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Abstract—Cyber attacks pose crucial threats to computer
system security, and put digital treasuries at excessive risks. This
leads to an urgent call for an effective intrusion detection system
that can identify the intrusion attacks with high accuracy. It is
challenging to classify the intrusion events due to the wide variety
of attacks. Furthermore, in a normal network environment, a
majority of the connections are initiated by benign behaviors. The
class imbalance issue in intrusion detection forces the classifier to
be biased toward the majority/benign class, thus leave many at-
tack incidents undetected. Spurred by the success of deep neural
networks in computer vision and natural language processing, in
this paper, we design a new system named DeepIDEA that takes
full advantage of deep learning to enable intrusion detection and
classification. To achieve high detection accuracy on imbalanced
data, we design a novel attack-sharing loss function that can
effectively move the decision boundary towards the attack classes
and eliminates the bias towards the majority/benign class. By
using this loss function, DeepIDEA respects the fact that the
intrusion mis-classification should receive higher penalty than the
attack mis-classification. Extensive experimental results on three
benchmark datasets demonstrate the high detection accuracy of
DeepIDEA. In particular, compared with eight state-of-the-art
approaches, DeepIDEA always provides the best class-balanced
accuracy.

Index Terms—Intrusion detection, Deep learning, Imbalanced
classification.

I. INTRODUCTION

Recent years witness an expeditious outbreak of cyber

attacks. Online Trust Alliance [1] revealed that 2017 is “the

worst year ever” in data breaches and cyber attacks around

the world. The amount of disclosed cyber incidents targeting

businesses nearly doubled from 82,000 in 2016 to 159,700 in

2017. The penetration attack at Equifax leaked the financial

credit report of 145 million consumers, which constitutes 45%

of the total population in the U.S. The WannaCry ransomware

attack infected 300,000 computer systems within four days,

and severely disrupted the medical appointments in the U.K..

These catastrophic attacks bring forth the most intensive

aspirations for an effective intrusion detection system (IDS)

that can identify the intrusion with high accuracy.

Traditional signature-based IDS techniques heavily depend

on the signature database constructed by security experts, and

thus fail to detect novel attacks. A wide variety of data mining

and machine learning models, e.g., decision tree, support

vector machine (SVM), and graph mining algorithms [4],

[6], [9], have been adapted to discover anomaly from the

network monitoring data. However, they are not favorable at

representing intrusion detection classification functions that

have many complex variations [5].

Recently, deep learning emerges as a favorable solution to

dealing with complicated input-output mappings. Its applica-

tion in computer vision and natural language processing leads

to breakthroughs in these areas. Specifically, it builds a neural

network by stacking a certain number of layers of neurons.

With sufficiently large number of layers and units, a deep

network can represent functions of high complexity. Compared

with traditional machine learning models, it avoids the need

for feature extraction. Most importantly, it produces the best-

in-class accuracy by learning from a large amount of labeled

data.

Quite a few latest research in intrusion detection resort to

deep learning. Most of them [16], [8] simply learn a new

feature representation by using various deep neural networks

(e.g., deep autoencoder and convolutional networks), and then

rely on traditional classifiers such as SVM and k-nearest

neighbor (KNN) to detect attacks. Kitsune [23] is the most

recent work that detects network intrusion attacks with deep

neural networks. It applies an ensemble of autoencoders to

learn the identify function of the original data distribution.

For any new instance, its anomaly score is calculated based on

the distance between the autoencoders’ output and its feature

values. However, we argue that such a design only employs

deep learning to discover inherent/generic features in network

connections, but fails to take advantage of its capacity to learn

complex classification functions.

There are two major challenges of designing a deep neural

network based intrusion detection system. We discuss these

two challenges below.

Challenge 1: diversity of intrusion attacks. There are many

types of intrusion attacks, each exploiting a wide range of

techniques to conduct the invasion. Even the same type of

attacks can exhibit different behavior patterns.

Challenge 2: imbalanced class distribution. In a healthy
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Fig. 1. Class distribution of the CICIDS17 dataset. There are five classes,
including the benign event and four types of attacks, namely DoS, DDoS,
brute-force (BF), and infiltration attacks.

network environment, a majority of the connections are be-

nign. This makes the network connection instances follow

a long-tail class distribution. Moreover, different types of

intrusion attacks are unevenly distributed in practice. As an

example, consider a real-world network intrusion detection

dataset named CICIDS17, which is collected and released

by Canadian Institute for Cybersecurity. The data is labeled

with 5 classes, including the benign class and four types of

attacks, namely DoS, DDoS, brute-force (BF), and infiltration

attacks. The distribution of the intrusion attacks is illustrated

in Figure 1. Apparently, the classes are highly imbalanced.

