
Frequency-hiding Dependency-preserving Encryption
for Outsourced Databases

Boxiang Dong
Department of Computer Science

Montclair State University
Montclair, NJ 07047

bxdong7@gmail.com

Wendy Wang
Department of Computer Science
Stevens Institute of Technology

Hoboken, NJ 07030
Hui.Wang@stevens.edu

Abstract—The cloud paradigm enables users to outsource
their data to computationally powerful third-party service
providers for data management. Many data management tasks
rely on the data dependency in the outsourced data. This raises an
important issue of how the data owner can protect the sensitive
information in the outsourced data while preserving the data
dependency. In this paper, we consider functional dependency
(FD), an important type of data dependency. Although simple
deterministic encryption schemes can preserve FDs, they may
be vulnerable against the frequency analysis attack. We design a
frequency hiding, FD-preserving probabilistic encryption scheme,
named F 2, that enables the service provider to discover the FDs
from the encrypted dataset. We consider two attacks, namely
the frequency analysis (FA) attack and the FD-preserving chosen
plaintext attack (FCPA), and show that the F 2 encryption scheme
can defend against both attacks with formal provable guarantee.
Our empirical study demonstrates the efficiency and effectiveness
of F 2, as well as its security against both FA and FCPA attacks.

I. INTRODUCTION

With the fast growth of data volume, the sheer size of
today’s data sets is increasingly crossing the petabyte bar-
rier, which far exceeds the capacity of an average business
computer. In-house solutions may be expensive due to the
purchase of software, hardware, and staffing cost of in-house
resources to administer the software. Lately, due to the advent
of cloud computing and its model for IT services based on
the Internet and big data centers, a new model has emerged to
give companies a cheaper alternative to in-house solutions: the
users outsource their data management needs to a third-party
service provider. Outsourcing of data and computing services
is becoming commonplace and essential.

Many outsourced data management applications rely on
data dependency in the outsourced data. A typical type of
data dependency is functional dependency (FD). Informally,
a FD : A → B constraint indicates that an attribute set A
uniquely determines an attribute set B. For example, the FD
Zipcode→City indicates that all tuples of the same Zipcode val-
ues always have the same City values. FDs serve a wide range
of data applications, for example, improving schema quality
through normalization [1], [2], and improving data quality in
data cleaning [3]. Therefore, to support these applications in
the outsourcing paradigm, it is vital that FDs are well preserved
in the outsourced data.

Outsourcing data to a potentially untrusted third-party
service provider (server) raises several security issues. One

ID A B C
r1 a1 b1 c1
r2 a1 b1 c2
r3 a1 b1 c4
r4 a1 b1 c3
r5 a2 b2 c3
r6 a2 b2 c4

ID A B C
r1 â11 b̂11 ĉ11
r2 â21 b̂21 ĉ12
r3 â31 b̂31 ĉ24
r4 â41 b̂41 ĉ13
r5 â12 b̂12 ĉ23
r6 â22 b̂22 ĉ14

(a) Base table D (b) D̂1: probabilistic encryption
(FD : A→ B, on A, B, C individually
A 6→ C, B 6→ C) (ciphertext frequency = 1)

Introduce false positive FDs
A→ C, B → C

ID A B C
r1 â11 b̂11 ĉ11
r2 â11 b̂21 ĉ12
r3 â21 b̂31 ĉ24
r4 â21 b̂41 ĉ13
r5 â12 b̂12 ĉ23
r6 â22 b̂22 ĉ14

ID A B C
r1 â11 b̂11 ĉ11
r2 â11 b̂11 ĉ12
r3 â21 b̂21 ĉ24
r4 â21 b̂21 ĉ13
r5 â12 b̂12 ĉ23
r6 â22 b̂22 ĉ14

(c) D̂2: probabilistic encryption (d) D̂3: probabilistic encryption
on A, B, C individually on attribute set {A,B} and {C}

(ciphertext frequency >= 1) (ciphertext frequency >= 1)
A→ B is not preserved; FD-preserving

No false positive FDs
Fig. 1: Examples of (good and bad) probabilistic encryption
schemes

of the issues is to protect the sensitive information in the out-
sourced data. The data confidentiality problem is traditionally
addressed by means of encryption [4]. Our goal is to design ef-
ficient FD-preserving data encryption methods that enable the
FDs in the original dataset to be kept in the encrypted dataset.
A naive method is to apply a simple deterministic encryption
scheme (i.e. the same plaintext values are always encrypted
as the same ciphertext for a given key) on the attributes with
FDs. For instance, consider the base table D in Figure 1 (a)
that has a FD: F : A → B. Suppose that D is encrypted by
applying a deterministic encryption scheme on each individual
cell of D. Apparently F is preserved in the encrypted dataset.
However, this naive method has drawbacks. One of the main
drawbacks is that since the encryption preserves the frequency
distribution, the deterministic encryption scheme is vulnerable
against the frequency analysis attack [5]. The attacker can
easily map the ciphertext to the plaintext values based on their
frequency.

Challenges of designing probabilistic FD-preserving en-
cryption. A straightforward solution to defending against the
frequency analysis attack is to use the probabilistic encryption
schemes (i.e., the same plaintext values are encrypted as differ-
ent ciphertext values) instead of the deterministic encryption
schemes, aiming to hide frequency. However, adapting the

existing probabilistic encryption schemes to be FD-preserving
is far more than trivial. The following example will show that
applying the probabilistic encryption scheme in a careless way
may introduce severe utility concerns; it may either destroy
FDs completely or introduce false positive FDs (i.e., the FDs
that do not exist in D).

Example 1.1: Consider the table D shown in Figure 1 (a).
Figure 1 (b) shows an instance D̂1 by applying the standard
probabilistic encryption scheme on the attributes A, B and C
individually. We use the notation âji (b̂ji , ĉ

j
i , resp.) as the j-th

unique ciphertext value of ai (bi, ci, resp.) by the probabilistic
encryption scheme. Due to the probabilistic encryption, all
ciphertext values in D̂1 are distinct (i.e., frequency is one).
Apparently the frequency analysis attack fails on D̂1, since
regardless of the frequency distribution of the plaintext values,
the frequency distribution of the ciphertext values is always
flattened. Also it is FD-preserving; the FD A → B holds on
D̂1. However, there are quite a few false positive FDs (e.g.,
A → C and B → C) in D̂1. If we apply a non-standard
probabilistic encryption scheme on individual attributes that
allows the ciphertext values of the same plaintext value to be
identical (e.g., attribute A value of records r1 and r2 in D̂2 of
Figure 1 (c)), it still can defend against the frequency analysis
attack. However, the FD A→ B does not hold on D̂2 anymore,
as the same ciphertext value â1

1 of attribute A is associated
with two different cipher values b̂11 and b̂21 of attribute B. A
correct FD-preserving encryption scheme D̂3 that is free of
false positive FDs is shown in Figure 1 (d). It applies the
probabilistic encryption scheme on the attribute set {A,B}.
The four instances of (a1, b1) are encrypted as (â1

1, b̂
1
1) and

(â2
1, b̂

2
1). The FD A→ B still holds on D̂3. There is no false

positive FDs.

Example 1.1 shows that the probabilistic encryption
scheme, if it is applied on individual attributes, fails to be
a FD-preserving solution, regardless of the frequency of the
ciphertext values. This raises the first challenge of designing
FD-preserving probabilistic encryption schemes: what is the
appropriate encryption granularity on which the probabilistic
encryption is applied? Example 1.1 shows that the if the
attributes of FDs (e.g., {A,B} in Example 1.1) are treated
together as a super attribute, applying the probabilistic encryp-
tion scheme on the super attribute can preserve FDs. However,
finding the attributes of FDs is non-trivial. In the centralized
setting, the FDs may be well-defined (e.g., for data schema
normalization and refinement). However, in the outsourcing
setting, the data owner may not have the knowledge and
expertise of FDs. Furthermore, since finding the FD attributes
needs intensive computational efforts [6], the data owner may
lack of computational resources to discover the FDs by herself,
and has to rely on the server for FD discovery. Without the
knowledge of FD attributes for encryption, the data owner has
to identify the appropriate attributes (as the super attribute) for
encryption by herself, while requiring that the cost of doing
so should be much cheaper than FD discovery.

