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ABSTRACT

The data-cleaning-as-a-service (DCaS) paradigm enables
users to outsource their data and data cleaning needs to com-
putationally powerful third-party service providers. It raises
several security issues. One of the issues is how the client can
protect the private information in the outsourced data. In
this paper, we focus on data deduplication as the main data
cleaning task, and design two efficient privacy-preserving
data-deduplication methods for the DCaS paradigm. We
analyze the robustness of our two methods against the at-
tacks that exploit the auxiliary frequency distribution and
the knowledge of the encoding algorithms. Our empirical
study demonstrates the efficiency and effectiveness of our
privacy preserving approaches.

Categories and Subject Descriptors

H.2.0 [General]: Security, integrity, and protection

Keywords

Data-cleaning-as-a-service, data deduplication, outsourcing,
security, privacy-preserving

1. INTRODUCTION
It has been well known that real-world datasets, partic-

ularly those from multiple sources, tend to be dirty - inac-
curate, incomplete, and inconsistent. According to a recent
survey [8], around 40% of companies have suffered losses,
problems, or costs due to poor quality data. Dirty data
are commonly present in both single data collections (e.g.,
due to misspellings during data entry, missing information
or other invalid data) or multiple data sources. Many data
management and decision making applications, e.g., data
warehouses and web-based information systems, require ex-
tensive support for data cleaning.
Data cleaning is a labor-intensive and complex process [3].

Providing a data cleaning solution that is powerful, reliable,
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and easy to use is extremely challenging. With corporate
data exploding in volume and variety, cleaning of large scale
data has grown difficult. However, building in-house tools
for data cleaning is highly labor-intensive, and may create
maintenance problems down the road. Alternatively, pur-
chasing expensive proprietary data cleaning solutions may
not be acceptable by those medium- and small-size organi-
zations that have limited budgets. A possible solution to
resolve this dilemma is to outsource the data to a third-
party data cleaning service provider for efficient data clean-
ing. This motivates the data-cleaning-as-a-service (DCaS)
paradigm that enables organizations with limited computa-
tional resources to outsource their data cleaning needs to
a third-party service provider. Recently, several academic
and industrial organizations have started investigating and
developing technologies and infrastructure for cloud-based
data cleaning services (e.g., OpenRefine [1]).

In this paper, we focus on data deduplication, one of the
important data cleaning problems, that aims to identify the
records that refer to the same entity. Outsourcing data
deduplication to a third-party service provider raises a few
issues. For instance, when the outsourced data involves any
personal information (e.g., medical or financial details of in-
dividuals), the privacy of those information needs to be care-
fully protected. Indeed, personal information is commonly
required for data deduplication to match records from differ-
ent databases [5]. It is therefore paramount to protect data
privacy when outsourcing the data to the DCaS provider.

A concept that is highly related to data deduplication is
record linkage, which shares the same goal as data dedupli-
cation as finding similar records in the datasets. There has
been extensive study of the privacy-preserving record link-
age (PPRL) problem that enables linking large databases
across organizations while preserving the privacy of the en-
tities stored in these databases. The existing PPRL solu-
tions consider either the 2-party that consists of two pri-
vate database owners (e.g., [2, 19]) or 3-party that compro-
mises of a trusted third-party besides the two data owners
(e.g., [12, 21]). Unlike these existing PPRL techniques, we
consider an asymmetric paradigm that consists of two par-
ties where one is computationally weak and the other one is
much more powerful. We call the weak party client and the
other party server in the rest of the paper.

We assume the server is untrusted. Therefore, to pro-
tect the sensitive information in the outsourced dataset, the
client encodes its data and sends the encoded data to the
server. The attacker (i.e., the server) may try to decode
the received dataset to infer the private information. We



assume that the attacker has (either exact or approximate)
frequency distribution information of the outsourced data,
and will launch the frequency analysis attack by exploiting
the frequency knowledge to break the encoding. Further-
more, we assume that the attacker knows the details of the
encoding scheme; he can exploit such knowledge to launch
the known-scheme attack, trying to recover the original data.
In general, the client can use salt, a random value that

is different for each tuple, as part of the encoding scheme
to prevent the frequency analysis attack. However, adding
salt may disable to find duplicated records from the encoded
data. On the other hand, using hash values [5], Bloom filters
[22], and embedding techniques [21] still enable one-to-one
mapping between the original and encoded data values, thus
cannot defend against the frequency analysis attack.
Contributions. In this paper, we design the Privacy-
preserving Data-Deduplication-as-a-Service (PraDa) system
that enables the client to outsource her data as well as
data deduplication needs to a potentially untrusted server.
PraDa enables the server to discover near duplicated records
from the encoded data, while providing provable privacy
guarantee against both the frequency analysis and the known-
scheme attacks. To the best of our knowledge, we are the
first to design privacy-preserving techniques for the DCaS
paradigm against the frequency analysis attack. In particu-
lar, our contributions include the following.
First, we design the locality-sensitive hashing based (LSHB)

scheme that utilizes locality-sensitive hashing (LSH) to map
strings to hash values such that similar strings share the
same value with high probability [15]. To defend against the
frequency analysis attack, we design the split-and-duplication
method to ensure that the LSH values always behave a uni-
form frequency distribution. We analyze the privacy guar-
antee of the LSHB approach against both the frequency
analysis and the known-scheme attacks. The LSHB ap-
proach can deal with a number of distance measurement
metrics for categorical data.
Second, we design the embedding and homophonic sub-

stitution (EHS) scheme. EHS first maps string values to a
Euclidean space in the way that similar strings are mapped
to close Euclidean points. To defend against the frequency
analysis attack, all identical Euclidean points are encoded
as different but close points. The frequency distribution of
the encoded Euclidean points is always flattened, regardless
of the frequency distribution of original data. We analyze
the robustness of EHS against both the frequency analy-
sis and the known-scheme attacks. The EHS approach can
deal with both categorical and numerical data.
Finally, we evaluate and compare the performance of both

LSHB and EHS in terms of time complexity and data
deduplication accuracy, on real datasets. Our results show
that both approaches guarantee high recall (i.e., the percent-
age of original duplicated records that are returned by the
server). In particular, EHS always guarantees 100% recall.
LSHB delivers lower recall (around 70%), but it has bet-
ter time performance than EHS at both client and server
sides. For both approaches, the client’s computational effort
is much cheaper than the server as well as executing data
deduplication locally.
The rest of the paper is organized as follows. Section

2 describes the preliminaries. Section 3 and 4 discuss our
LSHB and EHS methods respectively. Section 5 presents
the post-processing procedure at the client side. Section

6 provides the experiment results. Section 7 discusses the
related work. Section 8 concludes the paper.

