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Abstract—In the mobile gaming industry, organic installs refer
to downloads that cannot be attributed to any advertising channel
and thus do not introduce upfront user acquisition (UA) cost.
Understanding the causal factors on organic installs is of vital
importance for a game’s ecosystem, as such knowledge can help
bring in more organic users, who tend to be more loyal and
active. A major challenge in discovering the causal effects is the
potential temporal lag between an UA operation and the growth
in organic installs. In this paper, we solve the problem by using
a deep attentional neural network to analyze multivariate time
series data. The core of our design is a novel attention mechanism,
namely 2D-ATT, that can learn the contribution of each feature to
the target at different levels of temporal delay. Our experiments
on a series of synthetic datasets show that 2D-ATT outperforms
existing approaches for discovering complex causal effects. We
also use 2D-ATT to analyze a real-world mobile game dataset
collected by Jam City, a video game company based in California.
Our discoveries provide valuable insights to UA operations.

Index Terms—causal inference, attention mechanism, deep
learning

I. INTRODUCTION

Since the dawn of smartphones, the mobile gaming industry
has witnessed a sharp growth in value. Recent market studies
report that mobile games take 51% of the total global gaming
industry revenue, leaving console and PC games far behind1.
By 2021, the mobile gaming market is projected to reach $180
billion. Approximately 3,000 new mobile games are launched
in iOS App Store and Google Play Store everyday. The intense
competition in the industry exhorts the importance of user
acquisition (UA) in mobile gaming operations. Depending on
the source of user acquisition, a new app download must fall
into one of two categories: paid install, i.e., a user obtained
by advertising, or organic install, i.e., a download that cannot
be attributed to any advertisement source.

Organic installs are of crucial value for a mobile game’s
ecosystem, as organic users tend to be more loyal and active.
Besides, there is no upfront UA cost associated with organic
installs. In mobile gaming in general, the in-game lifetime
value of most paid users cannot even compensate for their

1https://www.blog.udonis.co/mobile-marketing/mobile-games/
mobile-gaming-statistics

UA expense. Therefore, in order for a mobile game to survive
in such a competitive market, it is essential to bring in more
organic users. This calls for an analysis to discover the driving
forces of organic installs, so that UA budgets can be allocated
intelligently.

However, it is challenging to distill the causal factors of
organic installs. Firstly, there are quite a few aspects that can
possibly play a role in capturing organic users, e.g., game
quality, app visibility in the app stores, and in-game social
referrals. It is difficult to quantitatively evaluate the influences
of these factors. More importantly, there exist potential tem-
poral lags between an UA operation and organic installs. For
example, when the developer improves the game quality by
upgrading the match-making algorithm, we do not observe
an immediate growth in the organic installs. This is because
it takes time for existing users to feel the improved gaming
experience and recommend it to friends, so as to trigger more
organic installs. It is necessary to discover the temporal lags
of different causal factors, as these insights are crucial for
working out a UA strategy that can facilitate the achievement
of both short- and long-term objectives.

There are quite a few existing works that focus on uncover-
ing the causal relationships from observational data [13], [17],
[32]. However, none of them can be applied to our work. Most
statistic inference approaches [13], [17] pose rigid assump-
tions on the data, e.g., no confounder or additive generative
model, which significantly hinders their applicability in real-
world datasets. Besides, they cannot identify the temporal lags
between the causal factors and the target variable. Recently,
attention mechanisms supplemented the “black-box” neural
networks with the ability to explain the decisions [2], [16].
However, when dealing with multivariate time series data,
most works simply blend the information of all variables into
a single hidden state by using recurrent units. It is intractable
to distinguish the contribution of individual variables to the
prediction through the sequence of hidden states [32].

In this paper, we aim at discovering the causal factors
with temporal lags on mobile game organic installs from
multivariate time series observational data. To resolve the
problem, we firstly capture the temporal dynamics of each



feature/variable by using a deep recurrent neural network.
Then we propose a novel attention mechanism named 2D-
ATT that works on the two-dimensional hidden states. By
resembling the information flow in the generative process
of the target variable, i.e., organic installs, it quantifies the
contribution of each feature at every time step. Therefore, 2D-
ATT discovers the causal impact of each factor with different
levels of temporal delay.

To the best of our knowledge, we are the first to quanti-
tatively evaluate the causal impact of different factors with
temporal lags on organic installs in the mobile game industry.
In this paper, we make the following contributions.
• We design a deep recurrent neural network to learn

the dynamics of each feature and produce feature-wise
subsequence summaries.