The imbalanced class distribution forces the classifier models

to be biased toward the majority class, and thus lead to poor

accuracy on the minority classes (i.e., the intrusions).

To address these two challenges, we build a new intrusion

detection and classification framework named DeepIDEA (a

Deep Neural Network-based Intrusion Detector with Attack-

sharing Loss). DeepIDEA takes full advantage of deep learn-

ing to extract features and learn the classification boundary.

Besides, we design a new loss function named attack-sharing
loss function that eliminates the bias towards the major-

ity/benign class by moving the decision boundary towards the

attack classes. To our best knowledge, this is the first work on

imbalanced deep learning for intrusion detection. Specifically,

we make the following contributions.

First, we construct a deep feedforward network to learn

intricate patterns of benign communications and malicious

connections from the training data. To expedite the learning

process on large data, we adapt a novel optimization algorithm

that keeps track of an exponentially decaying average of

the first-order and second-order moment of past gradients to

dynamically adjust the learning rate.

Second, to address the class imbalance problem in intrusion

detection, we design a new loss function named attack-sharing

loss for our deep feedforward network. The attack-sharing

loss function takes the discrepancy penalty of different types

of mis-classification (e.g., mis-classifying attack types versus

mis-classifying intrusion as normal) into consideration, so

that the mis-classification of intrusions as benign receives

more penalty than the mis-classification of attacks. It can be

integrated with any deep neural network to mitigate the bias

towards the majority class.

Last but not least, we launch an extensive set of experiments

on three benchmark datasets. The comparison with 8 baseline

approaches demonstrate the effectiveness of DeepIDEA. In

particular, DeepIDEA produces the best detection accuracy on

every dataset.

The rest of the paper is organized as follows. Section II

discusses the background information. Section III presents our

the design of DeepIDEA. Section IV shows the experiment

results. Section V introduces the related work. Finally, Section

VI concludes the paper.

II. BACKGROUND

In this section, we introduce the background knowledge,

including the concepts of deep neural network, intrusion

attacks, and imbalanced classification.

A. Deep Neural Network

Multi-layer perceptrons (MLPs), also known as deep feed-

forward network, is a network that consists of an input

layer, multiple hidden layers, and an output layer. Each layer

includes a certain number of neurons/units. The neurons in

consecutive layers are connected by links with certain weights.

Besides MLPs, other specialized architectures have been pro-

posed in recent years. For example, convolutional networks are

known for image processing, while recurrent neural networks

are specialized at capturing long term dependencies [13].

Learning the parameters (i.e., weights and bias) of a neural

network is typically solved by using gradient descent. Back

propagation provides an efficient way to calculate the gradients

so as to optimize the weights associated with the connections.

Various optimization algorithms were proposed to acclerate

the learning process, e.g., stochastic gradient descent (SGD)

[21], Nesterov Momentum [22], and Adam optimizer [18].

B. Intrusion Attacks

Numerous types of network intrusion attacks make it intri-

cate to design an effective detection method. Next, we briefly

introduce five prevailing attacks that are investigated in this

paper.

• Brute-Force attack is the most simple attack to gain illegal

access to a site or server. The most common brute-force

attack is the dictionary attack that cracks user passwords.

There have been a few successful brute-force attacks. For

example, in 2016, a massive brute-force attack against

Alibaba Inc, a Chinese e-commerce giant, compromised

20.6 million accounts [2].

• Botnet attack exploits a number of Internet-connected

devices (zombies) to carry out malicious and criminal

tasks. As an example, a recent study [12] of 6 million

Twitter accounts reveals that 350,000 of them are zombies

of the Star Wars botnet.

• Probing attack scans a victim device in order to determine

the vulnerabilities that can be exploited to compromise

the system. It usually uses a network mapper (e.g.,
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Nmap1) to send TCP packets to discover vulnerable hosts

and services.

• DoS/DDoS attack overloads the target machine and pre-

vents it from serving the intended users. DDoS is different

from DoS mainly in that it leverages multiple systems to

exhaust the resources of the victim. The famous 2016

DDoS attack against Dyn DNS [3] made it impossible

for users to connect to Amazon, GitHub, Spotify, etc.

• Infiltration attack leverages the vulnerability in particular

software such as Adobe Acrobat Reader to execute a

backdoor on the target computer. Once the attack is suc-

cessful, the attacker can launch various types of attacks

against the victim’s network, including IP sweep and port

scan.

