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Abstract—Cloud computing enables end-users to outsource
their dataset and data management needs to a third-party
service provider. One of the major security concerns of the
outsourcing paradigm is how to protect sensitive information
in the outsourced dataset. In general, the sensitive information
can be protected by encryption. However, data dependency
constraints in the outsourced data may serve as adversary
knowledge and bring security vulnerabilities. In this paper,
we focus on functional dependency (FD), an important type of
data dependency constraints, and study the security threats by
the adversarial FDs. We design the practical scheme that can
defend against the FD attack by encrypting a small amount
of non-sensitive data (encryption overhead). We prove that
searching for the scheme that leads to the optimal encryption
overhead is NP-complete, and design efficient heuristic algo-
rithms. We conduct an extensive set of experiments on two real-
world datasets. The experiment results show that our heuristic
approach brings small amounts of encryption overhead (at
most 1% more than the optimal overhead), and enjoys a ten
times speedup compared with the optimal solution. Besides, our
approach can reduce up to 90% of the encryption overhead
of the-state-of-art solution.

1. Introduction
Recent years have witnessed increasing need for large

amounts of digital information to be collected and studied.
To address the big data need, the database-as-a-service
(DAS) model was introduced [8], facilitated by the evo-
lution of cloud computing [12]. It allows end-users with
limited resources to outsource their private datasets to a
third-party service provider [9]. Since the service provider
may not be fully trusted, the DAS model raises a few secu-
rity issues. One of the issues is how to protect the sensitive
information in the outsourced data. A general solution is to
encrypt the data so that the service provider cannot access
the original data without a proper decryption key.

However, recent study has shown that deterministic en-
cryption at a fine granularity may not be robust against
adversary data dependency constraints [3]. A typical type
of data dependency constraints is the functional dependency
(FD). Traditionally, FDs are statements of value constraints
between attributes in a relation. Informally, a FD : X → Y
constraint indicates that attribute set X uniquely determines

NM SEX AGE DC DS
Alice F 53 CPD5 HIV
Carol F 30 VPI8 Breast Cancer
Ela F 24 VPI8 Breast Cancer

(a) The original dataset D
NM SEX AGE DC DS

Alice F 53 CPD5 α
Carol F 30 VPI8 Breast Cancer
Ela F 24 VPI8 γ

(b) The unsafe encrypted dataset D̄

Figure 1. An example of data instance (FD: DC → DS)

attribute set Y . For instance, the FD Zipcode→City indicates
that all tuples of the same zipcode values always have the
same City values. FDs play an important role in relational
theory and relational database design. They have been thor-
oughly researched and applied to improving schema quality
through normalization [1], [4], [10] and to improving data
quality in data cleaning [6], [2].

It is possible that FDs can serve as an important piece
of adversary knowledge and bring security vulnerabilities.
For example, consider a hospital that stores its patients’
information, including patient’s name (NM), gender (SEX),
age (AGE), hospital-wide disease code (DC) and disease
(DS), in a dataset. An example of data instance is shown
in Figure 1 (a). Assume it has the FD: F: DC → DS.
Consider the following patients’ security settings: Alice and
Ela require that their disease information cannot be shared
with any third-party, while Carol agrees to share her dis-
ease information with a third-party. Before outsourcing the
dataset to a third-party service provider for data management
and analysis, the hospital encrypts its data according to the
patients’ settings. The encrypted instance is shown in Figure
1 (b). Since Ela’s and Carol’s records have the same DC
value, the attacker can easily infer Ela’s disease from Carol’s
record if he has the knowledge of F .

In practice, adversarial FD constraints are easily accessi-
ble from common sense or other data sources. Therefore, it
is vital to design robust approaches that can defend against
the attacks based on adversarial FDs. A straightforward
approach is to encrypt all data values in the dataset (possibly
at the finest granularity) regardless whether they are involved
in any FD. However, as the data owner may only consider a
portion of her dataset as sensitive, encrypting all data values



may over-protect the data and dramatically reduce the data
usability. Only encrypting a (possibly small) portion of non-
sensitive data values besides the sensitive values is sufficient
to defend against the FD attack. Our goal is to find the
optimal scheme that encrypts the minimal amounts of non-
sensitive data while providing strong guarantee against the
attacks based on adversarial FDs.