• We propose an innovative attention mechanism to learn
the importance of each feature with different levels of
temporal lag.

• We generate a series of synthetic datasets with various
causal structures. The experiment results demonstrate that
2D-ATT accurately discovers causal effects and outper-
forms 4 baseline approaches.

• We execute 2D-ATT on a real-world mobile game dataset
to shed light on organic installs. The causal relationships
discovered by 2D-ATT can provide valuable insights to
UA operations.

The rest of the paper is organized as follows. Section II
illustrates the preliminaries. Section III discusses the detailed
method. Section IV presents the experimental findings. Section
V introduces related work and Section VI concludes the paper.

II. PRELIMINARIES

In this section, we first elaborate on organic installs and the
strategies to boost them. After that, we briefly go over the
literature on causal inference.

A. Organic Installs

There are only two ways for mobile game studios to drive
downloads of their apps – either organically or through pay-
ment. A paid install is directly incentivized by advertising. For
example, a user who sees an advert on a social media platform,
interacts with it, and later installs the app is considered as
a paid install. On the other hand, organic installs refer to
the scenario where a user installs an app without directly
responding to a mobile advertising campaign. In practice,
organic installs are vital for a mobile game’s ecosystem, as
they bring in loyal and active users. Recent study suggests that
the organic users outshine their paid counterparts with 14.8%
higher one-day retention rate and 10% more daily sessions2.
Another important business reason for driving organic installs
is the user acquisition (UA) budget. Though no organic install
is likely to be truly free, organic installs can save on the cost-
per-install (CPI) considerably, as they are not paid for at the
point of install.

2https://www.adjust.com/blog/benchmarks-deep-dive-2-paid-vs-unpaid/

Next we introduce three ways to boost organic app installs
that are widely recognized in the mobile game industry.

• App store optimization. It is the process of improving
app visibility within the app stores, including keywords
update, app icon update, and new screenshot publication.
Nearly 70% of iOS App Store visitors use search to find
new apps. A successful optimization facilitates the app to
pop up in the App Store’s search results, so as to fascinate
more install traffic.

• Encouraging social exposure. The social nature of human
beings imply that people trust their friends’ and family’s
recommendations. It is beneficial to prompt current users
to share the app across social platforms. Some apps even
reward referrals with in-game credits.

• Game quality improvement. The ultimate driving force of
organic installs is the game quality. When app developers
enhance in-game user experience, an increase in user
retention rate and more active daily users are expected.
Besides, there are going to be more positive app reviews
and higher media visibility, which produces a larger
number of organics in the long term.

Note that, in practice, these efforts may take some time to
cause an impact on the organic installs instead of an immediate
response. For example, when we improve the game quality by
launching a new game matching algorithm, the existing users
may take a few days to explore the game and recommend
it to his/her friends or family members. Therefore, a time
lag between the UA operation and the growth in organics is
possible.

B. Causal Inference

Causal inference is the process of drawing a conclusion
about a causal connection based on the conditions of the
occurrence of an effect. By definition, correlation, which de-
scribes the observation where two or more variables show the
same increasing or decreasing trend, seems close to causality.
However, it is well known that “correlation does not imply
causation” [1]. For instance, people in the United States spend
more on shopping when it is cold does not imply cold weather
causes expenditure. To address this problem, the counterfactual
framework was proposed to invoke retrospection. It measures
causal effects by comparing outcomes in two almost-identical
worlds, where two parallel universes are identical in every
aspect until a certain point when difference is introduced
in one controlled variable. The subsequent disparity in the
outcome describes the causal impact of the controlled variable.
The gold standard to discover counterfactual causal relations
is to perform experiments [18]. However, in many cases,
experiments are expensive, unethical, and even impossible
to realize. In this paper, we focus on observational causal
inference, i.e., infer the casual structure of the data generating
system purely from the observational data. In particular, we
quantify the contribution of each feature at each time step to
the prediction of target variable via a novel attentional neural
network.



III. METHODOLOGY

In this section, we first formally define the problem, and
then present our solution in details.

A. Problem Statement

Given a set of heterogeneous multivariate time series
D = {(Xi, yi)}ni=1 collected from n different sources, where
each Xi consists of m features of length T , i.e., Xi =
(xi,1, . . . ,xi,m)ᵀ ∈ Rm×T , xi,j = (xi,j,1, . . . , xi,j,T )

ᵀ ∈ Rᵀ

represents the measurement of the j-th feature across T time
steps, and yi is the target value at the T -th time step. The
objective is to construct a generative model to discover the
causal impact of xi,j,t on the target yi for i = 1, . . . , n,
j = 1, . . . ,m, and t = 1, . . . , T .