C. Imbalanced Classification

In general, the intrusion detection problem can be modeled

as a classification problem in machine learning, by which

the classification model outputs if the network system is

intruded or not. In most real-world datasets, the data labels

follow a long tail distribution, i.e., some specific classes are

represented by a very small number of instances compared to

other classes. In the scenario of intrusion detection, the data

is also imbalanced, as the benign network behaviors dominate

the collected dataset, while the intrusion events are rarely

observed. To improve the overall accuracy, the imbalanced

data forces the classification model to be biased toward the

majority classes. This class imbalance problem renders poor

accuracy on detecting intrusion attacks, as intrusion classes are

under-represented. Several approaches [27] try to mitigate the

negative effects of imbalanced data for general classification

problems. One solution is to do over-sampling [15] or under-
sampling [20]. In particular, over-sampling on the under-

represented classes duplicates these instances, while under-
sampling [20] eliminates samples in the over-sized classes.

However, over-sampling often leads to over-fitting and longer

training time, and under-sampling degrades the overall ac-

curacy since it discards potentially useful training instances.

Another solution is to make the loss function cost-sensitive

by associating larger error penalty with under-represented

classes [17]. However, in deep learning, such cost-sensitive

loss function can make the loss of a minibatch highly sensitive

to the label distribution. As the consequence, it leads to non-

convergence of the training process, and potentially inferiors

the decision boundary of the classifier.

III. OUR APPROACH

In this section, we present the details of our intrusion

detector, namely DeepIDEA. In particular, we will discuss

the model, loss function, and the optimization procedure of

DeepIDEA.

A. Model

At high level, DeepIDEA is built as a fully-connected neural

network with one input layer, L > 1 hidden layers, and

1https://nmap.org/

one output layer. The input layer consists of d units, each

representing an input feature. The architecture of DeepIDEA is

illustrated in Figure 2. Next, we explain the details of the

model.

We denote each input data point as (x, y), where x is

the set of features, and y is the label. The input layer of

DeepIDEA consists of d neurons that take input features. For

the sake of simplicity, for any instance (x, y), we assume

h(0) = x. We use h(�) to denote the output of the �-th hidden

layer (1 ≤ � ≤ L). Let n
(�)
i be the i-th unit of the �-th hidden

layer. The output of n
(�)
i is computed as:

h
(�)
i = g(w

(�)
i h̃(�−1) + b

(�)
i ), (1)

where g(x) = max{0, x} is the rectified linear units (ReLU)

activation function, w
(�)
i is the i-th row in the weight matrix

that connects the (� − 1)-th and �-th layer, b(�) is the bias

vector at the �-th layer, and h̃(�−1) is the thinned output from

the (i− 1)-th layer by using dropout. In particular,

h̃(�−1) = h(�−1) ∗ r, (2)

where ∗ is the Hadamard product operator, r is a mask vector

that specifies which units to be used. In particular, r consists

of independent Bernoulli random variables, each of which has

probability p of being 1, i.e., ri ∼ Bernoulli(p).
The output layer of the neural network includes c softmax

units, where c is the number of classes. For any instance

(x(i), y(i)), the predicted probability that it belongs to the j-th

class p
(i)
j is computed as

p
(i)
j = softmax(z)j =

exp(zj)∑c
k=1 exp(zk)

, (3)

where z is a vector of linear activations of the output layer.

B. Attack-sharing Loss Function

Most modern neural networks use cross-entropy loss JCE to

describe the discrepancy between the ground-truth labels and

the model predictions. In particular, the loss JCE is calculated

as:

JCE(θ) = E(x(i),y(i))∼p̂data
L(f(x(i);θ), y(i))

= −E(x(i),y(i))∼p̂data
log p(y(i)|x(i);θ)

= − 1

N

N∑
i=1

c∑
j=1

I(y(i), j) log p
(i)
j , (4)

where θ consists of the weight matrix between consecutive

layers in the neural network, p̂data is the empirical data

distribution in the training set, p(y(i)|x(i);θ) is the probability

that the neural network correctly classifies the input x(i), N
is the number of training samples, c is the number of classes,

and I is the indicator function s.t.