The second challenge of designing the FD-preserving prob-
abilistic encryption schemes is that as shown in Example 1.1
(Figure 1 (b)), directly applying the standard probabilistic
encryption algorithms may introduce a large amounts of false
positive FDs, since all ciphertext values are highly likely dis-

tinct. The question is, how to adapt the standard probabilistic
encryption algorithms to be FD-preserving while ensuring that
the encryption does not introduce any false positive FD.

The third challenge is that FD-preserving encryption may
introduce new inference attacks. FD-preserving encryption is
a type of property-preserving encryption [7]. The frequency
analysis attack is probably the most well-known inference
attack against the property-preserving encryption [5]. Besides
the frequency analysis attack, the attacker may utilize the
preserved FDs to break the encryption. For example, FD-
preserving encryption may not be able to provide indistin-
guishability under the chosen-plaintext attack (IND-CPA). The
challenges include formal definition of IND-CPA with the
presence of FDs, and the security guarantee analysis of the FD-
preserving encryption scheme against IND-CPA. None of the
existing work on the inference attacks (e.g., [8], [5]) against
the property-preserving encryption have considered the FD-
preserving encryption.

Contributions. To address these challenges, we design F 2,
a frequency-hiding, FD-preserving encryption scheme based
on probabilistic encryption. In specific, we make the following
contributions.

(i) F 2 allows the data owner to encrypt the data without the
awareness of any FD in the original dataset. To defend against
the frequency analysis (FA) attack on the encrypted data, we
apply the probabilistic encryption in a way that the frequency
distribution of the ciphertext values is always flattened. The
complexity of F 2 is much cheaper than FD discovery locally.
Furthermore, F 2 guarantees to preserve all FDs in the original
dataset, while avoids to introduce any false positive FDs.

(ii) We formally define FD-preserving chosen plaintext
attack (FCPA) on F 2. We also formally define: (1) α-security
model against the FA attack, which requires that the probability
that any single ciphertext can be mapped to its plaintext
based on frequency should not exceed α, a user-defined
threshold; and (2) indistinguishability against FD-preserving
chosen plaintext attack (IND-FCPA). We prove that: (1) F 2

can provide α-security against the FA attack; and (2) F 2 can
provide indistinguishability against FCPA when the outsourced
dataset contains large FD-based partitions.

(iii) We evaluate the performance of F 2 on both real and
synthetic datasets. The experiment results show that F 2 can
encrypt large datasets efficiently with high security guarantee
and 100% accuracy of FD discovery. It also shows that
applying F 2 and outsourcing is three orders of magnitude
faster than finding FDs locally.

Applications. F 2 is the first FD-preserving algorithm that can
defend against both the frequency analysis and FD-preserving
chosen plaintext attacks with provable security guarantees. F 2

can benefit those applications that heavily rely on FDs as
a key component, for example, data schema refinement and
normalization [1], [2], data cleaning [9], [3], and schema-
mapping and data exchange [10]. We believe that F 2 represents
a significant contribution towards the goal of reaching the
full maturity of data outsourcing systems (e.g., database-as-
a-service [11] and data-cleaning-as-a-service systems [12]).
For example, by preserving FDs, a number of FD-based data
quality metrics, e.g., the g3 error [6], will remain intact. This

enables to perform data cleaning, especially the detection and
repair of inconsistencies, on the encrypted data.

The rest of this paper is organized as follows. Section II
describes the preliminaries. Section III presents the security
definition. Section IV discusses the details of our encryption
scheme. Section V presents the security analysis. Section VI
evaluates the performance of our approach. Related work is
introduced in Section VII. Section VIII concludes the paper.

II. PRELIMINARIES
A. Outsourcing Setting

We consider the outsourcing framework that contains two
parties: the data owner and the service provider (server). The
data owner has a private relational table D that consists of m
attributes and n records. We use r[X] to specify the value of
record r on the attribute(s) X . To protect the private informa-
tion in D, the data owner encrypts D to D̂, and sends D̂ to
the server. The server discovers the dependency constraints of
D̂. These constraints can be utilized for data cleaning [3] or
data schema refinement [1]. In principle, database encryption
may be performed at various levels of granularity. However,
the encryption at the coarse levels such as attribute and record
levels may disable the dependency discovery at the server side.
Therefore, in this paper, we consider encryption at cell level
(i.e., each data cell is encrypted individually). Given the high
complexity of FD discovery [6], we assume that the data owner
is not aware of any FD in D before she encrypts D. As the
FDs are taken as the utility, our aim is to preserve the FDs
in D̂ without the data owner’s awareness of any FD.

B. Functional Dependency
In this paper, we consider functional dependency (FD) as

the data dependency that the server aims to discover. Formally,
given a relation R, there is a FD between a set of attributes
X and Y in R (denoted as X → Y) if for any pair of records
r1, r2 in R, if r1[X] = r2[X], then r1[Y] = r2[Y]. We use
LHS(F) (RHS(F), resp.) to denote the attributes at the left-
hand (right-hand, resp.) side of the FD F . For any FD F :
X → Y such that Y ⊆ X , F is considered as trivial. In this
paper, we only consider non-trivial FDs. It is well known
that for any FD F : X → Y such that Y contains more
than one attribute, F can be decomposed to multiple functional
dependency rules, each having a single attribute at the right-
hand side. Therefore, for the following discussions, we assume
that the FDs only contain one single attribute at RHS.

III. ATTACKS AND SECURITY MODEL

In this paper, we consider the curious-but-honest server,
i,e., it follows the outsourcing protocols honestly (i.e., no
cheating on storage and computational results), but it is curious
to extract additional information from the received dataset.
Since the server is potentially untrusted, the data owner sends
the encrypted data to the server. The data owner considers the
true identity of every cipher value as the sensitive information
which should be protected.

We consider two adversarial attacks: (1) the frequency anal-
ysis attack that is based on frequency distribution information,
and (2) the chosen plaintext attack that is based on the FD-
preserving property of F 2, that try to break the encryption on
the outsourced data.

A. Frequency Analysis Attack (FA)
Frequency analysis attack is one of the most well-known

example of an inference attack to break classical ciphers [5].
In this paper, we assume that the attacker may possess the fre-
quency distribution knowledge of data values at the cell level of
D. In reality, the attacker may possess approximate knowledge
of the value frequency in D. However, in order to make the
analysis robust, we adopt the conservative assumption that the
attacker knows the exact frequency of every plain value in
D, and tries to break the encryption scheme by utilizing such
frequency knowledge. In particular, let P and E be the plaintext
and ciphertext values. Consider a ciphertext value e that is
randomly chosen from E . Let freqE(e) be the frequency of
e, and freq(P) be the frequency distribution of P . Then e,
freqE(e) and freq(P) are given to the adversary Afreq . We
formally define the following adversarial experiment ExpFAΠ
on an encryption scheme Π.

Experiment ExpFAΠ ()

p′ ← AfreqE(e),freq(P)

Return 1 if p′ = Decrypt(k, e)

Return 0 otherwise

Intuitively, ExpFAΠ returns 1 if the attacker can correctly
infer the plaintext of e based on the frequency distribution
of plaintext and ciphertext values. Let ExpFAΠ (A) denote the
output of the adversary by FA against the encryption scheme
Π. We define the FA advantage as

AdvFAΠ (A) = Prob(ExpFAΠ (A) = 1).

Based on the FA advantage, we formally define α-security, the
security model against FA.

Definition 3.1: [α-Security against FA] An encryption
scheme Π is α-secure against FA if for every adversary A it
holds that AdvFAΠ (A) ≤ α, where α ∈ (0, 1] is user specified.

Intuitively, the smaller α is, the stronger security that Π
is against the FA. In this paper, we aim at designing an
encryption scheme that provides α-security. We mainly focus
on the frequency distribution of individual attributes. The inter-
attribute correlation-based attack [13] is out of the scope of this
paper.