In our setting of mobile game apps, these time series can be
obtained from different games, with the features representing
the daily UA cost, the number of app store featuring events,
the number of paid users, the number of active users, and
hashtag counts (i.e., the number of tweets that has a hashtag
related to the game) across a fixed time span, e.g., one year
or a couple of months. Naturally, yi represents the number
of organic installs on the last day. With the assistance of the
model, we will be able to quantify the causal effect of the
different features on the organic installs with a temporal lag
[9].

B. Solution in a Nutshell

To solve the problem, we design a deep attentional neural
network to simultaneously learn the mapping from the multi-
variate input sequences to the target, and uncover the causal
impact across features and time steps. Figure 1 displays the
architecture of the network. In particular, the network consists
of a deep recurrent neural network (RNN) that computes the
hidden state from the input time series, a two-dimensional
attention layer (2D-ATT) that quantifies the contribution of
the input features to the target, and a fully connected network
(FCN) that conducts the nonlinear transformation and calcu-
lates the predicated target value. Next, we briefly introduce
the functionality of each component.
• Deep RNN Given a sequence of features, i.e., xi,j =

(xi,j,1, . . . , xi,j,T )
ᵀ, for any t = 1, . . . , T , the deep RNN

computes a compact hidden state hi,j,t to summarize
the subsequence until t. By stacking multiple layers
of gated LSTM units, the deep RNN can captures the
temporal patterns at various granularity, and produce a
comprehensive summary of the observed features.

• 2D-ATT We propose a novel attention mechanism that
works on the two-dimensional hidden states across dif-
ferent features and time steps. The attention mechanism
evaluates the contribution of each value to the prediction
of the target, and reveals the information flow in the
generative process.

• FCN The FCN takes the synopsis from the previous
layer, and predicts the target value with multiple fully-
connected layers of hidden units.

In the rest of the section, we discuss the deep RNN and
2D-ATT in details.

C. Deep RNN

Recurrent neural networks (RNNs) are specialized for pro-
cessing sequences of variable length and incorporating tempo-
ral dynamics. Given an input sequence (x1, ..., xT ), for time
step t = 1, . . . , T , a generic RNN computes the hidden state
by

ht = H(xt, ht−1), (1)

where H is the state transition function. The same transition
function, i.e., H, operates on all time steps and all sequences.
RNN encloses any useful information about the past into the
hidden state ht . Compared with fully-connected network,
RNN is more powerful in that when predicting the output at
time step t, it makes use of all the available input information
up to the current time frame, i.e., ht. The RNN in Equation
(1) is universal in the sense that any function computable by a
Turing machine can be simulated by such a recurrent network
with a finite size [27].
Recurrent Unit. In Equation (1), H is the operation of a
recurrent neuron that computes the current hidden state ht
based on the current input value xt and the previous hidden
state ht−1. Due to the well-known difficulty of training an
RNN to capture long-term dependencies [19], various gated
mechanisms have been proposed to combat the vanishing and
exploding gradients problem. In our work, we employ long
short-term memory (LSTM) units [14] as the recurrent unit.

Each LSTM unit consists of a memory cell c, an input gate i,
a forget gate f , and an output gate o. The graphical illustration
is presented in Figure 2. The memory cell maintains the
memory content of an LSTM unit. At time t, ct is updated
by partially forgetting the existing memory ct−1 and adding a
new memory content c̃t:

ct = ftct−1 + itc̃t, (2)

where the input gate it controls how much new content
should be stored in the memory cell, the forget gate ft
indicates to which degree the old content should be obliterated,
and the new content c̃t at t is computed based on the newly
observed input xt and the previous hidden state ht−1. Then
the hidden state ht of the LSTM unit is computed as:

ht = ottanh(ct), (3)

where the output gate ot modulates the amount of memory
content exposure.