I(a, b) =

{
1 if a=b

0 otherwise.
(5)

The parameters θ in the network are optimized so as to min-

imize JCE(θ) and obtain the desired classification accuracy.
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Fig. 2. The model structure of DeepIDEA (Tildes indicate regularized layers)

One weakness of the cross-entropy loss function is that it

does not take the type of mis-classification into consideration,

and thus penalizes the classification error for all classes

equally. There are two types of mis-classification for the

intrusion detection system:

• Intrusion mis-classification: an intrusion attack is mis-

classified as benign event; and

• Attack mis-classification: an intrustion attack of type A

(e.g., DoS attack) is mis-classified as an intrution attack

of type B (e.g., probing attack).

In practice, the intrusion mis-classification should be penalized

more than the attack mis-classification, as the attack mis-

classification still triggers an alert to the IT security team,

and enables the incident to be further inspected, whereas the

intrusion mis-classification enables the attack incidents to by-

pass the security check and cause potentially critical damage.

Therefore, the intrusion mis-classification should have higher

penalty than the attack mis-classification.

To address the issue of discrepancy penalty of different

types of mis-classification, we improve the basic cross-entropy

loss function. In particular, for any instance (x(i), y(i)), if it

is a benign incident, y(i) = 1; otherwise, y(i) ∈ {2, . . . , c}.
Inspired by [24], we design the attack-sharing loss function,

JAS , with an additional regularization term that penalizes

intrusion mis-classification, i.e., the wrong estimation between

the benign label and attack labels. In particular, we have

JAS = JCE − 1

N

N∑
i=1

λ
(
I(y(i), 1) log p

(i)
1

+
c∑

j=2

I(y(i), j) log(1− p
(i)
1 )

)
, ] (6)

where λ is a control parameter. When λ is small, JAS is

similar to the vanilla cross-entropy loss unction; when λ is

large, JAS tends to be an objective function for addressing

the binary classification problem, benign versus attack. In

our experiments, we set λ = 10. Compared with the basic

cross-entropy loss, the attack-sharing loss function eliminates

the bias towards the majority/benign class by moving the

decision boundary towards the attack classes. It also respects

the discrepancy penalty of different types of mis-classification.

C. Optimization Procedure
In deep learning, the most widely-used optimization algo-

rithm is stochastic gradient descent (SGD). In each round,

it uses a minibatch of samples to estimate the gradient, and

updates the parameters. Although simple, SGD suffers from

slow asymptotic convergence, especially when there exist

saddle points (i.e. points where one dimension slopes up

and another slopes down) and plateaus (i.e., areas where the

gradients keep stably high) in the parameter space. Due to

the complicated nature of intrusion detection classification

boundary, saddle points and plateaus widely exist. To expedite

the learning process, we adapt the Adam optimizer, which

adaptively updates the learning rate. In particular, we employ

two variables, s and r, to store an exponentially decaying

average of past gradients and squared gradients respectively.

Initially, we set s = 0 and r = 0. In the t-th round of

feedforward and backpropagation, we take a minibatch of m
samples from the training set, and calculate the stochastic

gradient:

gt ← ∇θt−1
J(θt−1). (7)

Next, we update the first-order moment and second-order

moment:

st = ρ1st−1 + (1− ρ1)gt, (8)

rt = ρ2rt−1 + (1− ρ2)g
2
t , (9)

where ρ1, ρ2 ∈ (0, 1) are the hyperparameters that determine

the decay rate. We also perform bias corrections to both

moments to account for their initialization at the origin:

st =
st

1− ρt1
, (10)

rt =
rt

1− ρt2
. (11)

Finally, the parameters are updated as

θt = θt−1 − ζst√
rt + δ

, (12)

where ζ is the step size, and δ is a small stabilization factor. By

using Equation (12), we make greater evolution in the more

gently sloped directions of parameter space. This facilitates

faster convergence compared with SGD. Another attractive

property of the Adam optimizer is that it is robust to the choice

of hyperparameters.
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IV. EXPERIMENTS

A. Dataset

In our experiments, we use three datasets, namely KDD99,

CICIDS17 and CICIDS18 dataset. Next, we briefly introduce

these datasets.
TABLE I

CLASS DISTRIBUTION IN KDD99 DATASET

Label
Training Testing

Number Fraction Number Fraction
Benign 972,781 19.86% 60,593 19.48%

DoS 3,883,390 79.28% 231,455 74.42%
Probing 41,102 0.84% 4,166 1.34%

U2R 52 0.01% 245 0.08%
R2L 1,106 0.02% 14,570 4.68%
Total 4,898,431 100% 311,029 100%