B. FD-preserving Chosen Plaintext Attack (FCPA)
Indistinguishability under chosen plaintext attack (IND-

CPA) is a property of many encryption schemes. Intuitively,
if a cryptosystem possesses IND-CPA (and thus semantically
secure under chosen plaintext attack), then an adversary will
be unable to distinguish pairs of ciphertexts based on the
message they encrypt. Since F 2 preserves FDs, it cannot
provide indistinguishability under the chosen-plaintext attack
(IND-CPA). Therefore, we define a new security model named
indistinguishability against FD-preserving chosen plaintext
attack (IND-FCPA). An IND-FCPA encryption scheme reveals
the FD, but everything else remains semantically secure. We
first introduce the FCPA adversary. The FCPA adversary is
designed in the similar fashion as the left-or-right game [14]
for symmetric encryption schemes. Intuitively, the adversary
chooses two plaintext datasets m0 and m1. We require both
m0 and m1 have the same size and FDs. The challenger
encrypts one of them at random. The adversary tries to guess

which one was encrypted by making a sequence of queries
(m1

0,m
1
1), . . . , (mq

0,m
q
1) on the encrypted dataset. Specifically,

let LR(., ., b) denote the function that on inputs m0,m1 returns
mb(b ∈ {0, 1}). Given a dataset D with a FD F : X → Y ,
for a given symmetric encryption scheme Π, b ∈ {0, 1},
and a polynomial-time adversary A, consider the following
experiment:

Experiment ExpIND−FCPA−bΠ ()

d← AEncrypt(k,LR(.,.,b)),F

Return d

Let ExpIND−FCPA−1
Π (A) (ExpIND−FCPA−0

Π (A), resp.) de-
note that the adversary A outputs m1 (m0, resp.). We define
the IND-FCPA advantage as

AdvFCPAΠ (A) = |Prob(ExpIND−FCPA−1
Π (A) = 1)

− Prob(ExpIND−FCPA−0
Π (A) = 1)|.

Now we are ready to define IND-FCPA.

Definition 3.2: [Indistinguishability against FD-
preserving Chosen Plaintext Attack (IND-FCPA)] An en-
cryption scheme Π is indistinguishable against FD-preserving
chosen plaintext attack if for any polynomial-time adversary A,
it holds that the IND-FCPA advantage is negligible in λ, i.e.,
AdvFCPAΠ (A) = negl(λ), where λ is a pre-defined security
parameter.

Intuitively, IND-FCPA requires that for any polynomial-
time adversary that has oracle access to the encryption func-
tion, it cannot differentiate the ciphertext value of a pair of
plaintext values with a non-negligible probability.

IV. FD-PRESERVING ENCRYPTION

The key to designing a FD-preserving encryption algorithm
is to first identify the set of attributes that is treated as the
super attribute on which the probabilistic encryption scheme
is applied. We have the following theorem to show that for
any FD F , if the probabilistic encryption scheme is applied
on the attribute set that includes both LHS(F) and RHS(F)
(Fig 1 (d)), F is still preserved.

Theorem 4.1: Given a dataset D and any FD F of D,
let the attribute set A be the attribute sets on which the
probabilistic encryption scheme is applied on, and let D̂
be the encryption result. Then F always holds in D̂ if
LHS(F) ∪RHS(F) ⊆ A.

Proof: Assume that there is a FD: A → B which holds
in D but not in D̂. It must be true that there exists at least one
pair of records r1, r2 such that r1[A] = r2[A] and r1[B] =
r2[B] in D, while in D̂, r̂1[A] = r̂2[A] but r̂1[B] 6= r̂2[B].
Consider the attribute set A s.t. LHS(F)∪RHS(F) ⊆ A for
encryption, there are two cases. First, if r1 and r2 are taken
as the same instance, then r̂1 and r̂2 have the same value in
every attribute. It cannot happen as r̂1[B] 6= r̂2[B]. Second, if
r1 and r2 are taken as different instances, then it must be true
that r̂1[A] 6= r̂2[A] and r̂1[B] 6= r̂2[B]. So r̂1 and r̂2 cannot
break the FD: A→ B in D̂.

Our FD-preserving probabilistic encryption method con-
sists of four steps: (1) identifying maximum attribute sets as
the super attribute for encryption; (2) splitting-and-scaling;
(3) conflict resolution; and (4) eliminating false positive FDs.

We explain the details of these four steps in the following
subsections.

A. Step 1: Identifying Maximum Attribute Sets
Theorem 4.1 states that the set of attributes on which the

probabilistic encryption scheme is applied should contain all
attributes in FDs. Apparently the set of all attributes of D
satisfies the requirement. However, it is not a good solution.
Let |σA=r[A](D)| denote the number of records in D that have
the same value as r[A], for a specific record r and a set of
attributes A. There is no need for a probabilistic encryption
scheme, due to the reason that f = |σA=r[A](D)| is more
likely to be 1 when A contains more attributes. Now the main
challenge is to decide the appropriate attribute set A that will
be considered as the super attribute on which the probabilistic
encryption scheme is be applied on, assuming that the data
owner is not aware of the existence of any FD. To address
this challenge, we define the maximum attribute set on which
there exists at least one instance whose frequency is greater
than 1. Formally,

Definition 4.1: [Maximum Attribute Set (MAS)] Given
a dataset D, an attribute set A of D is a maximum attribute
set MAS if: (1) there exists at least an instance a of A such
that |σA=a(D)| > 1; and (2) for any attribute set A′ of D
such that A ⊆ A′, there does not exist an instance a′ of A′
s.t. |σA′=a′(D)| > 1.

Our goal is to design the algorithm that finds all MASs of a
given dataset D. Note that the problem of finding MASs is
not equivalent to finding FDs. For instance, consider the base
table D in Figure 1 (a). Its MASs is {A,B} and {C}. But its
FD is A→ B. In general, given a set of MASs M and a set
of FDs F , for each FD F ∈ F , there always exists at least an
MAS M ∈ M such that (LHS(F) ∪ RHS(F)) ⊆ M . But
it is possible that a MAS does not contain any FD.

In general, finding MASs is quite challenging given the
exponential number of attribute combinations to check. We
found out that our MAS is equivalent to the maximal non-
unique column combination [15]. We adapt the Ducc algorithm
[15] to find MASs. The complexity of Ducc is decided by
the solution set size but not the number of attributes. Due to
the space limit, we omit the details of the algorithm here. For
each discovered MAS, we find its partitions [6]. We say two
tuples r and r′ are equivalent with respect to a set of attributes
X if r[X] = r′[X].

Definition 4.2: [Equivalence Class (EC) and Partitions]
[6] The equivalence class (EC) of a tuple r with respect to an
attribute set X , denoted as rX , is defined as rX = {r′|r[A] =
r′[A],∀A ∈ X}. The size of rX is defined as the number of
tuples in rX , and the representative value of rX is defined as
r[X]. The set πX = {rX |r ∈ D} is defined as a partition
of D under the attribute set X . That is, πX is a collection of
disjoint sets (ECs) of tuples, such that each set has a unique
representative value of a set of attributes X , and the union of
the sets equals D.

As an example, consider the dataset D in Figure 1 (a), π{A,B}
consists of two ECs whose representative values are (a1, b1)
and (a2, b2). Apparently, a MAS is a maximal attribute set
whose partitions contain at least one equivalence class whose
size is more than 1.

B. Step 2: Splitting-and-Scaling Encryption
After the MASs and their partitions are discovered, we

design two steps to apply the probabilistic encryption scheme
on the partitions: (1) grouping of ECs, and (2) splitting and
scaling on the EC groups. Next, we explain the details.

1) Step 2.1. Grouping of Equivalence Classes: To provide
α-security, we group the ECs in the way that each equivalence
class belongs to one single group, and each group contains at
least k ≥ [1

α] ECs, where α is the threshold for α-security.
We use ECG for the equivalence class group in short.

We have two requirements for the construction of ECGs.
First, we prefer to put ECs of close sizes into the same group,
so that we can minimize the number of new tuples added by
the next splitting & scaling step (Section IV-B2). Second, we
do not allow any two ECs in the same ECG to have the same
value on any attribute of MAS. Formally,

Definition 4.3: [Collision of ECs] Given a MAS M
and two equivalence classes Ci and Cj of M , we say Ci and
Cj have collision if there exists at least one attribute A ∈ M
such that Ci[A] = Cj [A].

For security reason, we require that all ECs in the same ECG
should be collision-free (more details in Section V).