An LSTM unit learns to operate these gates to adaptively
forget, memorize and expose the memory content. At any time,
if the observed input is important, the forget gate will be closed
in order to carry the memory content across many time steps.
On the other hand, the unit may decide to reset the memory
content by opening the forget gate. Since these two modes of
operations can happen simultaneously across different LSTM
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Fig. 2. Illustration of LSTM unit as presented in [5]

units, an RNN with multiple LSTM units may capture both
fast-moving and slow-moving temporal patterns [6].
Deep RNN. Since a deep hierarchical model is exponentially
more efficient at representing functions than a shallow one [3],
we build a deep RNN by stacking multiple recurrent layers,
where each layer consists of a list of recurrent units. Most
importantly, unlike most existing work [4], [33] that blindly
squeeze the information from all features into a single hidden
state and make it intractable to quantify the contribution from
individual features, at each layer, we allocate a separate set
of recurrent units for each feature. In particular, the state
transition in a deep RNN with L recurrent layers is defined
as:

h
(`)
i,j,t = Hj

(
h
(`−1)
i,j,t , h

(`)
i,j,t−1

)
, (4)

where ` = 1, . . . , L, h(0)i,j,t = xi,j,t, Hj is the operation in
LSTM dedicated for the j-th feature, and h(`)i,j,t is the hidden
state for the j-th feature on the `-th layer at time t for the i-th
sample. The hidden state in the last recurrent layer is emitted
as the output of the deep RNN, i.e., Hi = (hi,1, . . . ,hi,T )

ᵀ,
and hi,t =

(
h
(L)
i,1,t, . . . , h

(L)
i,m,t

)ᵀ
for t = 1, . . . , T .

By stacking multiple layers of recurrent units, we explic-
itly encourage each recurrent level to operate at a different
timescale. This allows the deep RNN to capture the temporal
patterns of various granularity, and to generate a compre-
hensive synopsis of the input sequence. On the other hand,
the variable-designated recurrent units can learn the specific
dynamics of each feature, and produce feature-wise summaries
that allow subsequent causal impact analysis.

D. 2D-ATT

Attention mechanisms [2], [16], [31] offer a short-cut access
to inputs at different positions based on their importance
during the processing of a sequence, and provide long-term
context for downstream recognition or prediction. They have
become an essential component in compelling sequence mod-
eling. However, most existing attention mechanisms [2], [16]
only take single-dimensional hidden states, i.e., a sequence
of hidden states with each summarizing all features until a
certain time step. Whereas in our work, the hidden states
emitted by the deep RNN are two-dimensional, i.e., across



features and time steps. The most relevant existing work to
ours was proposed by Guo et al. [12], which describes a 2-
layer attention mechanism, with one intra-feature layer and one
inter-featuer layer. Unfortunately, the importance of different
features at different time steps are not comparable.
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Fig. 3. The graphical illustration of the proposed 2D-ATT attention mecha-
nism

In this paper, we propose a novel query-based self-attention
mechanism named 2D-ATT. The graphical illustration of 2D-
ATT is displayed in Figure 3. In particular, 2D-ATT directly
processes two-dimensional hidden states, and adaptively learns
the importance of each feature and each time step with regard
to the prediction of the target variable. Given a multivariate
time series Xi, for each hidden state hi,j,t (j = 1, . . . ,m, and
t = 1, . . . , T ), we first construct its latent representation ui,j,t
through one fully-connected layer as

ui,j,t = tanh(Whi,j,t + b), (5)

where W and b are parameters to be learned. After that, the
attention on hi,j,t is calculated as

αi,j,t =
ui,j,tq

ᵀ∑
1≤j≤m,1≤t≤T exp(ui,j,tqᵀ)

, (6)

where q is the query vector that represents the fixed question
“what are the important hidden states with regard to the pre-
diction of the target variable” like the one used in the memory
networks [29]. The query vector q is randomly initialized and
is also learned in the training process. The softmax activation
in Equation (6) ensures that

∑
1≤j≤m,1≤t≤T αi,j,t = 1.

Therefore, αi,j,t represents the relative importance of the input
xi,j,t in determining the target value of the sequence, i.e., yi.
Finally, the attended representation of the input sequence Xi

is calculated by taking the weighted sum of the hidden states
based on the attention scores αi,j,t,

si =
∑

1≤j≤m,1≤t≤T

αi,j,thi,j,t. (7)

By resembling the information flow in the generative pro-
cess of the target variable, the attention scores {αi,j,t|i =

1, . . . , n, j = 1, . . . ,m, t = 1, . . . , T} represents the contri-
bution of each feature at every time step to the target. The
aggregate/average attention scores across all instances reveal
the causal impact of each feature with different levels of
temporal delay. Our experimental results in Section IV also
validates this claim. On the other hand, for each individual
instance Xi, the attention scores provided by 2D-ATT serve
as the explanation of the model’s prediction, and significantly
boost user confidence in the model. Moreover, as the atten-
tion mechanism allows the prediction model to automatically
concentrate on the most important input fragments, it can
improve the prediction accuracy in return [24]. Our empirical
results (Section 5) provide evidence of the effectiveness of the
attention mechanism.