KDD99 dataset is built by Stolfo et al. [25], as a part of the

DARPA Intrusion Detection Evaluation Program. To prepare

this dataset, a military network environment was deployed to

acquire nine weeks of raw TCP dump data from a local-

area network (LAN). The LAN was operated as if it were

a typical U.S. Air Force LAN, except that it was hacked by

a sequence of cyber attacks. In this dataset, each connection

record is described by 41 features and 1 label. The features

include information in three aspects, namely basic connection

information (e.g., duration, protocol type (tcp, udp, icmp),

number of wrong fragments, number of urgent packets, etc),

content information (e.g., number of failed login attempts,

number of shell prompts, number of operations on access

control files, etc), and traffic information (e.g., number of

connections to the host in the past two seconds, fraction of

connections that have “SYN” errors, etc). The attacks in the

dataset fall into 4 categories, i.e., DoS, Probing, U2R (normal

users illegally gain root access to the system), and R2L (remote

attackers exploit some vulnerabilities to obtain local access to

the host). We show the distribution of these attacks in the

training and testing set in Table I.

TABLE II
CLASS DISTRIBUTION IN CICIDS17 DATASET

Label
Training Testing

Number Fraction Number Fraction
Benign 1,911,674 81.57% 361,399 74.84%

DoS 170,508 7.27% 82,151 17.01%
DDoS 101,024 4.31% 27,003 5.59%

Brute-Force 10,494 0.45% 3,341 0.69%
Infiltration 149,934 6.40% 9,032 1.87%

Total 2,343,634 100% 482,926 100%

CICIDS17 dataset is collected by Canadian Institute for Cy-

bersecurity and is publicly available2. Two networks, namely

the attack network and victim network were constructed. Each

network is a infrastructure that consists of routers, switches

and a set of PCs running most of the common operating

systems. In total, there are 2.83 million network connection

instances, where each instance is described by 81 features. The

features are similar to those of the KDD99 dataset dataset, but

include more statistical information. We omit the details due to

the space limit. We manually split the dataset into a training set

and a testing set with a 5 : 1 size ratio. The launched attacks

2https://www.unb.ca/cic/datasets/ids-2017.html

include DoS, DDoS, Infiltration and Brute-Force attacks. We

show the distribution of these attacks in the training and testing

set in Table II.
TABLE III

CLASS DISTRIBUTION IN CICIDS18 DATASET

Label
Training Testing

Number Fraction Number Fraction
Benign 4,197,451 82.62% 814,704 76.62%

DoS 517,691 10.19% 158,098 14.87%
Infilteration 131,844 2.60% 38,787 3.65%

Botnet 233,085 4.59% 51,753 4.87%
Total 5,080,071 100% 1,063,342 100%

CICIDS18 dataset is also constructed by Canadian Institute

for Cybersecurity and is publicly available3. To simulate a

real-world network, a common LAN network topology is im-

plemented on the AWS computing platform. The attacking in-

frastructure includes 50 machines and the victim organization

has 5 departments and includes 420 machines and 30 servers.

The dataset includes 6.3 million network connection instances,

and each instance has 77 features. Again, we manually split

the dataset into a training set and a testing set with a 5 : 1 size

ratio. The attacks in this dataset includes DoS, Infiltration and

Botnet. The class distribution of these attacks can be found in

Table III.

TABLE IV
SUMMARY OF THE DATASETS

Dataset # of Training Size Testing Size # of Ωimb

Features Classes
KDD99 41 4,898,431 311,029 5 2.96

CICIDS17 81 2,343,634 482,926 5 3.08
CICIDS18 77 5,080,071 1,063,342 4 2.31

We summarize the characteristics of these three datasets in

Table IV. To evaluate the level of class imbalance in each

dataset, we also report the class imbalance measure Ωimb [10]

in the training set, which is defined as

Ωimb =

∑c
i=1 nmax − ni

n
, (13)

where n denotes the number of instances in the datast, ni de-

notes the number of instances that belong to the i-th class, and

nmax = maxc
i=1ni. Intuitively, Ωimb measures the minimum

percentage count of data samples required over all classes

in order to form an overall balanced/uniform distribution. A

larger Ωimb value indicates higher level of class imbalance.

B. Setup

We implement DeepIDEA in Python by using the tensorflow
framework. In our neural network, we include 100 units in

each hidden layer. We try various number of hidden layers.

Our results suggest that the performance is reasonably good

as long as the network consists of at least 6 layers. In the

following section, we only show the results with 10 hidden

layers. The keep probability of each dropout layer is 0.8.