2. PRELIMINARIES

2.1 Outsourcing Framework
Record linkage techniques are used to link together records

which relate to the same entity (e.g. patient or customer)
in one or more data sets where a unique identifier is not
available. The key of the most record linkage techniques is to
measure the similarity of records. Normally two records S1

and S2 are δ-similar, denoted as S1 ≃ S2, if their similarity
according to some distance measurement metrics is no less
than a given threshold δ. In this paper, we consider the
Jaccard similarity based on q-grams. But we also discuss
how to extend our methods to other distance metrics such
as edit distance and hamming distance.

We consider a client-server framework that contains a data
owner as the client, and the service provider as the server.
The client has a private dataset D and would like to find
out all record pairs in D that are near-duplicates. To pro-
tect the private information in D, she transforms D to D′,
and sends D′ together with the similarity threshold to the
server. When the server receives D′, it executes the data
deduplication on D′ to find all data pairs that are similar
(e.g., their distance is less than the client’s threshold), and
returns the results to the client.

2.2 Attack Model
Since the server is potentially untrusted, the client will

send the encoded records to the server for data deduplica-
tion. We assume the server is semi-honest, meaning that
it follows the protocols honestly but it is curious to extract
private information. In this paper, we consider two spe-
cific attacks, namely the frequency analysis attack and the
known-scheme attack.
Frequency analysis attack. We assume the attacker may
possess the knowledge of the domain values of the outsourced
data, as well as the frequency distribution of the data val-
ues at attribute level. As shown previously [22, 7], such
adversary knowledge can be easily obtained in real-world
applications. We assume that the attacker has the exact
frequency occurrence of attribute values. The attacker can
launch the frequency analysis attack by matching the en-
coded data with the original ones of the same frequency.
We assume that the attacker has no prior knowledge about
the correlations of data values.
Known-scheme attack. We assume the attacker knows
the details of the encoding methods that are used by the
client. He may try to break the encoding scheme by utilizing
the knowledge of the encoding methods.

2.3 Precision and Recall
We define precision and recall to measure the impact of

privacy-preserving techniques to the accuracy of record link-
age. Formally, given a dataset D, let RO be the similar
strings in D, and RE be the pairs of similar strings (possibly
in encrypted format) returned by the service provider. The

precision is measured as Pre = |RE∩RO|
|RE |

, and the recall is

measured by Rec = |RE∩RO |
|RO|

. Intuitively, the precision mea-

sures the fraction of near-duplicates by the encoding method
that are correct, while the recall measures the fraction of
original near-duplicates that are preserved by the encoding
methods. We aim at designing the privacy-preserving tech-



niques that achieve provable privacy guarantee with high
precision/recall.

3. LOCALITY-SENSITIVE HASHING BASED

(LSHB) APPROACH
In this section, we propose two locality-sensitive hash-

ing based (LSHB) approaches, namely the duplication ap-
proach (Section 3.1) and the split-and-duplication approach
(Section 3.2). The key idea of the two LSHB methods is to
map the strings to locality-sensitive hashing (LSH) values.
LSH is a set of hash functions that map objects into several
buckets such that similar objects share a bucket with high
probability, while dissimilar ones do not. Formally, let O be
the domain of objects, and dist() be the distance measure
between two objects. Then,

Definition 3.1. [(d1, d2, p1, p2)-sensitive hashing] A func-
tion familyH is called (d1, d2, p1, p2)-sensitive if for any two
objects o1, o2 ∈ O: (1) If dist(o1, o2) < d1, then PrH[h(o1) =
h(o2)] ≥ p1; (2) If dist(o1, o2) > d2, then PrH[h(o1) =
h(o2)] ≤ p2, where 0 ≤ d1 < d2 ≤ 1, and 0 ≤ p1, p2 ≤ 1.

A family is interesting when p1 > p2. Intuitively, any two
similar objects will have the same LSH value with high prob-
ability, while any two dissimilar objects will have the same
LSH value with a low probability. To date, several LSH fam-
ilies have been discovered for different distance metrics. In
this paper, we consider the q-gram based Jaccard metric and
use the MinHash[6] as the LSH function family. The family
of MinHash functions is a (d1, d2, 1−d1, 1−d2)-sensitive fam-
ily for any d1 and d2, where 0 ≤ d1 < d2 ≤ 1. Our method
can be applied to other distance metrics such as Hamming
distance and edit distance.
Intuitively, sending LSH values guarantees privacy as it

does not involve any data. However, the LSH values are
vulnerable against the frequency analysis attack by which
the attacker tries to map the LSH values to strings based
on their frequency. Formally, given n unique strings S =
{S1, . . . , Sn} and m ≤ n LSH values of these strings, let fi
and li be the frequency of the string Si(1 ≤ i ≤ n) and the
LSH value Li(1 ≤ i ≤ m) respectively. Then for each LSH
value Li(1 ≤ i ≤ m), the attacker tries to find its matching
candidates S ′ ⊆ S s.t. (1) for all Si, Sj ∈ S ′, Si ≃ Sj ,
and (2)

∑

Sj∈S′ fj = li. In other word, the attacker will try

to find those similar strings that are mapped to the same
LSH value based on their frequency. Then the attacker’s
probability that the LSH value Li(1 ≤ i ≤ m) is mapped to
a specific string Sj ∈ S ′ is prob(Li → Sj) = 1

|S′|
. For any

LSH value that has few matching candidates (e.g., those
strings have few similar others), it can be mapped to the
correct string with high probability (possibly 100%).

3.1 Duplication Approach
To defend against the frequency analysis attack on the

LSH-based approach, we define α-privacy to quantify the
desired privacy guarantee:

Definition 3.2. [α-privacy] Given a set of unique strings
S {S1, . . . , Sn} and their LSH values L {L1, . . . , Lm}, we say
L is α-private if for each Li ∈ L, the probability that maps
it to string Sj satisfies that prob(Li → Sj) ≤ α.

Intuitively, lower α provides higher privacy guarantee.
Next, we present our duplication-based approach that con-

structs α-private LSH values. It consists of two steps:

Step 1: Grouping. First, we construct the LSH values of
all strings in S. Second, we sort LSH values by their fre-
quency in descending order. Third, starting from the most
frequent LSH value, we repeat grouping k = [ 1

α
] adjacent

values together into one group (called an α-group), until all
LSH values are grouped. The last group, if less than k in
size, is merged with its previous group.
Step 2: Frequency homogenization. For each group,
let lmax be the maximum frequency of its LSH values. Then
for each LSH value Li in the group, we add lmax − li copies
of Li, where li is the frequency of Li.

After the two steps, all LSH values in the same group
have the same frequency, regardless their frequency in the
original dataset.