IV. EXPERIMENTS

A. Datasets
In the experiments, we generate synthetic datasets with

embedded causal relationships to evaluate the effectiveness
of 2D-ATT at causal inference. We also apply 2D-ATT on
real-world datasets from mobile game industry to uncover the
causal impact of various factors on organic installs. Next, we
introduce these datasets in details.
Synthetic 1: Linear, Uniform with instantaneous effects.
We follow [7] to generate 2,000 datasets of length 30 from
Xt ∼ U([0, 1]) and

Yt =

{
Xt−3 +NX,t if Xt ≤ 0.5

f(Xt−5, Xt−2) +NX,t otherwise,

where f(·) is the average function, and NX,t ∼ U(0, 0.2). The
causal relationship is Xt, Xt−2, Xt−3, Xt−5 → Yt.
Synthetic 2: Linear, Gaussian with instantaneous effects.
We follow [20] to sample 2,000 datasets of length 30 with

Xt = A1 ∗Xt−1 +NX,t

Wt = A2 ∗Wt−1 +A3 ∗Xt +NW,t

Yt = A4 ∗ Yt−1 +A5 ∗Wt−1 +NY,t

Zt = A6 ∗Wt ++A7 ∗ Yt−1 +NZ,t,

where N·,t ∼ 0.4 · N (0, 1), and Ai ∼ U
(
[−0.8,−0.2] ∪

[0.2, 0.8]
)
. We take Z as the target variable, and regard

Wt, Yt−1 → Zt as correct.
Synthetic 3: Nonlinear, non-Gaussian without instanta-
neous effects. We simulate 2,000 datasets of length 30 by
following [20] with

Xt = 0.8 ∗Xt−1 + 0.3 ∗NX,t

Yt = 0.4 ∗ Yt−1 + (Xt−1 − 1)2 + 0.3 ∗NY,t

Zt = 0.4 ∗ Zt−1 + 0.5 ∗ cos(Yt−1) + sin(Yt−1) + 0.3 ∗NZ,t,

where N·,t ∼ U
(
[−0.5, 0.5]

)
. Z is regarded as the target

variable. Therefore, Yt−1 → Zt is the ground truth causal
effect.
Synthetic 4: Non-additive interaction. We follow [20] to
simulate 2,000 datasets with different lengths from

Xt = 0.2 ∗Xt−1 + 0.9 ∗NX,t

Yt = −0.5 + exp
(
− (Xt−1 +Xt−2)

2
)
+ 0.1 ∗NY,t,



where N·,t ∼ N (0, 1). Obviously, Xt−1 and Xt−2 are the
causal factors of Yt.
Real-world Dataset. We obtain real-world data from 9 mobile
games published on two platforms (i.e., iOS and Android) by
Jam City3, a video game company based in California. The
multivariate time series data are collected on a daily basis
from December 2013 to June 2020. For each day, every game
is described by the following variables.

Numerical features
• paid install: the number of paid users obtained;
• ua cost: the user acquisition cost;
• DAU: daily active users;
• DAP: daily active payers, i.e., users who make

within-app purchases;
Binary features

• featuring: indicates whether there is an app store
featuring event, i.e., if the app store displays the
game in the main page;

• store publishing: indicates whether the game’s
information is updated in the app store;

• test publishing: indicates whether there is any
testing for new game content in the app store;

Target variable
• organic install: the number of organic installs.

The detailed statistics of the real-world dataset can be found
in Table II and III. For the sake of commercial protection,
for each game, we multiply the statistics with a fixed random
number. We split the multivariate time series with a fixed time
window (e.g., 7, 15, 30, 60, 180 and 360). We observe that
the prediction based on 180-day historical data is reasonably
accurate. Therefore, in the experiments, we only report the
results from a 180-day window size.

B. Baselines

In the experiments, we compare 2D-ATT with the following
approaches on causal inference.
• T-Causality [30]: It discovers causal effects by following

the definition of transfer causality.
• G-Causality [20]: It discovers causal effects by following

the definition of Granger causality. We use the imple-
mentation provided by Peters et al.4, which includes
various combinations of regressor (i.e., VAR, GAM and
GP) and independence testor (i.e., HSIC with Gaussian
kernel and cross-correlation).