In this paper, we make the following contributions. First,
we define a flexible security model that allows the client to
express content-based security granularity in the format of
security constraints (SCs). The SCs, which are expressed in
selection-projection SQL queries, can support an extensive
set of security settings. Second, we perform the foundational
study of security vulnerabilities by adversarial FDs, and
formalize the FD attack. We also investigate under which
circumstances the FD attack does not bring any security
leakage. Third, we show that the existing sufficient con-
ditions against the FD attack in the state-of-art solution
are not complete, and investigate the complete sufficient
conditions against the FD attack. Following this, we design
the encryption approaches that find the data cells that are
necessarily to be encrypted to defend against the FD attack.
We prove that finding the optimal scheme that encrypts the
minimum number of data cells is NP-complete. Therefore,
we design efficient greedy algorithms to find a small amount
of non-sensitive data cells to be encrypted (together with
sensitive data cells), with the presence of one or multiple
SCs. Last but not least, we launch an extensive set of
experiments on real datasets to evaluate the performance of
our approaches. The experimental results demonstrate that
our greedy approach is ten times faster than the optimal
solution, with as small as 1% of the overhead compared
with the state-of-art solution [16].

The rest of the paper is organized as follows. Section
2 describes the preliminaries. Section 3 introduces the FD
attack and various schemes that can defend against the
attack. Section 4 presents our approach to defend against FD
attack. Section 5 provides the experiment results. Section 6
discusses the related work. Section 7 concludes the paper.

2. Preliminaries
In this section, we introduce the preliminaries.

Outsourcing Framework. We consider the framework that
contains three parties: the data owner, the users (clients),
and the service provider (server). The data owner has a
dataset D that will be outsourced to the server. In this
paper, we consider D as a relational table that consists of m
attributes and n records. We use r[X] to specify the value
of record r on the attribute(s) X . Since D may contain
sensitive information and the server is not fully trusted, the
data owner encrypts D to D̄ using symmetric encryption
algorithms, and sends D̄ to the server. Only authorized users
have the key to access the private data. It is worth noting
that it is possible that only a portion of D is sensitive. The
non-sensitive data of D is allowed to be accessible by the
server.

In this paper, we consider deterministic encryption
mechanism. The algorithm is applied at cell level, i.e., the

cells in the relation D are encrypted individually.
Functional Dependency. We assume the dataset D has data
dependency constraints that are in the format of functional
dependency. Formally, given a relational dataset D, a set of
attributes Y of D is said to be functionally dependent on
another set of attributes X of D (denoted X → Y ) if and
only if for any pair of records r1, r2 in D, if r1[X] = r2[X],
then r1[Y ] = r2[Y ]. We use LHS(F ) and RHS(F ) to
denote the attributes at the left-hand (right-hand, resp.) side
of the functional dependency F . A FD F : X → Y is said as
trivial if Y ⊆ X . In this paper, we only consider non-trivial
FDs. It has been well known that any FD F whose RHS(F )
contains more than one attribute can be decomposed into
multiple FD rules, each with a single attribute of RHS(F )
at its right side. Therefore, for the following discussions, we
only consider FD rules that contain one single attribute at
the right hand side. We assume that the client is aware of
the FDs in her dataset before outsourcing.
Security Constraints. We propose security constraints
(SCs) as a means for the data owner to specify the data that
she intends to protect from the untrusted service provider.
We adapt the selection-projection queries [3] as the format
of the SCs. Formally, the security constraint is defined
in the format ΠY σc, where ΠY denotes the projection of
a relation on attributes Y , and σc denotes the selection
condition in which C is a conjunction of equalities of format
A = B or A = a such that A,B are attributes and a is a
constant. Using selection-projection queries enables SCs to
be expressed in SQL statements so that the data owner can
easily enforce the SCs (by executing the SQL statements)
over her dataset. For a given dataset D and a SC S, we
use S(D) to denote the sensitive data that is required to
be protected. We consider encryption as the way to enforce
SCs. We define the basic scheme as following.
Definition 2.1. [Basic Scheme] Given a dataset D and

a set of security constraints S, the basic scheme of
enforcing S on D is to encrypt ∪S∈S(S(D)).
Example 2 has shown a table instance D and its SC

(Figure 2 (a)), as well as the basic encryption scheme
(Figure 2 (b)) of D according to the given SC.