3.1.1 Privacy Analysis of Duplication Approach

Frequency analysis attack. The duplication-based ap-
proach guarantees that there are always at least [ 1

α
] LSH

values that are of the same frequency. Therefore, even for
the worst case that these values have no other similar strings,
the probability of associating any LSH value with its orig-
inal string based on their frequency is at most α. In other
words, the duplication approach guarantees α-privacy.
Known-scheme attack. When the attacker knows the de-
tails of the duplication approach, he can apply the following
two-step attack trying to find the mapping between LSH val-
ues and strings. First, the attacker tries to find the mapping
between string groups and LSH groups. He can execute the
grouping step of the duplication approach over the string
values to get string groups; the string groups are expected
to be similar to the LSH groups of the strings. Then for each
string group, he will try to find out the corresponding LSH
values based on their frequency. From the knowledge of the
encoding algorithm, he knows that with high probability all
LSH values of the same frequency belong to the same group.
Furthermore, for any string S and its LSH value L, it must
be true that freq(S) ≤ freq(L). Based on these informa-
tion, he can map LSH groups to the string groups based on
their frequency. Note that all LSH values in the same group
have the same frequency, while the strings in the same group
do not have to. Apparently, for any string groups of k unique
and dissimilar strings, its LSH group must contain exactly
k unique LSH values. Furthermore, since it is highly likely
that a string group only contains dissimilar strings, the max-
imum frequency of the LSH group must be no larger than the
maximum frequency of its string group. The attacker can
use these knowledge to map LSH groups to string groups.
Under the worst case, there is only one such mapping. Sec-
ond, the attacker tries to find the mapping between specific
strings and LSH values based on the group mapping result.
Consider a mapping that consists of k strings and k LSH val-
ues. The attacker constructs all possible mappings between
k LSH values and k strings, with each LSH value mapped
to exactly one string. There are k! such mappings. Among
these mappings, (k−1)! mappings map a specific LSH value
Lj(1 ≤ j ≤ k) to its correct string Si(1 ≤ i ≤ k) correctly.

Therefore, the probability prob(Lj → Si) = (k−1)!
k!

= 1
k
.

Since k = [ 1
α
], the duplication-approach is α-private against

the known-scheme attack.

3.1.2 Complexity Discussion

The duplication approach requires O(n) to group and add
duplicates at the client side, where n is the number of unique
strings in D. The complexity of data deduplication at the



server side is O((|D| + p)2), where |D| is the total num-
ber of strings in D (|D| ≫ n), and p is the total num-
ber of duplicated LSH values. In particular, the number
of duplicated LSH values that are added to the string Si is
ri = (fmax−fi). The total number p of duplicated LSH val-

ues added to D is p =
n
∑

i=1

ri. It can be large, especially for

the datasets of skewed frequency distribution. This will hurt
the performance of data deduplication in terms of both accu-
racy and time performance. Next, we discuss our split-and-
duplication approach that can improve the duplication-based
approach by reducing the number of added LSH copies,
while still providing provable guarantee against both the fre-
quency analysis attack and the known-scheme attack.

3.2 Split-and-duplication (SD) Approach
The main idea of the split-and-duplication (SD) approach

is to add a split step between the grouping step and the
frequency homogenization step of the duplication-based ap-
proach. The aim of the split step is to convert those LSH
values of large frequency to several different ones of smaller
frequency, so that the number of added LSH values by the
frequency homogenization step can be reduced. Apparently
the split copies of the same string cannot have the same LSH
values. A naive approach is, for each LSH value L of high
frequency, we make several copies of L, so that the frequency
of these copies accumulate to the same frequency. Then for
each copy of L, we randomly modify a number of its bits, so
that all split copies of L will be different after modification.
Though simple, this approach may lead to high amounts of
accuracy lost due to the fact that the LSH values of similar
strings may not share the same bucket anymore. Therefore,
instead of making split copies of LSH values, we propose to
make split copies of the strings, and construct LSH values
of these string split copies. We ensure that for each similar
string pair, at least one pair of their split copies share the
same LSH value with high probability. Therefore, the server
still can identify the similar strings from the received LSH
values. Next, we present the details of the split step.
Our split step is based on the permutation mechanism.

Formally, let S and S′ be equal-size strings. We say S is
a permutation of S′ if there exists a bijection π such that
for each i, S[i] = π(S′[i]). For instance, the string “cacb”
is a permutation of the string “abac” as there exists the bi-
jection π(a) = c, π(b) = a, and π(c) = b. We call π a
permutation function. For any given string S of frequency
f , the client defines g unique permutation functions, and
constructs g unique split copies of S by applying the g per-
mutation functions on S. Each permutation generates a
split copy of frequency [ f

g
]. Continuing our example, con-

sider the string “abac”, and two permutation functions π1

and π2 such that π1(a) = c, π1(b) = a, and π1(c) = b, as
well as π2(a) = b, π2(b) = c, and π2(c) = a, it has two split
copies “cacb” and “bcba”. We have the following theorem to
show that permutation preserves Jaccard similarity.

Lemma 3.1. Given any two strings S1 and S2, let π be
a permutation function. Let S′

1 and S′
2 be the strings after

applying π on S1 and S2 respectively. Then it must be true
that jaccard(S1, S2) = jaccard(S′

1, S
′
2).

The proof of Lemma 3.1 can be found in Appendix. Fol-
lowing Lemma 3.1, we have the following theorem to show
that for any two (dis)similar strings, their permutations us-
ing the same permutation function are always (dis)similar.

Indeed, this applies to not only Jaccard similarity measure-
ment but also other distance metrics such as Hamming dis-
tance and edit distance.

Theorem 3.1. Given any two strings S1 and S2 s.t. S1 ≃
S2 (S1 6≃ S2 resp.). Let S′

1 and S′
2 be the strings after apply-

ing the permutation function π on S1 and S2 respectively.
Then it must be true that S′

1 ≃ S′
2 (S′

1 6≃ S′
2 resp.).

Theorem 3.1 shows that the permutation-based split proce-
dure will lead to neither false negatives (i.e., the split copies
of two similar strings turn dissimilar) nor false positives (i.e.,
the split copies of two dissimilar strings become similar).

Next, we discuss how to decide the total number of split
copies. Our goal is to ensure that the total amounts of du-
plicated LSH values by the SD approach is no larger than
that of the duplication approach. First, we calculate the
total number of the duplicated values that are to be added
by the SD approach. For each group that consists of k
strings {S1, . . . , Sk}, let fi be the frequency of the string
Si(1 ≤ i ≤ k). Assume that the string Si is split into gi
copies. Apparently, the frequency of each split copy of Si

is [ fi
gi
]. Let fmax be the maximum frequency of the split

copies in the group. Then for each string Si, its number r̄i
of duplicated LSH values is r̄i = gi(fmax− [ fi

gi
]). To find out

when the SD approach incurs smaller amounts of duplicate
values than the duplication approach, we compare ri and r̄i.
Apparently r̄i = gi(fmax − [ fi

gi
]) = gifmax − fi. Compared

with ri = fmax − fi, the SD approach wins the duplication
approach if fmax > gifmax. Note that the split copy of the
string that has fmax may not be the same string of fmax.
Therefore, for each string, we always pick gi, the number of
split copies, in the way that ensures fmax > gifmax.