To construct ECGs that satisfy the aforementioned two
requirements, first, we sort the equivalence classes by their
sizes in ascending order. Second, we group the collision-free
ECs with the closest size into the same ECG, until the
number of non-collisional ECs in the ECG reaches k = [1

α].
It is possible that for some ECGs, the number of ECs that
can be found is less than the required k = [1

α]. In this case, we
add fake collision-free ECs to achieve the size k requirement.
The fake ECs only consist of the values that do not exist in
the original dataset. The size of these fake ECs is set as the
minimum size of the ECs in the same ECG. We must note
that the server cannot distinguish the fake values from real
ones.This is because both true and fake values are encrypted
before outsourcing.

EC ID A B
C1 {r2, r3} a1 b1
C2 {r1} a2 b1
C3 {r4} a3 b1
C4 {r5} a4 b2
C5 {r6} a5 b2

ECG EC ID A B

ECG1
C1 {r2, r3} â11 b̂11
C4 {r5, r7} â14 b̂12

ECG2
C2 {r1} â12 b̂21
C5 {r6} â15 b̂22

ECG3
C3 {r4} â13 b̂31
C6 {r8} â16 b̂13

(a) ECs in of MAS = {AB} (b) ECGs after S&S
($ = 2, α = 0.5)

Fig. 2: An example of splitting-and-scaling

Example 4.1: Consider the MAS M = {A,B} and its
five ECs shown in Figure 2 (a). Assume it is required to
meet 1

2 -security (i.e., α = 1
2). The three ECGs are ECG1 =

{C1, C4}, ECG2 = {C2, C5}, and ECG3 = {C2, C6}, where
C6 is an artificial EC. All the ECGs only have collision-free
ECs, and each ECG contains at least two ECs. Note that
C1 and C2 cannot be put into the same ECG as they share
the same value b1, similarly for C1 and C3.

2) Step 2.2. Splitting-and-Scaling (S&S): This step con-
sists of two phases, splitting and scaling. In particular, consider
an ECG C = {C1, . . . , Cx}, in which each EC Ci is of size
fi (1 ≤ i ≤ x). By splitting, for each Ci, its fi (identical)
plaintext values are encrypted to $ unique ciphertext values,

each of frequency [fi$], where $ is the split factor whose value
is specified by the user. The scaling phase is applied after
splitting. By scaling, all the ciphertext values reach the same
frequency by adding additional copies up to [fmax

$], where
fmax is the maximum size of all ECs in C. After applying
S&S, all ciphertext values in the same ECG are of the same
frequency.

We illustrate how S&S works by using Figure 2 (b). Before
S&S, ECG1 contains C1 of frequency 2, and C4 of frequency
1. By the S&S step, the record r5 of C4 is duplicated (as
record r7), ensuring that C1 and C4 have the same frequency.
Note that before S&S, a1 is the only plaintext value on
attribute A whose frequency is greater than 1. But after S&S,
there exist two ciphertext values (â1

1 and â1
4) whose frequency

is greater than 1. Thus, the adversary’s probability of breaking
the encryption of a1 based on the frequency distribution is 1

2 .

The splitting procedure can be implemented by the prob-
abilistic encryption. For any plaintext value p, it is encrypted
as e =< r, Fk(r)⊕ p >, where r is a random string of length
λ, F is a pseudo random function, k is the key, and ⊕ is
the XOR operation. The splits of the same EC can easily
be generated by using different random values r. In order to
decrypt a ciphertext e =< r, s >, we recover p by calculating
p = Fk(r)⊕s. The pseudo random function can be constructed
from a standard block cipher using the CBC-MAC construction
[16]. For security concerns, we require that the plaintext values
that appear in different ECGs are never encrypted as the same
ciphertext value (more details in Section V). Note that for all
the records in the same EC, we can obtain its encrypted values
by only encrypting the representative value of the equivalence
class once.

It is not necessary that every EC must be split. Our aim
is to find a subset of given ECs whose split will result in
the minimal amounts of additional copies added by the scaling
phase. In particular, given an ECG C = {C1, . . . , Ck} in which
ECs are sorted by their sizes in ascending order (i.e., Ck has
the largest size), we aim to find the split point j of C such
that each EC in {C1, . . . , Cj−1} is not split but each EC
in {Cj , . . . , Ck} is split. We call j the split point. Next, we
discuss how to find the optimal split point that delivers the
minimal amounts of additional copies by the scaling phase.
There are two cases: (1) the size of Ck is still the largest after
the split; and (2) the size of Ck is not the largest anymore,
while the size of Cj−1 (i.e., the EC of the largest size among
all ECs that are not split) becomes the largest. We discuss
these two cases below.

Case 1: [fk$] ≥ fj−1, i.e., the split of Ck still has the largest
frequency within the group. In this case, the total number of
copies added by the scaling step is

R1 =

j−1∑
i=1

([
fk
$

]− fi) +

k∑
i=j

(fk − fi).

It can be easily inferred that when j = max{j|fj−1 ≤ [fk$]},
R1 is minimized.

Case 2: [fk$] < fj−1, which means that Cj−1 enjoys the
largest frequency after splitting. For this case, the number of

duplicates that is to be added is:

R2 =

j−1∑
i=1

(fj−1 − fi) +$

k∑
i=j

(fj−1 − [
fi
$

]).

R2 is not a linear function of j. Thus we define jmax =
max{j|[fk$] > fj−1}. We try all j ∈ [jmax, k] and return
j that delivers the minimal R2.

For any given ECG, the complexity of finding its optimal
split point is O(|ECG|). In practice, the optimal split point j
is close to the ECs of the largest frequency (i.e., few split is
needed). In general, the complexity of the S&S step is O(t2),
where t is the number of equivalence classes of D. As t =
O(nq), the complexity is O(n2q2), where n is the number of
tuples in D, and q is the number of MASs.

C. Step 3: Conflict Resolution

ID A B
r1 â12 b̂21
r2 â11 b̂11
r3 â11 b̂11
r4 â13 b̂31
r5 â14 b̂12
r6 â15 b̂22

ID B C
r1 b̂21 ĉ11
r2 b̂21 ĉ11
r3 b̂31 ĉ12
r4 b̂31 ĉ12
r5 b̂12 ĉ22
r6 b̂22 ĉ13

ID A B C
r1 â12 b̂21 ĉ11
r2 â11 b̂11 ĉ21
r3 â11 b̂11 ĉ32
r4 â13 b̂31 ĉ12
r5 â14 b̂12 ĉ22
r6 â15 b̂22 ĉ13
r7 â21 b̂21 ĉ11
r8 â31 b̂31 ĉ12

(a) Enc{A,B}(D) (b) Enc{B,C}(D) (c) D̂: Encryption by
conflict resolution

Fig. 3: An example of conflict resolution of two overlapping
MASs

So far the grouping and splitting & scaling steps are applied
on one single MAS. In practice, it is possible that there exist
multiple MASs. The problem is that, applying grouping and
splitting & scaling separately on each MAS may lead to
conflicts. For instance, consider the example in Figure 3, in
which Figure 3 (a) and (b) show the encryption on two MASs
{A,B} and {B,C} individually. The conflict appears at tuples
r2 and r3 on attribute B. For example, r2[B] is encrypted as
b̂11, while it is encrypted as b̂21.

There are two possible conflicts:
(1) Type-1. Conflicts due to scaling: there exist tuples that are
scaled by one MAS but not so by another MAS; and
(2) Type-2. Conflicts due to shared attributes: there exist tuples
whose value on attribute(s) Z are encrypted differently by
multiple MASs, where Z is the overlap of these MASs.

It initially seems true that there may exist the conflicts due
to splitting too; some tuples are required to be split according
to one MAS but not by another. But our further analysis
shows that such conflicts only exist for overlapping MASs, in
particular, the type-2 conflicts. Therefore, dealing with type-2
conflicts covers the conflicts due to splitting.

The aim of the conflict resolution step is to synchronize the
encryption of all MASs. Given two MASs of the attribute
sets X and Y , we say these two MASs overlap if X and
Y overlap at at least one attribute. Otherwise, we say the two
MASs are non-overlapping. Next, we discuss the details of the
conflict resolution for non-overlapping MASs (Section IV-C1)
and overlapping MASs (Section IV-C2).