For any SC S : ΠY σc, we use Proj(S) to denote the
projection attribute list Y of ΠY , and Sel(S) to denote
the list of the attributes in its selection condition σc. We
allow Sel(S) to be empty. For example, consider the se-
curity constraint S: ΠBσC=c1 , then Proj(S) = {B}, and
Sel(S) = {C}.

3. FD Attack
The basic idea of the FD attack is to find the sensitive

and evidence records. We first define the sensitive/evidence
records and sensitive cells.
Definition 3.1. [Sensitive Cells/records, Evidence

Records] Given the dataset D and a set of security
constraints S, let D̄ be the basic scheme of enforcing
S on D. Let F : X → Y be a FD of D. Then for each
record r ∈ D̄, if r[Y ] is encrypted, we call r a sensitive
record, and r[Z] a sensitive cell, for any Z that is a
single attribute of Y . Given a sensitive record r, for



TID A B C
r1 a1 b1 c1
r2 a1 b1 c2
r3 a1 b1 c3
r4 a2 b2 c3

TID A B C
r1 a1 β1 c1
r2 a1 b1 c2
r3 a1 b1 c3
r4 a2 b2 c3

TID A B C
r1 α1 β1 c1
r2 a1 b1 c2
r3 a1 b1 c3
r4 a2 b2 c3

TID A B C
r1 a1 β1 c1

r2 a1 β1 c2

r3 α1 b1 c3
r4 a2 b2 c3

(a) Original table D (b) Basic encryption D̄ (c) Solution 1 (d) Solution 2
(FD : A→ B, (not robust) (overhead: 1) (overhead: 2)
SC: ΠBσC=c1 )

Figure 2. An example of FD attack and two fix approaches (encrypted cells are in bold; encrypted non-sensitive cells are in boxes)

each record r′ 6= r that none of r′[X] and r′[Y ] in D̄
is encrypted, but r′[X] = r[X], we call r′ an evidence
record of r[Y ].

As an example, consider the table D and its basic scheme D̄
in Figure 2 (a) and (b). The record r1 is a sensitive record,
with r1[B] as a sensitive cell. The records r2 and r3 are the
evidence records of r1[B]. It is worth noting that a sensitive
record can contain both sensitive and non-sensitive cells.
Take r1 as an example. It contains the sensitive cell r1[B],
and non-sensitive cells r1[A] and r1[C].

Given an FD F : X → Y , consider a record r ∈ D̄
such that r[Y ] is encrypted but r[X] is not. The attacker
can launch the FD attack to break the encryption on r[Y ]. In
particular, for any sensitive (and encrypted) value r[Y ] ∈ D̄,
the FD attack on r[Y ] consists of the following steps:

Step 1: Search for the record r′ ∈ D̄ such that: (1) both
r′[X] and r′[Y ] are not encrypted, and (2) r′[X] = r[X].
Obviously these records are the evidence of r[Y ];

Step 2: If any evidence record exists, replace the (en-
crypted) r[Y ] with r′[Y ].

As an example, consider the base table D in Figure 2
(a) that has the FD F : A→ B. Also consider the security
constraint ΠBσC=C1 and the basic scheme D̄ shown in
Figure 2 (b). The attacker can easily find tuple r2 as the
evidence of r1[B], and replaces r1[B] in D̄ (Figure 2 (b))
to be b1 accordingly. We say a record r is FD-compromised
if its encrypted value can be replaced with a plaintext value
via the FD attack. We say an encrypted dataset D̄ is robust
against the FD attack if no record in D̄ is FD-compromised.
Otherwise D̄ is unsafe against the FD attack.

4. Defending Against FD Attack
In this section, we discuss how to design robust schemes

against the FD attack.