3.2.1 Privacy Analysis of SD Approach

Frequency analysis attack. The SD approach guarantees
that for each LSH value, there are always at least [ 1

α
] − 1

other LSH values that are of the same frequency. Thus, it
guarantees α-privacy against the frequency analysis attack.
Known-scheme attack. If the attacker knows the details
of the SD approach, he can launch the following two-step
attack trying to decode the received LSH values. By the
first step, the attacker tries to find mapping between string
and LSH groups based on the frequency of strings and LSH
values. From the analysis of the SD algorithm, he knows
that all LSH values of the same frequency belong to the
same group with high probability. Furthermore, for any
string S and its split copy S′, freq(S) ≥ freq(S′). Ap-
parently, for any string groups of k unique strings, its LSH
groups must contain at least k unique LSH values. Further-
more, the maximum frequency of the LSH group must be
no larger than the maximum frequency of its string group.
The attacker can use these two facts to map LSH groups
with string groups. In the worst case, there is only one such
mapping. Then by the second step, the attacker tries to
find the mapping between LSH values and strings. Consider
a mapping that consists of k strings and ℓ ≥ k LSH val-
ues, in which LSH values are of the same frequency while
the strings may have different frequency. The attacker tries
to construct all possible mappings of ℓ LSH values to k
strings. This is equivalent to the problem of distributing
ℓ distinguishable balls into k distinguishable boxes where
ℓ > k and no box is empty. The number of such map-
ping equals: M(ℓ, k) =

∑k−1
i=0 (−1)i

(

k

i

)

(k− i)ℓ. Among these
mappings, there are M(ℓ − 1, k) + M(ℓ − 1, k − 1) correct



mappings between a LSH value Lj(1 ≤ j ≤ ℓ) and its string
Si(1 ≤ i ≤ k). Therefore, the probability of finding the
correct mapping Lj → Si is

prob(Lj → Si) =
M(ℓ− 1, k) +M(ℓ− 1, k − 1)

M(ℓ, k)
=

1

k
.

Since k ≥ 1
α
, the SD approach can provide α-privacy against

the known-scheme attack. Interestingly, varying the number
of split copies will not impact the privacy guarantee.

3.2.2 Complexity Discussion

The SD approach requires O(ns) to construct all split
copies at the client side, where n is the number of unique
strings in D, and s is the average number of split copies of
all strings. The complexity of the data deduplication at the
server side is O((|D|+p)2), where |D| is the total number of
strings in D, and p is the total number of duplicates. Note
that |D| ≫ n. Thus the computational effort at the client
side is much cheaper than that at the server side.

4. EMBEDDING & HOMOPHONIC SUBSTI-

TUTION (EHS) APPROACH
In this section, we present a different approach called Em-

bedding & Homophonic Substitution (EHS) that constructs
the encoding of the input data without adding any addi-
tional data. In a nutshell, EHS has two steps: (1) con-
version of categorical data to Euclidean space, and (2) 1-
to-many homophonic substitution of Euclidean points. The
EHS approach can be easily adapted to numerical data for
which the conversion step is not necessary, while the substi-
tution step will be applied on the original data.
For the first step, many mapping techniques (e.g., FastMap

[9] and StringMap [16]) can be used to map strings into a
multidimensional Euclidean space. The mapping functions
guarantee that the similar strings are mapped to close Eu-
clidean points. In this paper, we use FastMap [9] for string
conversion. By FastMap, the string similarity threshold
δ will be adjusted to a new similarity threshold δE for Eu-
clidean points. FastMap is not reversible [9], thus the origi-
nal strings cannot be reconstructed from the embedded Eu-
clidean points. The complexity of the embedding step is
O(d2|D|), where d is the number of dimensions of the Eu-
clidean points, and |D| is the number of strings in D. We
omit the details of the FastMap algorithm for space issue.
FastMap embedding is one-to-one, simply mapping strings

to Euclidean points fails to defend against the frequency
analysis attack. Therefore, the second step of EHS is to
apply a homophonic substitution encoding scheme on the
Euclidean points to defend against the frequency analysis
attack. Homophonic substitution schemes are one-to-many,
meaning that multiple encoded symbols can map to one
plaintext symbol. Next, we will first discuss our basic ho-
mophonic substitution encoding scheme and its weakness
against both the frequency analysis and the known-scheme
attacks (Section 4.1). We then present our grouping-based
homophonic substitution (GHS) scheme that can defend
against these attacks with provable guarantee (Section 4.2).

4.1 Basic Approach
By the basic approach, any Euclidean point P of frequency

f is transformed to f unique points E1, . . . , Ef in the same
Euclidean space, each point of frequency 1. Therefore, the
frequency distribution of the Euclidean points is always uni-
form, regardless of the frequency distribution of the original

data. The substitution scheme is one-to-many as one string
maps to multiple Euclidean points. To preserve similarity,
for each point P in the d-dimension Euclidean space, we con-
struct a d-sphere Hr of radius r centered at P , where r is a
user-specified parameter. Let f be the frequency of P . Then
we pick f points from Hr in a uniformly random manner,
with each point of frequency 1. These f points are the en-
coded versions of P . The distance between the constructed
Euclidean points satisfies the following theorem.

Theorem 4.1. Given any two original Euclidean points
P1 and P2, let {E1

1 , . . . , E
k
1 } and {E1

2 , . . . , E
t
2} be the Eu-

clidean points of P1 and P2 constructed by the above pro-
cedure (t and k are not necessarily the same). Then for any
pair of Euclidean points Ei

1 and Ej
2 (i ∈ [1, k], j ∈ [1, t]),

dist(Ei
1, E

j
2) ≤ dist(P1, P2) + r1 + r2, where dist() is the

Euclidean distance function, and r1, r2 are the length of the
radius of the corresponding d-spheres of P1 and P2.

The proof of Theorem 4.1 is included in Appendix. Based
on Theorem 4.1, we adjust the similarity threshold of the
encoded Euclidean points accordingly. We say two encoded
values Ei and Ej are similar if dist(Ei, Ej) ≤ δE + ri + rj ,
where δE is the distance threshold after embedding, ri and
rj are the length of the radius of spheres of Pi and Pj , the
corresponding original Euclidean point of Ei and Ej .

