RS by
verifying the VO.

catches

soundness violation

∃s ∈ RS , but DST (s, sq) > θ

completeness violation
∃s ∈ D s.t. DST (s, sq) ≤ θ

∃s ∈ RS , but s #∈ D

but s !∈ RS

Compute Sig(T ) from V OCompute Sig(T ) from V O

∀s ∈ RS , check if DST (s, sq) ≤ θ∀s ∈ RS , check if DST (s, sq) ≤ θ

∀MF-node N , check if MIN DST (N.LCP, sq) > θ

∀DBH-string (s, pR), check if p ∈ R, and if min dst(pq, R) > θ

∀FP-string s, check if DST (sq, s) > θ

sq= “ Celestine ”

θ=4

for MF-node MIN DST (LCPN7 , sq) = 6 > 4

for similar strings
DST (s1, sq) = 4
DST (s2, sq) = 3 < 4

4 DST calculations

+

2 dst calculations

Naive approach: 12 DST calculations

RS = {s1, s2}

V O = {(((s1, s2, (s3, pR1
)), ((s4, pR2

), (s5, pR1
), (s6, pR1

))),

(((s7, pR2
), (s8, pR1

), s9), (LCPN7
, hN7

))), {R1, R2}}

for DBH-strings
min dst(pq, R1) > θ
min dst(pq, R2) > θ

for FP-string DST (s9, sq) = 8 > 4

V S2V S2: 10 DST calculations 38 / 61



Complexity Analysis

Phase Measurement VS2 E -VS2

Setup Time O(n) O(cdn2)
Space O(n) O(n)

VO Construction Time O(n) O(n + n3DS )
VO Size (nR + nC )σS + nMFσM (nR + nC )σS + nMFσM + nDBHσD

VO Verification Time O((nR + nMF + nC )CEd )O((nR + nMF + nFP)CEd + nDBHCEl )

( n: # of strings in D; c: a constant in [0, 1]; d : # of dimensions of Euclidean space;
σS : the average length of the string; σM : Avg. size of a MB-tree node;
σD : Avg. size of a DBH; nR : # of strings in MS ; nC : # of C-strings;
nFP : # of FP-strings; nDS : # of DBH-strings; nDBH : # of DBHs;

nMF : # of MF nodes; CEd : the complexity of an edit distance computation;

CEl : the complexity of Euclidean distance calculation.)

• E -VS2 results in higher VO construction complexity at the
server side.

• E -VS2 dramatically saves the VO verification cost at the
client side.
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Experiments - Setup

• Environment
Language C++

Testbed A Linux machine with 2.4 GHz CPU and 48 GB
RAM

• Datasets
Actors 1 260, 000 lastnames

Authors 2 1, 000, 000 full names
• Evaluation metric

• VO construction time
• VO verification time

1http://www.imdb.com/interfaces
2http://dblp.uni-trier.de/xml/
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Experiments - VO Construction Time

Time Performance of VO Construction
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• E -VS2 takes more time at the server side to construct VO,
especially when θ is small.
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Experiments - VO Verification Time

Time Performance of VO Verification
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• VS2 and E -VS2 are significantly more efficient than the
baseline approach in verification cost.

• The advantage of E -VS2 is large when θ is small.
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α-Security against Frequency Analysis
(FA) Attack 3

Define α-security to limit the success probability of frequency
analysis attack.

Experiment ExpFA
A,Π()

p′ ← Afreqǫ(e),freq(P)

Return 1 if p′ = Decrypt(k, e)

Return 0 otherwise

α-security against FA attack if Pr[ExpFA
A,Π() = 1] ≤ α

3Boxiang Dong, Ruilin Liu, Wendy Hui Wang.
Prada: Privacy-preserving Data-Deduplication-as-a-Service.
International Conference on Information and Knowledge Management, 2014. (Acceptance rate=20%).
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Privacy-preserving Outsourced Data
Deduplication 4

We design two approaches to enable data deduplication and
defend against the frequency analysis attack.
• Locality-sensitive Hashing Based Approach (LSHB)

• Embedding & Homomorphic Substitution Approach (EHS)

S1(f1) 

LSH1(f)

S2(f3) 

S3(f3) 

LSH2(f)

LSH3(f)

LSH4(f)

LSH5(f)

LSH6(f)

LSH7(f)

≈

≉

S1 S2 S3

LSHB approach encodes strings into LSH values that EHS approach encodes strings into Euclidean points that

(1) preserve the string similarity; and (1) preserve the string similarity; and

(2) are of the same frequency groupwise. (2) are of uniform frequency.
4Boxiang Dong, Ruilin Liu, Wendy Hui Wang.