4.1. Robustness Checking of Basic Encryption
The basic scheme encrypts all sensitive values according

to the given security constraints. First, we discuss how to
check whether the basic scheme is robust against the FD
attack. A naive method is to traverse the dataset finding
whether there exist an encrypted cell in the basic scheme
that has any evidence record. The complexity is O(tn),
where t is the number of sensitive cells and n is the size
of D. Though correct, this approach can be costly for large
datasets. Therefore, we design a method that can decide
whether the basic scheme is robust against the FD attack by
using FDs and SCs only, without traversing the dataset.

Our method relies on the sufficient condition of FD
attack. [16] presents a sufficient condition for preventing the
security leakage by FD inference as to ensure that for any

FD F : X → Y , the security level of X should be no lower
than that of Y . We argue that this is not a complete set of
sufficient conditions. We have the following lemma to show
our complete sufficient conditions.
Lemma 4.1. Consider a dataset D and its FD F : X → Y .

An scheme D̄ is robust against the FD attack if for each
record in D̄ such that r[Y ] is sensitive, it satisfies one
of the two conditions below:
(Condition 1.) There exists at least one attribute A ∈ X
such that r[A] is encrypted;
(Condition 2.) r[X] is plaintext, but there does not exist
a record r′ 6= r ∈ D̄ such that both r′[X] and r′[Y ] are
plaintext and r′[X] = r[X].

Condition 1 of Lemma 4.1 is equivalent to the sufficient
condition of [16], requiring that both r[X] and r[Y ] must
be encrypted at the same time. It is not necessary that all
attributes of r[X] must be encrypted; at least one attribute
being encrypted is sufficient. Condition 2 addresses the case
that r[X] can remain to be plaintext as long as there is no
evidence tuple of r[Y ] in D̄. This condition is not covered
by [16].

Following Lemma 4.1, we design the method of check-
ing the robustness of the basic encryption scheme against the
FD attack. First, we consider the case that there is a single
security constraint (SC). We have the following theorem to
check if the basic scheme is robust against the FD attack
when one single SC is present.
Theorem 4.1. Given a dataset D, a security constraint S,

and an FD F : X → Y , the basic scheme of D
is robust against the FD attack w.r.t. F if one of the
following conditions is met: (a) X ∩ Proj(S) 6= ∅; (b)
Y 6⊆ Proj(S); and (c) Sel(S) ⊆ X ∪ Y .

For example, consider the base table in Figure 2 (a), with
FD A→ B and SC ΠBσC=c1 . The basic scheme (Figure 2
(b)) does not satisfy any of the three conditions in Theorem
4.1. Therefore it is not robust against the FD attack.

The reasoning of robustness checking for one single
SC can be easily extended to multiple SCs. We have the
following theorem.
Theorem 4.2. Given a dataset D, a set of security con-

straints S, and an FD F : X → Y of D, the basic
scheme of D is robust against the FD attack w.r.t. F if
one of the following conditions is met: (1) ∀S ∈ S ,
X ∩ Proj(S) 6= ∅; (2) Y 6⊆ ∪S∈SProj(S); (3)
∪S∈SSel(S) ⊆ X ∪ Y .

4.2. Encryption Against FD attack
If the basic scheme is not robust against the FD attack,

we design the method to fix the basic encryption. The key



idea of our fix method is to encrypt a set of non-sensitive
cells additionally. In this section, we explain how to find
those non-sensitive cells.
One Single SC. The success of the FD attack is the ex-
istence of evidence records. Therefore, we aim to find the
evidence records and fix the encryption on them. First, we
explain how to find the sensitive/evidence records efficiently.
For a given security constraint S : ΠY σc, in which Y is
the RHS of the given FD F , first, we re-write S to be
S′ : Π(X,Y )σc, where X and Y are LHS and RHS of F .
Second, we apply S′ on D, and bucketize S′(D) by its
values. All (X,Y ) pairs of the same values are put into
the same bucket. Each bucket represents a unique sensitive
cell and its associated X value. Third, for each bucket
B(X = x, Y = y), we construct a selection-projection
query SE : Π(X,Y )σ(X=x,Y=y), and apply SE on D. Ap-
parently, the bucket B(X = x, Y = y) contains sensitive
records of Y = y with X = x, and SE(D) contains sensitive
and evidence records of Y = y where X = x.