4.1.1 Privacy Analysis

Frequency analysis attack. Given n strings, each of fre-
quency fi, and m encoded Euclidean points, each of fre-
quency f (f = 1 for the basic approach), we define sf =
∑n

i=1 fi. With further computation, the probability probF
that the encoded point Ej is mapped to its string Si by the
frequency analysis attack is

probF (Ej → Si) =

(

fi
f

)

(

sf

f

) . (1)

As an example, consider two strings S1 and S2 of frequency
10000 and 10. These two strings are encoded as 10000 and 10
Euclidean points respectively by the basic approach. Then
for any encoded Euclidean point Ej of S1, probF (Ej →
S1) =

(

10000
1

)

/
(

10010
1

)

= 10000
10010

≈ 1.
Known-scheme attack. If the attacker possesses the de-
tails of the basic approach, he knows that all Euclidean
points of the same string must fall in a circle of a small
radius in the Euclidean space. Given n unique strings and
m ≥ n Euclidean points, he can apply the following 2-step
attack to find the mapping between the Euclidean points and
the strings: By the first step, it uses a clustering algorithm
(e.g., k-means clustering) to group m Euclidean points to
n groups based on their closeness, so that the groups are of
low intra-group distances and high inter-group distances. By
the second step, it maps n clusters of Euclidean points to n
unique strings based on their similarities. In particular, the
attacker maps the n cluster centroids to n strings in the way
that for any three centroids ci, cj and ck, their corresponding
strings Si, Sj and Sk satisfy that if dist(ci, cj) ≤ dist(ci, ck),
then jaccard(Si, Sj) ≥ jaccard(Si, Sk). After the two-step
attack, some Euclidean points of the same string may be cov-
ered by multiple clusters (i.e., mapped to multiple strings).
Given n unique strings and m ≥ n Euclidean points by
the basic approach, the probability probS that the encoded
point Ej is mapped to its corresponding string Si by the



known-scheme attack is

probS(Ej → Si) =
1

t
, (2)

where t is the number of clusters that include Ej . If t = 1,
the mapping Ej → Si is broken with 100% certainty.
Now we are ready to define the privacy model that can

defend against both the frequency analysis attack and the
known-scheme attack.

Definition 4.1. [(α1, α2)-privacy] Given n strings S
{S1, . . . , Sn} andm encoded Euclidean points E {E1, . . . , Em},
we say E satisfies (α1, α2)-privacy if for any Euclidean point
Ei ∈ E (whose corresponding string is Sj ∈ S), probF (Ej →
Si) ≤ α1, and probS(Pi → Si) ≤ α2, where probF and probS
are measured by Eqn. 1 and Eqn. 2 respectively.

As we have shown, the basic approach may fail to meet the
(α1, α2)-privacy requirement.

4.2 Grouping-based Homophonic Substitution
(GHS) Scheme

To address the privacy weakness of the basic approach, we
design the grouping-based homophonic substitution encod-
ing scheme (GHS) that satisfies (α1, α2)-privacy. The GHS
takes n Euclidean points that are transformed from the orig-
inal n strings and outputsm (m ≥ n) transformed Euclidean
points, each of frequency 1. It satisfies that

∑n

i=1 fi = m,
where

∑n

i=1 fi is the sum of the frequency of all Euclidean
points. Before we explain the details of GHS method, we
first define (α1, α2)-bounded clusters.

Definition 4.2. [(α1, α2)-bounded clusters] For any given
cluster C and two user-specified thresholds α1, α2, C is (α1, α2)-

bounded if it satisfies: (1) for each point P ∈ C, fP∑
X∈C fX

≤

α1, where fP (fX , resp.) is the frequency of point P (point
X, resp); and (2) C contains at least [ 1

α2

] points.

The GHS procedure consists of 2 steps. First, the Euclidean
points are grouped into (α1, α2)-bounded clusters. For each
cluster C, a d-sphere H is constructed to cover all points of
C, where d is the dimension of the Euclidean space. Sec-
ond, for each sphere H that covers the points {P1, · · · , Pk},
f1+· · ·+fk points in total are constructed withinH in a uni-
form random fashion, where fi (1 ≤ i ≤ l) is the frequency of
the point Pi. Each constructed point is of frequency 1. The-
orem 4.2 below shows how to update the similarity threshold
for the Euclidean points constructed by the GHS approach.

Theorem 4.2. Given any two original Euclidean points
P1 and P2 that are similar according to the threshold δ′,
let {E1

1 , . . . , E
k
1 } and {E1

2 , . . . , E
t
2} be the Euclidean points

of P1 and P2 constructed by the above procedure (t and k
are not necessarily the same), and r1 and r2 be the top-
2 maximum radius length of all spheres. Then for any
pair of Euclidean points Ei

1 and Ej
2 (i ∈ [1, k], j ∈ [1, t]),

dist(Ei
1, E

j
2) ≤ δ′ + 2r1 + 2r2, where dist() is the Euclidean

distance function.

The proof of Theorem 4.2 is in Appendix. Note that dif-
ferent from Theorem 4.1 that considers the distance between
the centers of spheres, Theorem 4.2 considers the distance
between any two points within the spheres. Following The-
orem 4.2, the new similarity threshold for the points con-
structed by GHS approach is δnew = δE + 2r1 + 2r2. Next,
we discuss how to construct (α1, α2)-bounded clusters.
Our algorithm consists of the following steps. First, each

point is initialized as a cluster. Second, for each cluster

Ci that is not (α1, α2)-bounded, we look for other clus-
ter(s) to merge with Ci. In particular, for each cluster
candidate Cj , we compute the radius length of the sphere
by merging Cj with Ci, and pick the candidate that leads
to the smallest radius length. We design an efficient algo-
rithm that computes the approximate radius length in O(1)
time. In particular, given two clusters Ci, Cj of centers
ci and ci respectively, let ri and rj be the radius length
of the spheres of Ci and Cj , and ci[x] be the value of the
x-th dimension of the vector ci. The new center cnew of
the sphere that covers all points in Ci ∪ Cj is computed as

cnew[x] =
ci[x]si+cj [x]sj

si+sj
, ∀x ∈ [1, d], where si and sj are the

number of points of Ci and Cj , and d is the dimension of
the Euclidean space. Then the approximate radius length
of the sphere that covers all points in Ci ∪ Cj is computed
as rnew = max(dist(ci, cnew) + ri, dist(cj , cnew) + rj). We
look for the cluster Cj whose merge with Ci will lead to
the smallest rnew. After that, we check whether Ci ∪ Cj is
a (α1, α2)-bounded cluster. If not, we repeat the merging
procedure, until all clusters are (α1, α2)-bounded.