Prada: Privacy-preserving Data-Deduplication-as-a-Service.
International Conference on Information and Knowledge Management, 2014. (Acceptance rate=20%).
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Privacy-preserving Outsourced Data
Deduplication

Experiment Results
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Functional Dependency (FD)

Functional dependency (FD) X → Y if r1[X ] = r2[X ],
then r1[Y ] = r2[Y ].

FDs play a key role in identifying and fixing data inconsistency.

TID Conference Year Country Capital City
r1 SIGMOD 2007 China Beijing Beijing
r2 ICDM 2014 China Shanghai Shenzhen
r3 KDD 2014 U.S. Washington D.C. New York City
r4 KDD 2015 Australia Canberra Sydney
r5 ICDM 2015 U.S. New York City Atlantic City

FD : Country → Capital
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Indistinguishability against FD-preserving
Chosen Plaintext Attack (IND-FCPA)

Experiment ExpIND−FCPA
A,Π (λ)

k ← KeyGen(λ)

(D0, D1) ← AOEncrypt(.)(k) s.t. FD0 = FD1 and |D0| = |D1|

b
$←− {0, 1}

b′ ← AOEncrypt(.)(k)

Return 1 if b = b′

Return 0 otherwise

IND − FCPA if Pr[ExpIND−FCPA
A (n) = 1] ≤ 1

2 + negl(n)
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Privacy-preserving Outsourced Data
Inconsistency Repair

We consider two scenarios of the outsourced data inconsistency
repair, and design two encryption/encoding approaches to provide
robust privacy guarantee 5.

Adversarial
Knowldge FDs

Adversarial
Attack FD-Attack

Security
Setting Partial Data

Secure Data Inconsistency 
Repair against FD-Attack4

Adversarial
Knowldge Frequency

Adversarial
Attack FA-Attack

Security
Setting Whole Data

Secure Data Inconsistency 
Repair against Frequency 

Analysis Attack

5Boxiang Dong, Wendy Hui Wang, Jie Yang.
Secure Data Outsourcing with Adversarial Data Dependency Constraints.

International Conference on Big Data Security on Cloud, 2016. (Acceptance rate=23%). 51 / 61
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Research beyond the Thesis

• Authentication of outsourced data mining computations
• Association rule mining [DBSec’13, ICDM’13, TSC’15]
• Outlier mining (under review)

• Rank aggregation in the crowdsourcing setting (under
review)
• Rank inference
• Task assignment with data privacy concern

• Data-as-a-commodity (under review)
• Budget constraint
• High quality (low inconsistency)
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Future Plan

• Authenticated outsourced data inconsistency repair
Challenge It is NP-complete to find a repair with the

minimum cost.
Solution • Convert the strings into Euclidean space.

• It is the center of mass that results in the
smallest repair cost.

• Authenticated outsourced data imputation
Challenge It demands a similarity matrix between all values.
Solution Create evidence imputation objects to verify the

result in a probabilistic way.
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Conclusion

Privacy-preserving and authenticated data cleaning on
outsourced databases.
• Define two security notions, namely α-security and
IND-FCPA.

• Authentication of outsourced data deduplication.
• Privacy-preserving outsourced data deduplication.
• Privacy-preserving outsourced data inconsistency repair.

• Privacy against FD attack.
• Privacy against frequency analysis attack.

The suit of encryption, encoding, and authentication schemes
address the security and privacy concerns in outsourced
computing.
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My Publications
IRI’16 Boxiang Dong, Hui (Wendy) Wang.

ARM: Authenticated Approximate Record Matching for Outsourced Databases.
IEEE International Conference on Information Reuse and Integration (IRI).
Pittsburgh, PA. 2016. (Acceptance rate = 25%).

BigDataSecurity’16 Boxiang Dong, Hui (Wendy) Wang, Jie Yang.
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TSC’15 Boxiang Dong, Ruilin Liu, Hui (Wendy) Wang.
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Mining.
IEEE Transactions on Services Computing. 2015.

CIKM’14 Boxiang Dong, Ruilin Liu, Hui (Wendy) Wang.
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Q & A

Thank you!
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