1) Non-overlapping MASs: Given two MASs of attribute
sets X and Y such that X and Y do not overlap, only the
type-1 conflicts (i.e., conflicts due to scaling) are possible.
WLOG we assume a tuple r is required to be scaled by
applying scaling on the ECG of rX but not on any ECG
of rY . The challenge is that simply scaling of r makes the
ECG of rY fails to have homogenized frequency anymore.
To handle this type of conflicts, first, we execute the grouping
and splitting & scaling over πX and πY independently. Next,
we look for any tuple r such that r is required to have `
(` > 1) copies to be inserted by splitting & scaling over πX
but free of split and scaling over πY . For such r, we modify
the values of the ` copies of tuple r, ensuring that for each
copy r′, r′[X] = r[X] while r′[Y] 6= r[Y]. To avoid collision
between ECGs, we require that no r′[Y] value exists in the
original dataset D. By doing this, we ensure that the ECGs
of both rX and rY still achieve the homogenized frequency
distribution. Furthermore, by assigning new and unique values
to each copy on the attribute set Y , we ensure that MASs are
well preserved (i.e., both MASs X and Y do not change to
be X ∪Y). The complexity of dealing with type-1 conflicts is
O(n′q), where n′ is the number of the tuples that have conflicts
due to scaling, and q is the number of MASs.

2) Overlapping MASs: When MASs overlap, both types
of conflicts are possible. The type-1 conflicts can be handled
in the same way as for non-overlapping MASs (Section
IV-C1). In the following discussion, we mainly focus on how
to deal with the type-2 conflicts (i.e., the conflicts due to
shared attributes). We start our discussion from two overlap-
ping MASs. Then we extend to the case of more than two
overlapping MASs.

Two overlapping MASs. We say two ECs Ci ∈ πX and
Cj ∈ πY are conflicting if Ci and Cj share at least one tuple.
We have the following theorem to show that conflicting ECs
never share more than one tuple.

Theorem 4.2: Given two overlapping MASs X and Y , for
any pair of ECs Ci ∈ πX and Cj ∈ πY , |Ci ∩ Cj | ≤ 1.

The correctness of Theorem 4.2 is straightforward: if |Ci∩
Cj | > 1, there must exist at least one equivalence class of the
partition πX∪Y whose size is greater than 1. Then X ∪ Y
should be a MAS instead of X and Y . Theorem 4.2 ensures
the efficiency of the conflict resolution, as it does not need to
handle a large number of tuples.

A naive method to fix type-2 conflicts is to assign the same
ciphertext value to the shared attributes of the two conflicting
ECs. By re-visiting the example in Figure 3 (a), if we follow
the naive solution to resolve the conflict appears at tuples r2

and r3 on attribute B, only one value is picked for tuples r2

and r3 on attribute B. This scheme is incorrect as the FD
F : A→ B does not hold anymore.

We design a robust method to resolve the type-2 conflicts
for two overlapping MASs. Given two overlapping MASs X
and Y , let Z = X ∩ Y , for any tuple r, let rX [Z] and rY [Z]
(rX [Z] 6= rY [Z]) be the value constructed by encryption over
X and Y independently. We use X − Z (Y − Z, resp.) to
denote the attributes that appear in X (Y , resp.) but not Z.
Then we construct two tuples r1 and r2:

• r1: r1[X−Z] = r[X−Z], r1[Y −Z] = vX , and r1[Z] =

EC B C f

ECG1
C1 b1 c1 2
C2 b2 c2 1

ECG2
C3 b1 c2 2
C4 b2 c3 1

B C f

ECG1

b̂21 ĉ11 2
b̂12 ĉ22 2

ECG2
b̂31 ĉ12 2
b̂22 ĉ13 2

A B C f
â6 b̂3 ĉ4 1
â7 b̂3 ĉ5 1
â8 b̂4 ĉ6 1
â9 b̂4 ĉ7 1

(a) Base table D (b) D̂: encryption by Step (c) Constructed ∆D
(B → C does not hold) 1 - 3 (B → C becomes to remove false

false positive) positive FD B → C

Fig. 4: An example of eliminating false positive FDs

ABC:{}

AB:C AC:B BC:A

ABD:{}

AB:DAD:B BD:A

A:C B:C A:BC:B B:AC:A A:DB:DD:B D:A

Fig. 5: An example of FD lattice

rX [Z];
• r2: r2[X −Z] = vY , r2[Y −Z] = r[Y −Z], and r2[Z] =
rY [Z].

where vX and vY are two values that do not exist in D.
Note that both X − Z and Y − Z can be sets of attributes,
thus vX and vY can be set of values. Tuples r1 and r2 replace
tuple r in D̂. As an example, consider the tables in Figure 3
(a) and (b), the encryption after conflict resolution is shown
in Figure 3 (c). Tuple r2 and r7 in Figure 3 (c) are the
two records constructed for the conflict resolution of r2 in
Figure 3 (a) and (b). Our conflict resolution method guarantees
that the ciphertext values of each ECG of X and Y are of
homogenized frequency.

More than Two Overlapping MASs. When there are more
than two overlapping MASs, one way is to execute the
encryption scheme that deals with two overlapping MASs
repeatedly for every two overlapping MASs. This raises the
question in which order the MASs should be processed. We
have the following theorem to show that indeed the conflict
resolution is insensitive to the order of MASs.

Theorem 4.3: Given a dataset D that contains a set of
overlapping MASs M , let D̂1 and D̂2 be the datasets after
executing conflict resolution in two different orders of M , then
|D̂1| = |D̂2|.

We omit the proof of Theorem 4.3 due to the space limitation.
It can be found in the full version of our paper [17].

Since the order of MASs does not affect the encryption,
we pick the overlapping MAS pairs randomly. For each
overlapping MAS pair, we apply the encryption scheme for
two overlapping MASs. We repeat this procedure until all
MASs are processed.

D. Step 4. Eliminating False Positive FDs

Before we discuss the details of this step, we first define
false positive FDs. Given the dataset D and its encrypted
version D̂, we say the FD F is a false positive if F does
not hold in D but holds in D̂. We observe that the encryption
scheme constructed by Step 1 - 3 may lead to false positive
FDs. Next, we show an example of false positive FDs.

Example 4.2: Consider the table D in Figure 4 (a) gen-
erated from the dataset in Figure 3 (a). Apparently the FD
F : B → C does not exist in D, as the two ECs C1

and C3 have collisions. However, in the encrypted dataset D̂
constructed by Step 1 - 3 (Figure 4 (b)), since no split of any
two ECs have collision anymore, F : B → C holds in D̂.

Indeed, we have the following theorem to show that free of
collision among ECs is the necessary and sufficient conditions
for the existence of FDs.

Theorem 4.4: For any MAS X , there must exist a FD on
X if and only if for any two ECs Ci and Cj of πX , Ci and
Cj do not have collision.

Following Theorem 4.4, the fact that Step 1 - 3 construct only
collision-free ECs may lead to a large number of false positive
FDs, which hurts the accuracy of dependency discovering by
the server.

The key idea to eliminate the false positive FDs is to
restore the collision within the ECs. Note that eliminating the
false positive FD F : X → Y naturally leads to the elimination
of all false positive FDs F ′ : X ′ → Y such that X ′ ⊆ X .
Therefore, we only consider eliminating the maximum false
positive FDs whose LHS is not a subset of LHS of any other
false positive FDs.

We use the FD lattice to help restore the ECs with colli-
sion and eliminate false positive FDs. The lattice is constructed
in a top-down fashion. Each MAS corresponds to a level-1
node in the lattice. We denote it in the format M : {}, where M
is the MAS that the node corresponds to. The level-2 nodes
in the lattice are constructed as following. For each level-1
node N , it has a set of children nodes (i.e., level-2 nodes) of
format X : Y , where Y corresponds to a single attribute of
D, and X = M − {Y }, where M is the MAS that node N
corresponds to. Starting from level 2, for each node X : Y at
level ` (` ≥ 2), it has a set of children nodes of format X ′ : Y ′,
where Y ′ = Y , and X ′ ⊂ X , with |X|′ = |X| − 1 (i.e., X ′ is
the largest subset of X). Each node at the bottom of the lattice
is of format X : Y , where both X and Y are 1-attribute sets.
An example of the FD lattice is shown in Figure 5.