Let nS be the number of records in the bucket B(X =
x, Y = y), and nE be the size of SE(D). Apparently if
nS = nE , then there is no evidence record of the sensitive
cell Y = y that are associated with X = x (i.e., it is robust
against the FD attack). Otherwise, the basic scheme has
to be fixed against the FD attack. Next, we describe two
fix approaches to construct the schemes that achieve the
sufficient conditions against the FD attack.
• Scheme 1: for each record r in the bucket B(X =

x, Y = y), randomly pick one attribute A ∈ X and
encrypt r[A]. It is possible that different A is picked
for different records.

• Scheme 2: for each record r′ in SE(D) − B(X =
x, Y = y) (i.e., r′ in SE(D) but not in B(X =
x, y = y)), encrypt r′[X] or r′[Y ].

We have the following theorem.
Theorem 4.3. Consider a dataset D, an FD F : X → Y ,

and a SC S, applying one of the two schemes above
always delivers a robust scheme against the FD attack.
Both fix schemes require to encrypt some non-sensitive

cells. We measure the number of those non-sensitive cells
as the encryption overhead against the FD attack. Formally,

Definition 4.1. [Encryption Overhead] Given a dataset
D and a set of SCs S, let D̄ be the basic scheme, and
D̂ be the dataset that is robust against the FD attack.
Let e and e′ be the number of encrypted cells in D̄ and
D̂. Then the encryption overhead against the FD attack
on D is o = e′ − e.

Our goal is to find an scheme that is robust against the FD
attack with minimal encryption overhead. Apparently, for
each sensitive cell, the encryption overhead of Scheme 1 is
nS , while the overhead of Scheme 2 is nE − nS . We pick
the scheme whose overhead equals

mino = min(nS , nE − nS) (1)

to decide the scheme of less encryption overhead. We do
this for each sensitive cell. Due to the fact that the sen-
sitive/evidence records of different sensitive cells do not

overlap, the final scheme is guaranteed to return the minimal
encryption overhead. The complexity is O(n2), where n is
the size of D.

In the example in Figure 2, apparently, D̄ is not robust
against the FD attack. Figure 2 (c) & (d) show two solutions
to fix D̄ by our two fix schemes aforementioned. Scheme 1
(Figure 2 (c)) encrypts the a1 value of the sensitive record
r1, with the encryption overhead 1. Scheme 2 (Figure 2 (d))
encrypts either the A or B attribute of the evidence records
r2 and r3, with the encryption overhead 2. We pick Scheme
1 due to its smaller overhead.
Multiple SCs. When there are k > 1 SCs S = {S1, . . . , Sk},
the brute-force solution is to enumerate all possible encryp-
tion solutions, and pick the one of the smallest encryption
overhead. There are 2tk schemes in total, where t is the
average number of sensitive cells of each SC. As each
encryption solution needs O(n2) complexity to locate the
sensitive and evidence records, the complexity of the brute-
force method is O(2tkn2), where n is the size of the dataset.
This could be prohibitive if k is large.

A seemly straightforward method is to pick local optimal
scheme for each SC Si ∈ S. However, the local optimality
cannot guarantee the global optimal solution for the k SCs
in terms of encryption overhead. For example, consider a
dataset D that has an FD X → Y and two SCs S1 and S2.
Assume S1 considers the Y attribute of records r1 and r2
as sensitive, while S2 considers the Y attribute of records
r3, r4, r5 as sensitive. For S1, the evidence records are r3,
r4, and r5, while for S2, the evidence records are r1, r2,
and r3. The local optimal solution of S1 is to encrypt the X
attribute of {r1, r2}, while the local optimal solution of S2 is
to encrypt the X attribute of {r4, r5}. The total encryption
overhead is 4. However, the global optimal solution is to
encrypt the X attribute of {r1, r2, r3} or {r3, r4, r5}. The
encryption overhead is 3.

Next, we prove that the problem of finding the optimal
scheme of the minimal encryption overhead with multiple
SCs is NP-complete.
Theorem 4.4. Given a dataset D and k > 1 SCs S,

the problem of finding the optimal robust scheme that
enforces S on D against the FD attack is NP-complete.

The proof is based on the reduction to the weighted vertex
cover problem. We omit the detailed proof due to the space
limit.