4.2.1 Privacy analysis

The GHS approach provides (α1, α2)-privacy against the
frequency analysis attack, as each point belongs to a (α1, α2)-
cluster. Next, we discuss the robustness against the known-
scheme attack. If the attacker knows the details of the GHS
method, he can group the received Euclidean points into
clusters of high intra-cluster similarity. Next, he tries to map
Euclidean points to the strings based on their frequency. In
particular, a cluster of f points is highly likely to be mapped
to the strings {S1, . . . , St} if

∑t

i=1 fi = f . It is possible that
the attacker can find a unique mapping between the clusters
and the strings. After that, for each cluster Ci that con-
sists of ℓ Euclidean points {E1, . . . , Eℓ} (each of frequency
f = 1), assume Ci is mapped to k ≤ ℓ strings {S1, . . . , Sk}.
He can apply the frequency analysis attack (Section 4.1.1)
on Ci. Since each cluster is (α1, α2)-bounded, the probabil-
ity probF that the encoded point Ej is mapped to its corre-
sponding string Si by the frequency analysis attack equals to
probF (Ej → Si) =

(

fi
f

)

/
(

mf

f

)

= fi
mf

≤ α1. The attacker also
computes the probability of mapping each Euclidean point
to a specific string by trying all possibilities. The reasoning
of the attack probability is similar to the attack as described
in Section 3.2.1, where M(ℓ, k) =

∑k−1
i=0 (−1)i

(

k

i

)

(k − i)ℓ,

and probS(Ej → Si) = M(ℓ−1,k)+M(ℓ−1,k−1)
M(ℓ,k)

= 1
k
. Since

k ≥ [ 1
α2

], the probability probS ≤ α2. Therefore, the GHS

approach can provide (α1, α2)-privacy guarantee.

4.2.2 Complexity analysis

The complexity of constructing (α1, α2)-bounded clusters
is O(ny), where n is the number of Euclidean points, and
y is the number of required iterations. Our empirical study
shows that y is normally a small portion of n (at most half
of n). The complexity of constructing the spheres for each
cluster is O(1), and the complexity of constructing all trans-
formed Euclidean points is O(n). Thus the total complexity
of GHS is O(ny). The complexity of data deduplication
at the server side is O(|D|2), where |D| is the total num-
ber of strings of D. Since identical string values are always
mapped to the same Euclidean point, |D| ≫ n. Therefore,
the computations at the client side are much cheaper than
that at the server side.
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Figure 1: Time Performance of LSHB Approach

5. POST-PROCESSING
After the server returns the near-duplicates, the client

maps the received results to strings, then eliminates the false
positives by measuring the similarity of all near-duplicate
pairs. Assume that the similarity of each near-duplicate pair
can be measured in constant time. Then the complexity of
the post-processing is O(|RS |), where |RS | is the number of
near-duplicates that are returned by the server. Compared
with the complexity of data deduplication of the original
dataset D (quadratic to |D|), the post-processing is much
cheaper than running the data deduplication locally (note
that |RS | ≪ |D|).

6. EXPERIMENTS

6.1 Setup
Experiment environment. We implemented both of our
LSHB and EHS approaches in Java. All experiments were
executed on a PC with a 2.4GHz Intel Core i5 CPU and
8GB memory running Linux.
Datasets. We use two real datasets1 from US Census Bu-
reau in our experiments: (1) the female first name dataset
(FEMALE for short) that contains 4275 unique female first
names and their frequencies, and (2) the last name dataset
(LAST for short) that contains 88799 last names and their
frequencies. We also use subsets of LAST dataset of various
sizes for scalability measurement. To study the impact of
pairwise distance distribution to the performance, we also
prepared two types of datasets: (1) the thick dataset in
which a large potion of strings are similar to each other; and
(2) the sparse dataset in which most strings are dissimilar.
Parameters. We use q = 2 for q-gram setting and set the
jaccard similarity threshold to be 0.4 for both FEMALE and
LAST datasets. For LSHB approach, we apply 100 random
permutations to generate the MinHash signatures.

6.2 Performance of LSHB Approach

6.2.1 Time performance

First, we measure the impact of various α values (for α-
privacy) to the time performance of LSHB approach (Fig-
ure 1 (a)). We measure preparation time at the client side,
data deduplication time at the server side, and post-processing
time at the client side. First, the preparation time at the
client side is stable. This is because the complexity of en-
coding is decided by the number of unique strings, which is
not affected by α value. The post-processing time at client
side is also stable, because different α values do not change
the number of similar string pairs. Second, the time per-
formance at the server side is also stable. The reason is
the complexity at the server side only relies on the num-
ber of unique LSH values (and thus the number of unique
strings), thus changing α values does not affect the running

1available at http://goo.gl/cjbN.
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Figure 2: Impact of LSHB Encoding to Accuracy

time at server side. Third, the computational efforts at the
server side dominates the whole data deduplication process
(including both at the client and the server side). This ob-
servation consolidates our claim that the LSHB approach
suits the outsourcing paradigm very well.

Second, we measure the scalability of LSHB approach on
datasets of various sizes (Figure 1 (b)). We observe that
the preparation time at the client side increases slowly with
the growth of the data size, while the post-processing time
at the client side and the time performance at the server
side increases sharply. This is because the complexity of
preparing LSH values at the client side is linear to the data
size, while the complexity of deduplication and data post-
processing is quadratic to data size. Second, compared to
the time performance at the server side, the post-processing
time at the client side is very small, as the server has fil-
tered many dissimilar string pairs. We also observe that the
time performance of preparation at the client side is much
cheaper than that of the server side. Indeed, the LSH con-
struction time at client side never exceeds 2 seconds. We
also observe that the difference between the performance at
the client and the server sides becomes more significant with
the growth of data size. This is because the complexity of
preparation at the client side is linear to the data size, while
the complexity at the server side is quadratic to the data
size. This proves the advantage of the outsourcing paradigm
that handles large datasets most of the time.

Third, we measure the impact of LSHB encoding to the
time performance of data deduplication. We compare the
time of the LSHB approach (including the time at the client
and the server side) with the time of the data deduplica-
tion on the original data (Figure 1 (c)). We observe that
the time performance of both scenarios increases with the
growth of data size. However, the time performance of the
LSHB encoding is always cheaper than that of the original
data. This speed-up is mainly due to the use of LSH val-
ues. This shows that although the privacy-preserving meth-
ods may bring computational overhead in general, picking a
right encoding method (e.g., LSHs) may enable faster data
deduplication than the brute force approach of measuring
the pairwise similarity of all string pairs.