Based on the FD lattice, the data owner eliminates the false
positive FDs by the following procedure. Initially all nodes
in the lattice are marked as “un-checked”. Starting from the
second level of lattice, for each node N (in the format X : Y),
the data owner checks whether there exists at least two ECs
Ci, Cj ∈ πM such that Ci[X] = Cj [X] but Ci[Y] 6= Cj [Y],
where M is the MAS that N ’s parent node corresponds to.
If it does, then the data owner does the following two steps.
First, the data owner inserts k = d 1

αe artificial record pairs
{P1, . . . , Pk}, where α is the given threshold for α-security.
The reason why we insert k such pairs will be explained in
Section V. Each Pi consists of two records r1

i and r2
i :

• r1
i : r1

i [X] = xi, r1
i [Y] = a1

i , and r1
i [MAS−X−{Y }] =

v1
i ;
• r2

i : r2
i [X] = xi, r2

i [Y] = a2
i , and r2

i [MAS−X−{Y }] =
v2
i .

where xi, a1
i , a

2
i , v

1
i and v2

i are artificial values that do not
exist in D̂ constructed by the previous steps. We require that
a1
i 6= a2

i , and v1
i 6= v2

i . We also require that all artificial records
are of frequency one. Second, the data owner marks the current
node and all of its descendants in the lattice as “checked”

(i.e., the current node is identified as a maximum false positive
FD). Otherwise (i.e., the ECs do not have collisions), the
data owner simply marks the current node as “checked”. After
checking all the nodes at the level `, the data owner moves
to the level `+ 1 and applies the above operation on the “un-
checked” lattice nodes. The data owner repeats the procedure
until all nodes in the lattice are marked as “checked”.

Let ∆D be the artificial records that are constructed by
the above iterative procedure. It is easy to see that for any FD
X → Y that does not hold in D, there always exist two ECs
C ′i and C ′j in ∆D, where C ′i[X] = C ′j [X] but C ′i[Y] 6= C ′j [Y].
This makes the FD X → Y that does not hold in D fails to
hold in D̂ too.

Example 4.3: To continue our Example 4.2, we show how
to construct ∆D. It is straightforward that the MAS {B,C}
contains the ECs that have collision (e.g. C1 and C3 in Figure
4 (a)). Assume α = 1/2. Then ∆D (shown in Figure 4 (c))
consists of two pairs of artificial tuples, each pair consisting
of two records of the same value on attribute B but not on C.
The false positive FD F : B → C does not exist in D̂ + ∆D
any more.

The time complexity of eliminating false positive FDs for
a single MAS M is O(2|M |t), where |M | is the number of
attributes in M , and t is the number of ECs of M . In our
experiments, we observe t << n, where n is the number
of records in D. For instance, on a benchmark dataset of
15 million records, the average value of t is 11, 828. Also,
the experiment results on all three datasets show that at most
|M | = m

2 . With the existence of q > 1 MASs, the time
complexity is O(

∑q
i=1 2|Mi|ti), where ti is the number of

equivalence classes in Mi, and |Mi| is the number of attributes
of MAS Mi. Considering that ti << n, the total complexity
is comparable to O(nm2).

We have the following theorem to show that the FDs in D̂
and D are the same.

Theorem 4.5: Given the dataset D, let D̂ be the dataset
after applying Step 1 - 4 of F 2 on D, then: (1) any FD of D
also hold on D̂; and (2) any FD F that does not hold in D
does not hold in D̂ either.

Due to the space limit, we omit the proof of Theorem 4.5. It
can be found in the full version of our paper [17].

V. SECURITY ANALYSIS

In this section, we analyze the security of F 2 against
both the frequency analysis attack (FA) and the FD-preserving
chosen plaintext attack (FCPA).

A. Frequency Analysis Attack
Frequency analysis (FA) attack is the most basic and well-

known inference attack. It is formally defined in [5]. We refer
the readers to [5] for more details. For any e ∈ E be a cipher-
text value, let G(e) = {p|p ∈ P, freqP(p) = freqE(e)} be
the set of distinct plaintext values having the same frequency
as e. It has been shown in [18] that for any adversary A and
any ciphertext value e, the advantage of the frequency analysis
attack is AdvFAF 2 (A) = 1

|G(e)| , where |G(e)| is the size of G(e).
In other words, the size of G(e) determines the advantage
AdvFAF 2 (A).

Apparently, the scaling step of F 2 ensures that all the
equivalence classes in the same ECG have the same frequency.
Hence, for any encrypted equivalence class EC ′, there are at
least |ECG| plaintext ECs having the same frequency. Recall
that we do not allow any two equivalence classes in the same
ECG to have the same value on any attribute. Therefore, for
any attribute A, a ECG contains k distinct plaintext values
on A, where k is the size of ECG. Thus for any e ∈ E , it is
guaranteed that |G(e)| = k. As k ≥ [1

α], it is guaranteed that
G(e) ≥ [1

α]. In this way, we have:

AdvFAF 2 (A) ≤ α.

Thus F 2 provides α-security against the FA attack.

In our empirical study, we implemented the FA attack in
[5], and compared the attack accuracy of F 2 with three differ-
ent encryption schemes: (1) frequency-hiding order-preserving
encryption [19]; (2) AES, a well-known symmetric encryption
algorithm; and (3) Pallier, a probabilistic asymmetric algo-
rithm. More details can be found in Section VI.
B. FD-preserving Chosen Plaintext Attack (FCPA)

Given a dataset D with a FD X → Y , consider the
following FCPA adversary A against F 2. Let LR(., ., b) denote
the function that on inputs m0,m1 returns mb(b ∈ {0, 1}).

Experiment ExpIND−FCPAF 2 (k, LR(., ., b))

r1, r2, r3, r4 ∈ D
r1[X,Y] = r3[X,Y] = (x1, y1)

r2[X,Y] = (x2, y2)

r4[X,Y] = (x3, y3)

c1 ← Encrypt(k, LR(r1, r2, b))[X,Y]

c2 ← Encrypt(k, LR(r3, r4, b))[X,Y]

Return 0 if c1 = c2
Return 1 otherwise

Intuitively, if both r1 and r3 (i.e., the left side of (r1, r2)
and (r3, r4)) are encrypted, the adversary can infer that b = 0
as F 2 is FD-preserving. Otherwise b = 1. Next, we analyze
the security guarantee of F 2 against the FCPA adversary A.
Let Exp(A) denote the output of experiment.

When b = 1, c1 = Encrypt(k, r2)[X,Y] =
Encrypt(k, (x2, y2)), and c2 = Encrypt(k, (x3, y3)). Thus
Prob(Exp(A) = 1|b = 1) = Prob(Encrypt(k, (x2, y2)) 6=
Encrypt(k, (x3, y3))) = 1 − negl(λ). This is because the
probability that two different plaintext values x2, y2 and
(x3, y3) are encrypted to the same ciphertext value is neg-
ligible.

When b = 0, c1 = Encrypt(k, r1)[X,Y], and c2 =
Encrypt(k, r2)[X,Y]. According to F 2, it is possible that
r1 and r2 have different ciphertext values on [X,Y], even
though they have the same plaintext values. Next, we infer
the probability that c1 = c2. Let M be the MAS that
include both X and Y . We define a set of equivalence classes
EQ = {eq ∈ πM |eq[X,Y] = (x1, y1)}, and g as the
number of equivalence classes in the partition of M whose
attribute values on [X,Y] is (x1, y1). It must be true that
r1 ∈ eqi ∈ EQ and r2 ∈ eqj ∈ EQ, where 1 ≤ i, j ≤ g.
Based on the relationship between i and j, we have the
following cases for the adversary to output 1 (i.e., c1 = c2).

Case 1: i 6= j. When r1 and r2 belong to different equivalence
classes of πM , their ciphertext values must be different. This is
because according to Step 2.1 in Section IV, eqi and eqj must
fall into different ECGs, as there exist collision between them.
We also require that the same plaintext values that appear in
different ECGs are never encrypted as the same ciphertext
value. Therefore, Prob(c1 6= c2|i 6= j) = 1. As Prob(i 6=
j) = 1−Prob(i = j) = 1− 1

g , Prob(Exp(A) = 1, i 6= j|b =

0) = 1− 1
g .