• SHAP [15]: It discovers important features on a model’s
prediction result by approximating the local behavior with
simple but interpretable explanation models. We firstly
train a gradient boosting tree from the dataset to learn the
mapping from features to target by using the LightGBM
library5, and identify important features with SHAP6. A
feature is considered as the causal factor if its SHAP

3https://www.jamcity.com/
4http://people.tuebingen.mpg.de/jpeters/onlineCodeTimino.zip
5https://lightgbm.readthedocs.io/en/latest/
6https://github.com/slundberg/shap

value (impact on model output) is larger than or equal to
1.

• AME [23]: This approach trains an attentional neural
network to predict the target. The attention is enforced
to be aligned with the G-causality values. We use the
open-source implementation provided by the authors7.

C. Setup

We implement 2D-ATT with in Python by using the ten-
sorflow 2.0 framework. The neural network is trained with the
Adam optimizer to reduce the mean squared error between the
predicted value and the ground truth. All the hyber-parameters,
e.g., the depth and width of the RNN and FCN, the number of
attention units, learning rate, the number of epochs, and batch
size are fine tuned through random search. We will publish
the source code upon the acceptance of the paper. We run the
experiments on a workstation with 2 NVIDIA RTX 2080 Ti
GPUs and 1 Intel i7-7700K @ 4.2GHz CPU. On average, the
training process halts within 2 hours.

D. Causal Validation on Synthetic Datasets

In this section, we compare 2D-ATT and the baseline
approaches on discovering causal effects from the synthetic
datasets. Table I shows the result. First, we observe that
T-Causality [30] fails to detect any causal effect. This is
because T-Causality does not take instantaneous effects into
consideration, which are involved in the first three synthetic
datasets. Moreover, the conditional entropy calculation in T-
Causality is vulnerable to noises in the observations. Likewise,
G-Causality [20] does not identify any causal effect either. We
must note that in the experiments, we try all combinations
of regressors and independence testor provided by [20]. As
pointed out in Section I, G-Causality is only effective if the
data follows a rigid assumption, i.e., no confounder. Similar
to T-Causality, it is also sensitive to the observational noise.
Among all the baseline approaches, SHAP [15] is the most
plausible one. It successfully identifies the causal effects in
Synthetic 1 and 4, while only emits a few false effects and
misses one effect on Synthetic 2 and 3. In our experiments,
we find that the performance of SHAP heavily depends on the
accuracy of the prediction which it explains. If the underlying
prediction model is not appropriate (e.g., using ARIMA) or
is not fine-tuned, the causal effects generated by SHAP have
a low fidelity. Even though AME [23] discovers the causal
effects on Synthetic 2 and 3, a major limitation is that it only
produces variable-level causal effects, without any information
about temporal lags. This significantly reduces the value of the
uncovered effects.

In Figure 4, we visualize the attention scores generated by
2D-ATT. On Synthetic 1, we observe that 2D-ATT successfully
identifies the causal effect of Xt, Xt−2, Xt−5 on Yt, even
though it misses Xt−3. This demonstrates the extraordinary ca-
pacity of 2D-ATT on discovering causal effects with different
levels of temporal lags. On Synthetic 2, 2D-ATT attributes that

7https://github.com/d909b/ame



Approach Synthetic 1 Synthetic 2 Synthetic 3 Synthetic 4
T-Causality [30] N/A N/A N/A N/A
G-Causality [20] N/A N/A N/A N/A

SHAP [15] Xt−3, Xt, Xt−5, Xt−2 → Yt 3
Yt−1 → Zt 3 Yt−1 → Zt 3

Xt−1, Xt−2 → Yt 3
Yt,Wt−2,Wt−1, Yt−2 → Zt 7 Yt → Zt 7

AME [23] N/A W,Y → Z 3
X → Z 3 N/A
Y → Z 7

2D-ATT Xt, Xt−2, Xt−5 → Yt 3
Wt → Zt 3

Yt−1 → Zt 3 Xt−1, Xt−2 → Yt 3
Wt−1,Wt−2 → Zt 7
TABLE I

CAUSAL EFFECTS DISCOVERED BY ALL APPROACHES ON THE SYNTHETIC DATASETS

(3denotes a true-positive causal effect, 7denotes a false-positive causal effect)