The source code is available in a public repository4. In our

experiments, we group 100 consecutive network connection

instances as a training sample. We set the learning rate as

3https://www.unb.ca/cic/datasets/ids-2018.html
4https://github.com/bxdong7/MLP-D
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TABLE V
DETECTION ACCURACY COMPARISON BETWEEN DEEPIDEA AND THE BASELINES ON THE KDD99 DATASET

Classifier
Benign DoS Probe U2R R2L

CBA
Pre Rec Pre Rec Pre Rec Pre Rec Pre Rec

SVM 30.2 70.04 96.66 98.55 13.68 27.71 21.87 6.76 84.4 5.91 41.23
KNN 23.51 55.16 90.97 100 100 26.91 0 0 0 0 16.41
DT 20.64 48.23 88.9 99.87 0 0 0 0 0 0 29.49

MLP+CE 0 0 70.92 100 5.36 15.33 0 0 72.29 6.4 24.27
MLP+OverSampling [15] 27.15 11.68 95.5 83.14 5.64 74.64 11.83 1.97 62.79 19.15 38.12

MLP+UnderSampling [20] 19.21 45.95 95.52 83.57 9.43 33.87 20.83 8.09 68.3 29.78 40.25
Cost-Sensitive [17] 33.15 10.59 0 0 4.82 8.27 2.55 73.76 0 0 18.26

CNN [8] 20.50 64.79 94.88 82.81 10.53 27.27 7.14 1.3 60.87 4.67 36.17
DeepIDEA(Our approach) 19.46 85.82 93.03 85.68 7.14 47.87 0 0 62.09 8.89 45.31

TABLE VI
DETECTION ACCURACY COMPARISON BETWEEN DEEPIDEA AND THE BASELINES ON THE CICIDS17 DATASET

Classifier
Benign DoS DDoS Brute-Force Infiltration

CBA
Pre Rec Pre Rec Pre Rec Pre Rec Pre Rec

SVM 86.42 76.38 96.58 53.74 92.62 16.03 0 0 7.27 86.18 46.47
KNN 91.92 85.05 75.88 48.22 72.56 86.23 0 0 10.92 84.75 60.85
DT 66.51 100 0 0 0 0 0 0 0 0 20

MLP+CE 87.04 90.76 74.12 63.69 74.73 79.53 7.37 4.8 28.03 61.54 60.06
MLP+OverSampling [15] 86.03 95.05 80.14 52.5 56.68 76.06 3.65 1.63 28.18 53.62 55.45

MLP+UnderSampling [20] 86.88 54.9 50.91 59.31 26.13 11.32 7.17 27.39 13.8 58.03 42.19
Cost-Sensitive [17] 61.58 61.17 17.69 28.09 0 0 0 0 0 0 17.85

CNN [8] 0 0 23.42 96.04 0 0 8.07 11.07 0 0 21.42
DeepIDEA(Our approach) 88.5 94.06 88.77 62.97 76.31 83.19 8.29 4.1 26.46 64.53 61.77

TABLE VII
DETECTION ACCURACY COMPARISON BETWEEN DEEPIDEA AND THE BASELINES ON THE CICIDS18 DATASET

Classifier
Benign DoS Infiltration Botnet

CBA
Pre Rec Pre Rec Pre Rec Pre Rec

SVM 76.59 42.59 44.97 26.23 26.57 20.64 13.70 29.14 29.65
KNN 75.46 30.05 31.2 28.05 11.53 6.45 17.32 28.14 23.18
DT 64.77 100.0 0 0 0 0 0 0 25.00

MLP+CE 67.42 71.73 31.92 45.23 0 0 18.52 0.42 29.35
Cost-Sensitive [17] 54.52 19.6 0 0 5.44 71.42 10.38 6.54 24.39

CNN [8] 0 0 22.44 98.52 7.08 8.19 0 0 26.68
DeepIDEA(Our approach) 70.96 39.7 45.47 49.94 6.88 21.0 11.86 33.64 36.07

10−4, the minibatch size as 128, and the number of epoches

as 10. We use cross-validation to avoid overfitting. We run

DeepIDEA on a workstation with 1 NVIDIA RTX 2080 Ti

GPU and 1 Intel i7-7700K @ 4.2GHz CPU. On average, the

training process halts within 3 hours.

C. Baseline

We compare DeepIDEA with the following baseline ap-

proaches.

• SVM (support vector machine) with 100 iterations

• KNN (k-nearest neighbor) with 5 neighbors and

minkowski distance

• DT (decision tree) with 10 layers at most

• MLP+CE (multi-layer perceptron with cross-entropy loss

function (Formula (4)))

• MLP+OverSampling [15]: In this approach, the training

data is transformed to balanced class distribution by

applying over-sampling.