Case 2: i = j. When r1 and r2 belong to the same equivalence
class of πM , it is still possible for them to have different
ciphertext values. Let the equivalence class be eq. Based on
our Splitting-and-scaling scheme, when eq is split and when
r1 and r2 belong to different split copies, r1 and r2 are
encrypted to be different ciphertext values. In other words,
Prob(Exp(A) = 1, i = j|b = 0) = Prob(E1, E2) ∗ 1

g ,
where E1 is the event that eq is split, and E2 is the event
that r1 and r2 belong to different split copies. Let y be the
split point in the ECG, we have Prob(E1) = y

k , where
k = [1

α]. This is because in the ECG, we pick y out of k
equivalence classes to split. Let $ be the split factor. Then
Prob(E2|E1) = 1 − 1

$, since the probability that r1 and
r2 are encrypted as the same split copy is 1

$. Therefore, we
have Prob(Exp(A) = 1, i = j|b = 0) = Prob(E1, E2) =
Prob(E2|E1) ∗ Prob(E1) = (1− 1

$) ∗ y
gk .

Based on the two cases, Prob(Exp(A) = 1|b = 0) =

1− 1
g + ($−1)y

gk$. Thus, the adversary’s advantage on F 2 is

AdvFCPAF 2 (A) =
$k − ($ − 1)y

g$k
− negl(λ).

In practice, we find that in most cases, y is close to 0, so

AdvFCPAF 2 (A) ≈ 1

g
.

In general, when g is large (i.e., the equivalent classes are
of large size), AdvFCPAF 2 (A) is negligible, and thus F 2 can
provide IND-FCPA. In our experiments on real-world datasets,
g can be 5,000,000 for a dataset that contains 15 million
records. When g is small, we can always reach IND-FCPA
by inserting artificial records to make g sufficiently large.
It is possible that the number of artificial records may be
significant; but that is the price we pay for the security.

VI. EXPERIMENTS

In this section, we discuss our experiment results and
provide the analysis of our observations.
A. Setup
Computer environment. We implement our algorithm in Java.
All the experiments are executed on a PC with 2.5GHz i7 CPU
and 60GB memory running Linux.

Datasets. We execute our algorithm on the Customer dataset
from TPC-C benchmark, the Orders dataset from TPC-H
benchmark, and one synthetic dataset. The Orders dataset
contains 9 attributes and 1.5 million records (size 1.67GB).
Orders dataset contains nine maximal attribute sets MASs.
All MASs overlap pairwise. Each MAS contains either four
or five attributes. The Customer dataset includes 21 attributes
and 960K records (size 282MB). There are fifteen MASs in
Customer dataset. The size of these MASs (i.e., the number

of attributes) ranges from nine to twelve. All MASs overlap
pairwise. The synthetic dataset contains 7 attributes and 4
million records (size 224MB). The synthetic dataset has two
MASs, one of three attributes, while the other of six attributes.
The two MASs overlap at one attribute.

Evaluation. We evaluate the efficiency and practicality of our
encryption scheme according to the following criteria:

• Encryption time: the time for the data owner to encrypt
the dataset (Sec. VI-B);
• Space overhead: the amounts of artificial records added

by F 2 (In our experiments, the number of artificial records
never exceeds 12% of the original data size. Due to the
space limitation, we only report the statistics in Figure 9
and omit the discussion of this set of results);
• FD-preserving accuracy: the fraction of original FDs that

are preserved in the encrypted dataset (Sec. VI-C);
• Security against the FA attack: the fraction of the en-

crypted values that can be mapped to the original plaintext
by the FA attack (Sec. VI-D);
• Outsourcing versus local computations: (1) the time of

discovering FDs versus encryption by F 2, and (2) the FD
discovery time on the original data versus that on the
encrypted data (Sec. VI-E).

Baseline approaches. We implement three baseline encryption
methods, including AES, Paillier, and frequency-hiding order-
preserving encryption (FHOP) [19], to encode the data at
cell level. The AES baseline approach uses the well-known
AES algorithm with key length of 256 bits for the determin-
istic encryption. We use the implementation of AES in the
javax.crypto package1. The Paillier baseline approach uses the
asymmetric Paillier encryption with key length of 256 bits for
the probabilistic encryption. We use the UTD Paillier Thresh-
old Encryption Toolbox2. FHOP is based on a binary search
tree structure. For any plaintext value (not necessarily distinct),
its ciphertext value is generated by inserting a new node to the
tree. We compare F 2 with AES, Paillier, FHOP in terms of
FD-preserving accuracy, security, and time performance.

 0

 2

 4

 6

 8

 10

 12

1/5
1/10

1/15
1/20

1/25
1/30

1/35
1/40

T
im

e
 (

M
in

u
te

)

α value

SSE
SYN
MAX

FP

 0

 2

 4

 6

 8

 10

1/5
1/10

1/15
1/20

1/25

T
im

e
 (

M
in

u
te

)

α value

SSE
SYN
MAX

FP

(a) Synthetic dataset (53MB) (b) Orders dataset (0.325GB)
Fig. 6: Time performance for various α

B. Encryption Time
In this section, we measure the time performance of F 2 to

encrypt the dataset. First, we evaluate the impact of security
threshold α on the running time. We measure the time of
our four steps of the algorithm: (1) finding maximal attribute
sets (MAX), (2) splitting-and-scaling encryption (SSE), (3)
conflict resolution (SYN), and (4) eliminating false positive
FDs (FP), individually. We show our results on both Orders
and the synthetic datasets in Figure 6. First, we observe that
for both datasets, the time performance does not change much

1https://docs.oracle.com/javase/7/docs/api/javax/crypto/package-summary.
html

2http://cs.utdallas.edu/dspl/cgi-bin/pailliertoolbox/.

with the decrease of α value. This is because the running
time of the MAX, SYN and FP steps is independent on α.
In particular, the time of finding MASs stays stable with the
change of α values, as its complexity relies on the data size,
not α. Similarly, the time performance of FP step is stable
with various α values, as its complexity is only dependent
on the data size and data schema. The time performance of
SYN step does not vary with α value because we only need
to synchronize the encryption on the original records, without
the worry about the injected records. It is worth noting that
on the Orders dataset, the time took by the SYN step is
negligible. This is because the SYN step leads to only 24
artificial records on the Orders dataset (of size 0.325GB).
Second, the time of SSE step grows for both datasets when
α decreases (i.e., tighter security guarantee). This is because
smaller α value requires larger number of artificial equivalence
classes to form ECGs of the desired size. This addresses
the trade-off between security and time performance. We also
observe that the increase in time performance is insignificant.
For example, even for Orders dataset of size 0.325GB, when
α is decreased from 0.2 to 0.04, the execution time of the
SSE step only increases by 2.5 seconds. This shows that F 2

enables to achieve higher security with small additional time
cost on large datasets. We also observe that different steps
dominate the time performance on different datasets: the SSE
step takes most of the time on the synthetic dataset, while the
MAX and FP steps take the most time on the Orders dataset.
This is because the average number of ECs of all the MASs
in the synthetic dataset is much larger than that of the Orders
dataset (128,512 v.s. 1003). Due to the quadratic complexity
of the SSE step with regard to the number of ECs, the SSE
step consumes most of the time on the synthetic dataset.

 0

 20

 40

 60

 80

 100

 120

25 53 110 224

T
im

e
 (

M
in

u
te

)

Data Size (MB)

SSE
SYN
MAX

FP

 0

 10

 20

 30

 40

 50

 60

 70

 80

0.325 0.653 0.981 1.309 1.637

T
im

e
 (

M
in

u
te

)

Data Size (GB)

SSE
SYN
MAX

FP

(a) Synthetic dataset (α=0.25) (b) Orders dataset (α=0.2)
Fig. 7: Time performance for various data sizes

Second, to analyze the scalability of our approach, we
measure the time performance for various data sizes. The
results are shown in Figure 7. It is not surprising that the time
performance of all the four steps increases with the data size.
We also notice that, on both datasets, the time performance of
the SSE step is not linear to the data size. This is due to the
fact that the time complexity of the SSE step is quadratic to the
number of ECs. With the increase of the data size, the average
number of ECs increases linearly on the synthetic dataset and
super-linearly on the Orders dataset. Thus we observe the non-
linear relationship between time performance of SSE step and
data size. On the synthetic dataset, the dominant time factor
is always the time of the SSE step. This is because of the
large average number of ECs (can be as large as 1 million)
and the quadratic complexity of the SSE step. In contrast, the
average number of ECs is at most 11, 828 on the Orders
dataset. So even though the synthetic dataset has fewer and
smaller MASs than the Orders dataset, the vast difference in
the number of ECs makes the SSE step takes the majority of
the time performance on the synthetic dataset.