Given the NP-completeness result, we design an effi-
cient greedy algorithm (GMM) to find an scheme to de-
fend against the FD attack with small encryption overhead.
The key idea of GMM algorithm is to repeatedly pick
minimum number of sensitive/evidence records, until the
picked records cover all SCs. In particular, given k SCs
S = {S1, . . . , Sk} for which the basic scheme is not robust,
for each Si ∈ S (1 ≤ i ≤ k), it is associated with a
set of triples Hi = {(vi,j , si,j , ei,j)}, where vi,j is the j-
th sensitive cell of Si, and si,j (ei,j , resp.) is a set of
sensitive records (resp. evidence records) of vi,j . We store
the record IDs in si,j and ei,j . We use |si,j | (|ei,j |, resp.)
to denote the number of records in si,j (ei,j , resp.). For a



given Hi, we define minc = min∀vi,j∈Hi
min(|si,j |, |ei,j |).

We use minv to denote the sensitive cell of minc, and
minse to denote the set of sensitive/evidence records of
minv that deliver minc. For instance, consider Hi =
{((x1, y1),{r1, r2}, {r3, r4, r5}), ((x2, y2), {r3, r4}, {r5})}.
Then minc = 1, minv = {(x2, y2)}, and minse = {r5}.
Let H= {H1, . . . ,Hk}. Initially we mark every Hi in H
as uncovered. First, we select Hi ∈ H whose minc is the
smallest among all uncovered Hi (1 ≤ i ≤ k). Let mins and
mine be the set of sensitive records and evidence records of
the picked minv. Second, for all triples (vi,j , si,j , ei,j) ∈ H,
if v′i,j = minv, we update si,j = si,j − minse, and
ei,j = ei,j − minse. If there exist any Hi such that for
each triple in Hi, si,j or ei,j becomes empty, we mark Hi

as covered. We repeat these two steps until all His in H are
covered. The complexity of the GMM algorithm is O(ktn2),
where k is the number of SCs, t is the average number of
sensitive cells, and n is the size of D.

5. Experiments
5.1. Setup
Experiment environment. We implement our approaches in
Java. All the experiments were executed on a machine with
2.4GHz Intel Core i5 CPU and 4GB memory running Mac
OS X 10.9. The time performance and encryption overhead
are measured as the average of five runs.
Datasets. We execute our experiments on two real-world
datasets named Adult dataset1 and the Orders table from
the TPC-H benchmark datasets. To measure the scalability
of our approaches, we construct a set of datasets of various
sizes, by using Adult and Orders datasets as the seed.
Approaches In the experiments, we implement the follow-
ing two methods and evaluate them on the datasets.
• GMM: our heuristics approach (Section 4);
• OPTIMAL: the exhaustive search algorithm that

finds the solution with the minimum encryption
overhead.

We take OPTIMAL as the baseline methods and compare
their performance with our approach.

5.2. Experiment Results
For this set of experiments, we randomly generate 10

SCs from the two datasets. We follow Theorem 4.1 to ensure
that the generated SCs are potentially unsafe, meaning their
basic scheme is not robust against the FD attack.
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1. Adult dataset is available at UCI Machine Learning Repository:
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Time Performance. We measure the time of our GMM
algorithm on datasets of various sizes. We report the results
in Figure 3. From the two figures, we observe that our GMM
approach is much more efficient than the optimal scheme.
In all circumstances, our GMM approach enjoys a ten times
speedup compared with OPTIMAL. Another observation is
that the time performance increases linearly with the data
size. This is consistent with our expectation. One interesting
observation is that even though the Orders datasets are much
more larger than the Adult datasets, the time performance
is comparable. This is mainly because the SCs of Adult
datasets cover a large number of sensitive cells, while the
SCs of Orders datasets cover a relatively smaller number of
sensitive cells. Therefore, even though the Adult dataset is
smaller, there is no substantial difference in the execution
time on the two datasets.
Encryption Overhead. To measure the encryption over-
head, we define encryption overhead ratio as o = h