6.2.2 Impact to Accuracy of Data Deduplication

Storage overhead. We measure the amounts of the
added LSH copies by using duplication ratio. We define
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Figure 3: Time Performance of EHS Approach

the duplication ratio as |D′|
|D|

, where |D| and |D′| are the

number of strings in original D and after applying LSHB
respectively. In Figure 2 (a), the ratio increases with the
decrease of α (i.e., higher privacy requirement). The reason
is that smaller α requires larger groups, and thus more in-
serted copies to make their frequency homogenized. This is
the price we need to pay for higher privacy.
Precision/recall We compare the precision/recall of ap-

plying our LSHB approach with the precision/recall of di-
rectly applying LSH hashing over the original data (Figure 2
(b)). In all the experiments, the precision varies around
75%, and the recall is around 80%. Our LSHB approach
is able to provide comparable accuracy to LSH. This con-
vinces us the good utility of the LSHB approach. We note
that after post-processing, we can ensure 100% precision.

6.3 Performance of EHS Approach

6.3.1 Time performance

First, we measure the time performance of EHS encod-
ings for various α1 and α2 settings of (α1, α2)-privacy (Fig-
ure 3 (a)). We use the similarity threshold δE = 0.2 and
various α values (α = α1 = α2). We measure: (1) the
preparation time at the client side, (2) the data dedupli-
cation time at the server side, and (3) the post-processing
time at the client side. First, we observe that the prepa-
ration time decreases when α increases. The reason is that
larger α value requires smaller clusters and points of lower
frequency, leading to less merge during the (α1, α2)-bounded
cluster. Second, the data deduplication time is stable for all
α values, because the complexity at the server side is decided
by the dataset size, which is unchanged for these settings.
Third, the post-processing time decreases when α increases.
That is when α value is larger, the clusters get smaller, which
leads to more tightened similarity threshold and thus fewer
false positives. For all experiments, the post-processing time
is always less than 0.6 seconds. Similar to LSHB approach,
we observe that the server’s computation efforts are much
higher than that of the client.
Second, we measure the scalability of EHS approach for

various data sizes. As shown in Figure 3 (b), the prepara-
tion time increases with the growth of the data size. That
is because larger dataset requires more time to construct
(α1, α2)-bounded clusters. On the other hand, the post-
processing time increases because the size of RS increases
with the size of data. We also compare the time performance
at both the client and the server side. We observe that the
client requires much less time than the server. When the
size of the dataset increases, the running time at the server
side grows faster than the client side. This observation shows
that our EHS approach suits the outsourcing paradigm well.
Third, we compare the time performance of data dedupli-

cation by our EHS encoding with that on the original data
(Figure 3 (c)). For EHS encoding, we add up the prepara-

tion time, the post-processing time, and the data dedupli-
cation time. We observe that the processing time of both
cases increases with the size of the data. However, applying
EHS encoding only adds a small potion of time overhead
compared with the performance of the original data.

6.3.2 Impact to Accuracy of Data Deduplication
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Figure 4: Impact of EHS Encoding to Accuracy of Dedu-

plication (FEMALE dataset, d = 10)
We measure the precision and recall of our EHS approach

for various α values (α = α1 = α2) and various δE values
(Figure 4). First, we observe that recall is always 100%. In
other words, all the near-duplicates in the original dataset
are returned. Second, from Figure 4 (a), we observe that
precision increases with α value. This is because larger α
value leads to smaller clusters, which yield more tightened
δnew. One interesting observation is, the precision on the
sparse dataset increases much slower than that of the thick
dataset. That is because the δnew value of the sparse dataset
is large; thus the change of δnew (from 1.00 to 0.89) makes
less impact than the change of δnew on the thick dataset
(from 0.23 to 0.21). As shown in Figure 4 (b), the preci-
sion raises with δE , because large δE results in more similar
pairs. Thus, the ratio of false positive decreases. In all ex-
periments, we observe that the precision of the thick dataset
(at least 0.4) is much better than the sparse dataset. To un-
derstand why, we measured the average pair-wise distances
of both datasets. It turned out that the average pair-wise
distance of the thick and the sparse datasets are 0.27 and
0.31 respectively. We use 0.2 as the value of δE , and mea-
sure the new similarity threshold δnew. For the thick dataset,
δnew is less than 0.23, which is less than 15% change of the
similarity threshold. While for the sparse dataset, δnew is
changed to be between 0.9 and 1, which is too loose com-
pared with the original threshold and thus concludes almost
all pairs as similar. Therefore, the (α1, α2)-bounded clus-
tering method introduces fewer false positives on the thick
dataset than the sparse dataset.

6.4 LSHB Versus EHS

First, we compare the time performance of encoding at
client side for both approaches (Figure 5 (a)). We observe
that the LSHB approach is much faster than the EHS ap-
proach. This is because constructing LSHs is much faster
than the FastMap embedding and (α1, α2)-bounded clus-
tering. Second, we compare the time performance of data
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Figure 5: Comparison of LSHB Approach and EHS Approach (LAST dataset, r = 0.4)

deduplication at the server side. The result (Figure 5 (b))
shows that although LSHB adds additional values to the
outsourced dataset, it is again faster than EHS, due to the
fact that dealing with LSH values is much faster than the
computation of Euclidean distances. Third, we compare the
precision and recall of the two approaches (Figure 5 (c)). We
observe that LSHB yields comparable precision with EHS
but EHS yields much higher recall (100%). In summary,
there exists the trade-off between the time performance of
the privacy-preserving encoding methods and the accuracy
of data deduplication on encoded data. The use of LSH val-
ues enables faster time performance at both the client and
the server sides, but it introduces lower recall rate, while
EHS guarantees 100% recall.

7. RELATED WORK
Data deduplication is highly related to the record linkage

problem. Privacy-preserving record linkage has been paid
much attention recently. The existing approaches can be
classified based on the privacy-preserving techniques they
use. We classify these techniques into the following types:
(1) encoding and embedding, (2) differential privacy, (3) se-
cure multi-party computation (SMC).
Substitution encoding and embedding. Churches et
al. [5] propose a three-party protocol based on hash val-
ues of q-grams. In particular, for each string, its power set
(i.e. the subsets of the original bigram set) is constructed.
Each subset of the power set is hashed using a common se-
cret key shared among database owner A and B. Party A
and B form tuples containing the hash values, the number
of q-grams in the hashed subset and the total number of q-
grams and an encryption of the identifiers to a third party C.
Party C computes the similarity based on the hash values.
To prevent the frequency analysis attack, Churches et al.
[5] propose to: (1) use an additional trusted party, thereby
extending the number of parties to four; and (2) recommend
to use chaffing and winnowing [20] to insert dummy records
to obfuscate the frequency information in the hash values.
A trusted party may not exist in practice. Furthermore,
besides the substantial increase of computational and com-
munication costs, inserting dummy records is still prone to
frequency attacks on the hashes of the q-gram subsets with
just one q-gram [24]. Schnell et al. [22] and Durham et
al. [7] propose to store the q-grams in the Bloom Filters
(BFs); the BFs of two similar strings (i.e., many q-grams
in common) have a large number of identical bit positions
set to 1. However, Schnell et al. [22] observed that the
BFs are still open to the frequency attack. [18] formalized
the frequency attack on the Bloom filters as a constraint
satisfaction problem, and pointed out that the probability
of mapping BF values to original strings is high even when
only the frequency of samples is used for the attack. To
fix this problem, [7] propose composite BFs by which the
attribute-level bloom filter values are to be combined into a