Game # of days paid install ua cost DAU DAP FD SPD TPD organic install
Game 1 2309 5765(±4724) 24788(±16586) 1200881(±359630) 140506(±93478) 72 15 40 9774(±6834)
Game 2 1126 1591(±1597) 13966(±9522) 275224(±30665) 45676(±8087) 112 17 0 3525(±5073)
Game 3 1151 2733(±5805) 14210(±21416) 198001(±108431) 42668(±17478) 0 0 0 3694(±7338)
Game 4 1609 3099(±2908) 19233(±14317) 364281(±138480) 48863(±14952) 0 0 0 3423(±3628)
Game 5 896 12837(±35790) 45986(±46174) 770989(±619729) 167773(±86012) 485 7 46 38497(±118031)
Game 6 2394 7977(±7210) 28192(±23455) 773439(±399555) 79803(±58386) 71 17 0 11345(±7882)
Game 7 1071 1375(±2395) 5536(±9849) 81876(±59400) 9074(±3959) 19 1 0 3145(±6425)
Game 8 314 1042(±2426) 9568(±11220) 36502(±14102) 6255(±1146) 40 1 6 1922(±3143)
Game 9 216 2247(±2953) 18348(±8662) 185031(±26034) 19950(±5112) 0 0 0 6448(±7465)

TABLE II
STATISTICS OF THE REAL-WORLD DATASET ON THE IOS PLATFORM(

x(±y) STANDS FOR MEAN AND STANDARD DEVIATION, FD: NUMBER OF FEATURING DAYS, SPD: NUMBER OF STORE PUBLISHING DAYS, TPD:
NUMBER OF TEST PUBLISHING DAYS

)
Game # of days paid install ua cost DAU DAP FD SPD TPD organic install

Game 1 2297 14296(±9612) 36909(±17780) 1815921(±694846) 106274(±73129) 129 20 189 27461(±18502)
Game 2 1222 4629(±3229) 20087(±11159) 309025(±71816) 34168(±6575) 74 16 328 5600(±9778)
Game 3 1150 4145(±12442) 10275(±21784) 175343(±139059) 24411(±13172) 0 0 0 5628(±12684)
Game 4 1609 7561(±6882) 19391(±12443) 479868(±212396) 35520(±13126) 0 0 0 8304(±11281)
Game 5 847 19396(±23519) 57114(±40212) 819134(±619381) 132279(±58104) 259 5 165 52774(±135335)
Game 6 2361 11042(±9173) 24657(±15805) 854516(±475386) 44260(±34182) 76 9 78 21330(±13911)
Game 7 1071 1549(±3188) 3717(±7738) 69737(±55846) 4727(±2368) 7 0 31 3271(±5841)
Game 8 315 1610(±2288) 9273(±10457) 53531(±33171) 5604(±1467) 26 1 55 4474(±11625)
Game 9 216 3295(±2470) 16531(±7918) 276994(±42663) 14527(±4089) 0 0 0 27473(±21941)

TABLE III
STATISTICS OF THE REAL-WORLD DATASET ON THE ANDROID PLATFORM(

x(±y) STANDS FOR MEAN AND STANDARD DEVIATION, FD: NUMBER OF FEATURING DAYS, SPD: NUMBER OF STORE PUBLISHING DAYS, TPD:
NUMBER OF TEST PUBLISHING DAYS

)

W has a dominant causal effect on Yt, with closer time steps
having a higher importance. This is because in this dataset, we
have Wt−2 → Yt−1 → Zt, which makes 2D-ATT steer most
attention on W . On Synthetic 3 and 4, 2D-ATT accurately
discovers the causal effects without any false claims. This
proves that 2D-ATT is capable of identifying complex causal
effects. Overall, 2D-ATT shows the most excellent competency
in discovering intricate causal relationships with various levels
of temporal delays from multivariate time series.

E. Causal Inference on Real-world Dataset

In Figure 5, we visualize the attention scores on the real-
world mobile game dataset. For better visualization quality,
we only plot a heatmap from the 30-day historical window.
We must note that our attentional neural network predicts the
organic installs with a high accuracy. The RMSE is 2,904,
which does not account for 10% of the standard deviation.
2D-ATT identifies paid installs and DAU (daily average users)
as the most important causal factors of organic installs, with

closer statistics playing a more important role. The causal
effect between DAU and organic installs are more or less
expected. This is because DAU is a proper instantiation of
game quality. Games with better quality have higher retention
rates, and hence larger DAU. However, the discovery that paid
installs are the most significant causal factor of organic installs
is innovative. In the mobile game industry, paid users are
not one of the widely recognized factors to improve organic
installs. In reality, very few game managers recognize the
importance of paid installs on bringing in more organic users.
This finding suggests that the best way to boost organic installs
is to buy more game users. With more paid installs and
active users, the operation team can expect a rapid growth
in the number of organic users. This demonstrates that the
transformation from quantitative change (i.e., more paid users)
to qualitative change (i.e., more organic users) also holds in
the mobile game industry.