• MLP+UnderSampling [20]: In this approach, the training

data is transformed to balanced class distribution by

applying over-sampling.

• Cost-Sensitive [17]: This approach uses cost-sensitve loss

function to train the neural network. We follow [17] to

set up the cost matrix.

• CNN [8]: This approach classifies the network connec-

tions with 2 convolution layers, 2 maxpooling layers and

6 fully-connected layers.

We implement these machine learning-based baselines by

using the scikit-learn library, and the deep learning-based

baselines by using the tensorflow framework. We also imple-

ment a baseline approach based on recurrent neural network

with LSTM units [14]. However, the training process does

not complete within 5 days. Therefore, we do not include the

results in this section.

D. Evaluation Metrics

In this paper, we are mostly interested in evaluating the

detection accuracy. In the experiments, we collect the fol-

lowing statistics: TP (true positive), FP (false positive), TN

(true negative) and FN (false negative). We measure the

following the precision and recall for each class. In particular,

precision = TP
TP+FP measures the fraction of alerts indicated

by the detection approach that are correct, and recall =
TP

TP+FN measures the fraction of attacks that are successfully

identified by the detection approach.

In addition, we measure the overall class-balanced accuracy

(CBA) [10] for all classes. CBA is calculated as the average

recall for all classes. By taking all classes equally important, it
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avoids inflated performance estimates on imbalanced datasets.

If the classifier performs equally well on every class, this term

is equivalent to the conventional accuracy (i.e., the number of

correct predictions divided by the total number of predictions).

On the contrary, if the model only performs well on the

majority class, CBA drops to 1
c . Therefore, CBA is an effective

metric in measuring the accuracy of a classifier for imbalanced

dataset.

E. Evaluation of DeepIDEA

KDD99 Dataset. We present the classification accuracy of

DeepIDEA and the baseline approaches on the KDD99 dataset

in Table V. First, we observe that DeepIDEA yields the

highest CBA. This demonstrates that DeepIDEA is effective in

detecting intrusion attack incidents from imbalanced dataset.

Second, KNN, DT and MLP+CE only focus on the major-

ity classes, and produces unsatisfactory performance on the

minority classes. For instance, KNN and DT fail to catch

any U2R and R2L attack instance. In contrast, the cost-

sensitive classifier associates too much cost for the U2R and

R2L classes, as they are extremely under-represented. This

makes the classifier lean too much toward these classes, and

performs poorly on the KDD99 dataset. Over-sampling and

under-sampling mitigate the side-effect of the class imbalance

problem, but the improvement is not comparable with DeepI-

DEA.

CICIDS17 Dataset. We report the accuracy of all the classi-

fiers in Table VI. First, we observe that DeepIDEA produces

similar and satisfying precision and recall on every class,

except for the Brute-Force. Consequently, DeepIDEA yields

the best CBA among all the classifiers. In Table II, it is easy

to see that Brute-Force is the most under-represented class.

The Brute-Force attack instances only takes around 0.5% of

the dataset. Even though the attack-sharing loss function aims

at dragging the decision boundary toward the attack classes, it

does not help much with this class. Second, the performance

of KNN and MLP+CE are close to that of DeepIDEA. We

further investigate the reason and find that a large fraction of

the attack instances are present in both the training and testing

set. DT simply labels every test instance as benign connection.

Similarly, CNN [8] almost recognizes every connection as DoS

attack. The cost-sensitive classifier only focuses on the benign

and DoS class. Naturally, the CBA of these three baselines are

low.

CICIDS18 Dataset. In Table VII, we compare the accuracy

of DeepIDEA with the baselines on the CICIDS18 dataset.

DeepIDEA performs the second best in addressing the class

imbalance problem. It has similar recall on every class. Again,

it shows the effectiveness of the class-sharing loss function. No

baseline approach produces a CBA higher than 30%. Again,

the cost-sensitive baseline concentrates all the attention to the

most under-represented class, i.e., infilteration, and neglects

the other classes. DT simply recognizes every testing instance

as benign.

F. Insights

On all datasets, DeepIDEA delivers the best CBA. The

CBA of DeepIDEA is always better and can as twice high

as that of MLP+CE. Compared with the sampling-based

approaches, the accuracy of DeepIDEA on all classes is

more balanced. DeepIDEA significantly outperforms the cost-

sensitive classifier [17], which only focuses on a few classes.