n , where
h is the encryption overhead, and n is the number of records
of the dataset. We report the overhead of both our GMM
approach and the OPTIMAL approach in Figure 4. First,
we observe that our GMM approach delivers comparable
overhead as OPTIMAL. In almost all the cases, the overhead
brought by GMM is no greater than the optimal overhead by
1% (with only one exception in the Orders dataset of 0.9
million records). This encouraging result verifies that our
GMM approach can efficiently find near-optimal encryption
solution to defend against the FD attack. Second, the encryp-
tion overhead ratio is small, especially on the Adult dataset
(no larger than 0.1%). This shows that our approach can
be scaled to large datasets with small amounts of encryp-
tion overhead. Considering the state-of-the-art solution [16]
that simply encrypts all data cells of the RHS of a FD,
our GMM approach’s encryption overhead is significantly
smaller. Third, the encryption overhead ratio of the Adult
dataset is much smaller than that of the Orders dataset. The
reason why the Adult dataset has a small overhead ratio
is that each sensitive cell is associated with only a small
number (below 10) of sensitive and evidence records. On
the contrary, even though the number of sensitive cells on
the Orders dataset is smaller, the overhead ratio is larger
because its sensitive cells are associated with a large number
of sensitive and evidence records.

6. Related Work
In this section, we present previous work that is related

to our study in this paper.
Encryption in DAS model. The database-as-a-service
(DAS) was first introduced by Hacigumus et al. [8]. Its
security issues have caught much attention in recent years.



To protect the sensitive data from the server itself, the
client may encrypt her data before outsourcing. For ex-
ample, searchable encryption [14] allows to conduct key-
word searches on the encrypted data, without revealing any
additional information. However, it cannot defend against
the FD attack if the data is encrypted at a fine granularity.
Homomorphic encryption [13] enables the service provider
to perform meaningful computations on the encrypted data.
It provides general privacy protection in theory, but it is not
practical.
Inference attack in MDB. The inference channel problem
via FDs has been considered in the context of multilevel
secure relational database management system (MDB).
The existing techniques are classified into two categories:
(1) during database-design time, and (2) during query-time
[3]. Most of the techniques that detect and remove infer-
ence channels during the database-design time modify the
database design by increasing the classification levels of
some data items (e.g. [7], [11], [15]). These techniques often
result in over-classification of data [3]. Su et al. [16] investi-
gate the inference problems due to functional dependencies
in a multilevel Relational Database. They formally define
FD-compromises under the attribute classification scheme
as inference of unauthorized information based on the FD
knowledge and the associated mapping. Besides proving
that incurring minimum information loss to prevent FD-
compromises is an NP-complete problem, they present an
exact algorithm that leads to minimum information loss.
However, this algorithm is only able to handle the security
constraints at the attribute-level.

Regarding the query-time techniques, Brodsky et al. [3]
present an integrated security mechanism which guarantees
data confidentiality by extending a mandatory access control
mechanism. They apply the chase process to generate all the
information that could be inferred according to the answer
to the user’s past and current queries and the functional
dependencies. If no security violation is detected, the query
is answered. Otherwise, the query is rejected. Due to the
fact that the client does not have the query evaluation
capabilities, our work differs from [3] in that we enforce
security via database encryption instead of controlling the
query answers.
K-anonymity. An alternative to protect privacy of the out-
sourced dataset is to anonymize the data in a certain way. A
data release is said to provide k-anonymity privacy protec-
tion if in the released data, each individual’s information can
not be distinguished from at least k-1 other individuals’ [17].
Suppression and generalization are the two popular methods
to achieve k-anonymity. Previous study [18] has shown that
these two anonymization techniques may not be able to
achieve k-anonymity with the existence of adversary’s FD
knowledge.

7. Conclusion
In this paper, we investigate the inference attacks based

on adversary data dependency on the encrypted data in the
DAS model. We focus on FDs as the adversary knowledge,
and formalize the FD attack. We prove that finding an

optimal scheme that is secure against the FD attack with
the minimal encryption overhead is NP-complete. We design
efficient heuristic approaches to construct robust schemes.
For the future work, we are interested in extending the rea-
soning to the case when there exist multiple FDs. An another
interesting extension is to consider association rules with
high support and confidence [5], which introduce uncertainty
to the inference attack.
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