(a) Attention scores on Synthetic 1

(b) Attention scores on Synthetic 2

(c) Attention scores on Synthetic 3

(d) Attention scores on Synthetic 4

Fig. 4. Causal effects discovered by 2D-ATT on the synthetic datasets
(Yellow color denotes high importance, black color denotes low importance)

Fig. 5. Causal effects discovered by 2D-ATT on the real-world dataset
(Yellow color denotes high importance, black color denotes low importance)

V. RELATED WORK

Statistical Inference. The classical definition of temporal
causality, named Granger causality, was proposed five decades
ago [11]. According to Granger causality, Xt is causing Yt if
we are better to predict Yt using all available information than
if the information apart from Xt had been used. Since then,
it has has become a mainstream choice to determine whether
and how two time series exert causal influences on each other.
The estimation of linear Granger causality can be done by
using vector autoregression model [10], generalized additive
model [13], Fourier and wavelet transformation [8]. More
complicated nonlinear Granger causality can be generalized
from the linear ones, using methods from the theory of Re-
producing Kernel Hilbert Spaces (RKHS) [17]. In particular,
it embeds the data a Hilbert space, in which linear causality
is searched. Various kernels have been adapted for nonlinear

Granger causality, such as inhomogeneous polynomial kernel
and Gaussian kernel. However, A major limitation of Granger
causality is that it does not allow the existence of confounder.
If this assumption is violated, the methods may either fail to
detect any causal relationship, or draw false causal conclu-
sions. It is very difficult to validate the assumption in real-
world datasets.

Aside from Granger causality, Schreiber et al. [22] proposed
transfer entropy based on information theory. Transfer entropy,
TX→Y , measures the reduction in uncertainty of Yt when Xt

changes from unknown to known. The recent work in [30]
defines transfer causality with TX,Y = TX→Y − TY→X . If
TX,Y > 0, it means that X is the cause of Y ; otherwise, X
is the consequence of Y . The inference of transfer causality
does not consider any other variable. Therefore, in case of a
confounder, it will mis-interpret correlation as causal relation.
Model Explanation. LIME [21] leads the researches on



explaining complex machine learning models. Given a com-
plicated machine learning model or a deep neural network
that is trained over largescale datasets, LIME explains the
target model’s rationale on any testing instance by training an
explanation model to approximate the local decision boundary
with a simple yet interpretable model, such as linear regression
or logistic regression. From the explanation model, users can
tell which features play an important role in the target model’s
decision, so as to infer the causal relationships. After that,
a wide range of explanation models have been proposed,
e.g., DeepLIFT [25], [26], Shapley [28] and SHAP [15].
The fidelity of the explanation results are unstable, since
approximation error is inevitable on some test cases, due to the
limited representation power of the simple explanation model.
Attention Neural Networks. Attention mechanisms are the
prevailing method to fortify deep neural networks with inter-
pretability when modeling complex sequences. It is embedded
into a network, and allows the model to search for input
parts that are relevant to make the prediction. The mechanism
learns a dynamic weighted average of hidden states from
different time steps in a long sequence, which serves as a
long-term context for downstream discriminative components.
A large weight indicates that the associated input fragment is
of high importance with regard to the model’s prediction result,
and thus allows interpreting the decision. Various attention
mechanisms have been proposed for tasks such as neural
machine translation [2], [16], and image captioning [31].
However, most attentional neural networks fall short of the
aforementioned interpretability for multi-variate time series
due to their opaque hidden states. Specifically, the input data is
firstly processed by a recurrent neural network (RNN), which
blindly blend the information of all variables into the hidden
states used for prediction. It is intractable to distinguish the
contribution of individual variables into the prediction through
the sequence of hidden states [32]. The work that is most
relevant to ours is [12], in which one attention layer focuses
on multiple steps in each individual variable, and the other
one steers attention across the synopsis from all variables.
However, we cannot directly apply [12] because we cannot
compare the relative importance for inputs at different time
steps and different variables.

VI. CONCLUSION

In this paper, we present a novel attention mechanism to dis-
cover causal relationships with temporal lags from multivariate
time series data. Experiment results on both synthetic and real-
world datasets demonstrate the effectiveness on identifying
complex causal effects.

In the future, we plan to extend the work by designing
an automated algorithm to intelligently allocate UA budget
based on the discovered causal effects. Besides, we also plan
to design a user attribution model that evaluates the efficacy
of each advertising channel in providing valuable new users.
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