CNN [8] is inferior to DeepIDEA in classification accuracy

mainly because network events that are close in time do not

exhibit similar behaviors. All these observations demonstrate

the effectiveness of our attack-sharing loss function in dealing

with class imbalance in intrusion detection dataset.

However, we must acknowledge the weakness of DeepI-

DEA. It does not concentrate sufficiently on the extremely

under-represented classes. For example, the U2R class in the

KDD99 dataset and the Brute-Force class in the CICIDS17

dataset are rarely detected by DeepIDEA. Both classes take

no more than 1% in the training and testing set. The reason is

that the attack-sharing loss only pulls the decision boundary

towards the attack classes. However, the tow direction is

still biased towards the majority attack classes. In specific,

the regularization term in Formula (6) does not differentiate

different types of attacks. In order to minimize the JAS

loss, the classifier tends to classify every attack instance as a

majority attack class. This limitation makes DeepIDEA more

suitable for the scenarios where the benign instances dominate

the dataset, and different types of attacks are balanced. In other

words, DeepIDEA works well when the imbalance only exists

between the benign class and attack classes.

V. RELATED WORK

A. Intrusion Detection based on Deep Learning

[4], [6] conducted a thorough comparison of a variety of

classifiers, including J48 tree, Naive Bayes, decision tree,

support vector machine (SVM) and k-nearest neighbor (KNN),

on the accuracy of intrusion detection. To reduce the gener-

alization error of the classifiers and avoid overfitting, Rigaki

et al. Javaid et al. [16] developed a novel intrusion detection

approach based on self-taught learning. It is a deep neural

network that consists of two stages. In the first stage, a new

feature representation of the input data is learned from a

sparse auto-encoder. After that, the new features are taken by

a soft-max regression for classification. The experiment results

demonstrate the effectiveness of the new feature representation

in improving classification accuracy. Chowdhury et al. [8]

applied ’few-shot learning’ to improve the detection accuracy.

In specific, they first train a convolutional neural network

and then extract features from various layers. Those features

are fed into various classifiers such as SVM or 1-nearest

neighbor (1-NN). Experimental results suggest that the class-

wise accuracy can reach 65.8%. However, it is not clear

what is the rationale behind the choice of SVM and 1-NN

over a softmax activation in the last layer of a deep neural

network. Kitsune [23] is the most recent work that detects

network intrusion attacks with deep neural networks. It applies
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an ensemble of autoencoders to learn the identify function

of the original data distribution. For any new instance, its

anomaly score is calculated based on the distance between the

autoencoders’ output and its feature values. However, we argue

that such a design only employs deep learning to discover

inherent/generic features in network connections, but fails to

take advantage of its capacity to learn complex classification

functions.

B. Anomaly Detection based on Deep Learning

Quite a few work concentrate on applying deep neural

networks to detect abnormal behaviors that are not essentially

intrusion attacks. Zhang et al. [26] propose to detect IT system

failures from system log files. Clustering analysis is used to

extract frequent patterns in the log files. Then the log files are

embedded by counting the number of occurrences of these pat-

terns. To cope with the lack of labeled data, a LSTM is trained

to capture the long-range dependency across sequences. Du et

al. [11] also applied LSTM to detect anomalies and diagnoze

failures from system logs. Different from previous work, they

aim at abnormal execution paths to improve the confidence

and help with further investigation. Kiran et al. [19] provide a

comprehensive survey on the application of deep learning over

anomaly detection in videos. Recently, Chalapathy et al. [7]

show that it is advantageous to directly train deep networks

to extract progressively rich representation of data with the

classification objective, rather than utilizing a hybrid approach

where deep features are firstly learned by using an autoencoder

and then fed into a separate anomaly detection method like

SVM. Our work is consistent with this proposition, and thus

produces higher accuracy compared with traditional hybrid

approaches.

VI. CONCLUSION

In this paper, we design DeepIDEA, a novel intrusion

detection and classification system based on imbalanced deep

learning. To deal with the imbalanced class problem, we de-

sign a new loss function named attack-sharing loss to eliminate

the bias towards the majority/benign class. We also integrate

DeepIDEA with a new optimization algorithm to facilitate

efficient training. Experimental results on three benchmark

datasets show the superiority of DeepIDEA compared to seven

baseline approaches.

In the future, we plan to extend this work from the following

perspectives. First, we plan to apply the attack-sharing loss

to recurrent neural networks that take the network context

into consideration. We also plan to use generative adversarial

networks to improve the detection accuracy.
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