single bloom filter for the entire record. Compared with our
work, Kuzu et al. [18] consider the attack that tries to map
BF bits back to the attributes from which they were con-
structed by utilizing the frequency of bits, while we consider
the attack that maps the encoded values to their original
strings based on their frequency. Storer et al. [23] con-
sider the duplicates as exact identical contents. They use
convergent encryption that uses a function of the hash of
the plaintext of a chunk as the encryption key, so that any
identical plaintext values will be encrypted to identical ci-
phertext values. This one-to-one encryption cannot defend
against the frequency analysis attack.

Scannapieco et al. [21] focus on the three-party scenario
and use embedding techniques to transform original strings
into a Euclidean space by using the SparseMapmethod [11].
Since the mapping between each distinct string and each
distinct Euclidean point is still one-to-one, the embedded
Euclidean points can be easily mapped to their strings easily
based on their frequency.
Differential privacy. Bonomi et al. [4] propose a new
transformation method that integrates embedding methods
with differential privacy. Its embedding strategy projects
the original data on a base formed by a set of frequent vari-
able length grams. The privacy of the gram construction
procedure is guaranteed to satisfy differential privacy. How-
ever, as the embedding is still one-to-one, it cannot defend
against the frequency-based attack. Inan et al. [12, 13, 14]
propose a three-party protocol that first runs the blocking
step by utilizing anonymized data sets to accurately match
or mismatch a large portion of record pairs. Then the block-
ing step is followed by the SMC step, where unlabeled record
pairs are labeled using cryptographic techniques. However,
the SMC step still involves high computational cost [4].
Secure multi-party (SMC) computations. Most of the
aforementioned protocols involve 3 parties. Atallah et al. [2]
design a SMC protocol based on homomorphic encryption
for record linkage based on edit distance similarity. Raviku-
mar et al. [19] propose a SMC protocol for two-party record
matching using TF-IDF distance and Euclidean distance.
Since we consider a client-server framework, we aim to de-
sign privacy-preserving encoding methods that are more ef-
ficient than SMC computations.

8. CONCLUSION
In this paper, we designed two data encoding methods for

privacy-preserving data-deduplication-as-a-service (DDaS)
paradigm. Our two methods can defend against the fre-
quency analysis attack and the known-scheme attack with
provable guarantee, while enabling to find near-duplicates
from the encoded data. For the future work, we are in-
terested in extending our work to other similarity measure-
ment metrics, e.g., edit distance. We also plan to investigate
other security issues related to DDaS, e.g., efficient result
integrity verification of the returned near-duplicates.
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APPENDIX

A. PROOF OF LEMMA 3.1

Proof. Let Σ be the alphabet. Since π is a bijection, for any

y1, y2 ∈ Σ, π(y1) = π(y2) if and only if y1 = y2. Therefore, for

any q-gram Y ∈ G(S1, q)∩G(S2, q), it must be true that π(Y ) ∈

G(S′
1, q)∩G(S′

2, q). Also for any q-gram Y ∈ G(S′
1, q)∩G(S′

2, q),

it must be true that π−1(Y ) ∈ G(S1, q) ∩ G(S2, q). Therefore,

|G(S1, q) ∩ G(S2, q)| = |G(S′
1, q) ∩ G(S′

2, q)|. Similarly, we can

prove that |G(S1, q)∪G(S2, q)| = |G(S′
1, q)∪G(S′

2, q)|. Therefore,

jaccard(S′
1, S

′
2) = jaccard(S1, S2).

B. PROOF OF THEOREM 4.1

P1

P2

E1i

E2j

A

Figure 6: Encoding of Euclidean Points

Proof. Given any two points P1 and P2, we pick a point A

between these two points. Figure 6 illustrates the positions of P1,

P2 and A. Apparently, it must be true that dist(P1, E
i
1) ≤ r1(1 ≤

i ≤ k). Similarly, dist(P2, E
j
2) ≤ r2 (1 ≤ j ≤ t). According to tri-

angle inequality, dist(Ei
1, A) ≤ dist(P1, E

i
1) + dist(P1, A) ≤ r1 +

dist(P1, A), and dist(Ej
2, A) ≤ dist(P2, E

j
2) + dist(P2, A) ≤ r2 +

dist(P2, A). It’s easy to infer that dist(Ei
1, E

j
2) = dist(Ei

1, A) +

dist(Ej
2, A) ≤ r1 + r2 + dist(P1, A) + dist(P2, A) = r1 + r2 +

dist(P1, P2)

C. PROOF OF THEOREM 4.2

Figure 7: Similarity Preservation of Euclidean Points

Proof. Given any two Euclidean points P1 and P2, assume

that they are in the different clusters whose centers areO1 andO2.

Let A be the intersection point of the line (P1, P2) and (O1, O2).

By triangle inequality, dist(P1, A) + dist(O1, P1) ≥ dist(O1, A),

and dist(P2, A) + dist(O2, P2) ≥ dist(O2, A). Combining them

we have: dist(P1, P2) = dist(P1, A)+dist(P2, A) ≥ dist(O1, A)+

dist(O2, A)−dist(O1, P1)−dist(O2, P2) ≥ dist(O1, O2)−r1−r2

Since dist(O1, P1) ≥ r1 and dist(O2, P2) ≥ r2, dist(O1, O2) ≤

dist(P1, P2) + r1 + r2. On the other hand, for any points Ei
1

constructed for P1 and any points E
j
2 constructed for P2, we

have dist(Ei
1, A) ≤ dist(O1, A)+dist(O1, E

i
1), and dist(Ej

2, A) ≤

dist(O2, A)+dist(O2, E
j
2). Combining them we have: dist(Ei

1, E
j
2) ≤

dist(O1, O2) + dist(O1, E
i
1) + dist(O1, E

j
2). Given the fact that

dist(O1, E
i
1) ≤ r1, dist(O2, E

j
2) ≤ r2 (1 ≤ j ≤ t), and dist(P1, P2) ≤

δE , we have: dist(Ei
1, E

j
2) ≤ dist(O1, O2)+dist(O1, E

i
1)+dist(O2, E

j
2) ≤

dist(P1, P2) + r1 + r2 + r1 + r2 ≤ δE + 2r1 + 2r2.