To sum up the observations above, our F 2 approach can
be applied on the large datasets with high security guarantee,
especially for the datasets that have few number of ECs on
the MASs. For instance, it takes around 30 minutes for F 2 to
encrypt the Orders dataset of size 1GB with security guarantee
of α = 0.2.

 1

 10

 100

 1000

25 53 110 224

T
im

e
 (

M
in

u
te

)

Data Size (MB)

F
2

AES
Paillier

 1

 10

 100

 1000

0.325 0.653 0.981 1.309 1.637

T
im

e
 (

M
in

u
te

)

Data Size (GB)

F
2

AES
Paillier

(a) Synthetic dataset (α=0.25) (b) Orders dataset (α=0.2)
Fig. 8: Time performance Comparison

We also compare the time performance of F 2 with AES and
Paillier. The result is shown in Figure 8. It is not surprising
that F 2 is slower than AES, as it has to handle with the FD-
preserving requirement. On the other hand, even though F 2

has to take additional efforts to be FD-preserving (e.g., finding
MASs, splitting and scaling, etc.), its time performance is
much better than Paillier. This shows the efficiency of our
probabilistic encryption scheme. It is worth noting that on
the Orders dataset, Paillier takes 1247.27 minutes for the
data of size 0.325GB, and cannot finish within one day when
the data size reaches 0.653GB. Thus we only show the time
performance of Paillier for the data size that is below 0.653GB.

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0.05

1 1
/2

1
/3

1
/4

1
/5

1
/6

1
/7

1
/8

1
/9

1
/1

0

O
v
e

rh
e
a
d

α value

SYN

SCALE

GROUP

FP

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0.05

1 1
/2

1
/3

1
/4

1
/5

1
/6

1
/7

1
/8

1
/9

1
/1

0

O
v
e

rh
e
a
d

α value

SYN

SCALE

GROUP

FP

(a) Various α values (b) Various α values
(Customer 73MB) (Orders 0.325GB)

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

17 35 73 149 291 585

O
v
e
rh

e
a
d

Data Size (MB)

SYN
SCALE

GROUP
FP

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

0.325 0.653 0.981 1.309 1.637

O
v
e
rh

e
a
d

Data Size (GB)

SYN
SCALE

GROUP
FP

(c) Various data size (d) Various data size
(Customer α = 0.2) (Orders α=0.2)
Fig. 9: Amounts of Artificial Records Added by F 2

C. FD Discovery Accuracy
We evaluate the FD discovery accuracy of F 2 and the

three baseline approaches on the first 30, 000 records from the
Orders dataset. In particular, let F be the set of FDs discovered
from the original dataset D, and F ′ be the FDs discovered
from the encrypted dataset D̂. We use precision and recall to
evaluate the accuracy of FD discovery. Formally, the precision
is defined as |F∩F

′|
|F ′| (i.e., the fraction of the FDs in D̂ that

also exist in D), while recall is |F∩F
′|

|F| (i.e., the fraction of
original FDs in D that can be discovered in D̂). Intuitively, an
encryption approach is FD-preserving only if both precision
and recall are 1. To measure the impact of Step 4 of F 2 on

Approach Precision Recall
F 2 (before Step 4) 0.5385 0.7
F 2 (after Step 4) 1 1

FHOP 0 0
Paillier 0 0
AES 1 1

TABLE I: FD discovery accuracy
Approach Attack accuracy

F 2(α = 0.02) 0.01417
F 2(α = 0.05) 0.03192
F 2(α = 0.1) 0.0719
F 2(α = 0.25) 0.1056

FHOP 0.1214
Paillier 0.1002
AES 0.3395

TABLE II: Security against FA attack

false positive FDs, we also measure the precision and recall
before and after Step 4 of F 2.

We report the precision and recall results in Table I. First,
we observe that both the precision and recall of F 2 (after
Step 4) are 1, which demonstrates that F 2 is FD-preserving.
In particular, it shows that Step 4 is effective to remove false
positive FDs and recover the real FDs that are eliminated by
the false positive FDs. The other two probabilistic encryption
schemes, Paillier and FHOP, cannot preserve any FD at all.
AES, a deterministic encryption scheme that we applied at the
cell level, is able to retain all the original FDs.

D. Security Against FA Attack
We implement FA attack defined in [5], and launch FA

attack to evaluate the robustness of F 2 as well as the three
baseline schemes. In particular, let h be the number of unique
ciphertext values that can be successfully mapped to their
plaintext values by FA attack. The accuracy of FA attack is
defined as acc = h

n , where n is the total number of unique
ciphertext values. Intuitively, the higher acc is, the weaker
the encryption scheme is against FA attack. We launch FA
attack on the first 30, 000 records of the Orders dataset that
is encrypted by F 2 and three baseline schemes respectively,
and report the accuracy in Table II. We have the following
observations. First, the attack accuracy of F 2 in practice
is always smaller than the theoretical guarantee α against
FA attack. Second, F 2 provides comparable security against
FA attack as FHOP and Paillier, even for the weak security
guarantee as α = 0.25. When we choose smaller values for α,
F 2 can provide better security than FHOP and Paillier against
FA attack. However, it has to pay the price for additional
overhead for FD discovery and encryption/decryption due to
the inserted artificial records. For example, the fraction of
artificial records can be as large as 52.96% when α = 0.1.
It may also leak additional information to some extent due to
the FCPA attack (not evaluated in this part of experiments).
E. Outsourcing VS. Local Computations

First, we compare the data owner’s performance of finding
FDs locally and encryption for outsourcing. We implement
the TANE algorithm [6] and apply it on our datasets. First, we
compare the time performance of finding FDs locally (i.e.
applying TANE on the original dataset D) and outsourcing
preparation (i.e., encrypting D by F 2). It turns out that finding
FDs locally is significantly slower than applying F 2 on the
synthetic dataset. For example, TANE takes 1,736 seconds on
the synthetic dataset whose size is 25MB to discover FDs,
while F 2 only takes 2 seconds.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

1/2 1/4 1/6 1/8 1/10

T
im

e
 O

v
e
rh

e
a

d

α value

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

1/2 1/4 1/6 1/8 1/10

T
im

e
 O

v
e
rh

e
a

d

α value

(a) Customer dataset (73MB) (b) Orders dataset (0.325GB)
Fig. 10: FD Discovery Time Overhead

Second, we compare the performance of discovering FDs
from the original and encrypted data, for both Customer and
Orders datasets. We define the dependency discovery time
overhead o = T ′−T

T , where T and T ′ are the time of
discovering FDs from D and D̂ respectively. The result is
shown in Figure 10. For both datasets, the time overhead is
small. It is at most 0.4 for the Customers dataset and 0.35 for
the Orders dataset. Furthermore, the discovery time overhead
increases with the decrease of α value. This is because with
smaller α, the GROUP and FP steps insert more artificial
records to form ECGs for higher security guarantee. This is
the price to pay for higher security guarantee.

VII. RELATED WORK

Data security is taken as a primary challenge introduced
by the database-as-a-service (DaS) paradigm. To protect the
sensitive data from the DaS service provider, the client
may transform her data so that the server cannot read the
actual content of the data outsourced to it. Hacigumus et
al.’s work [20], [11] is one of the pioneering research that
explores the data encryption for the DaS paradigm. They
develop a framework that supports efficient query execution
over encrypted data in the DaS paradigm. The key idea is to
split the domain values into buckets. However, the bucket-
based scheme is vulnerable against the frequency analysis
attack as it uses the deterministic encryption. CryptDB [21]
employs multiple encryption functions and encrypts each data
item under various sequences of encryption functions in an
onion approach. Alternatively, Cipherbase [22] exploits the
trusted hardware (secure co-processors) to process queries on
encrypted data. These cryptographic techniques are not FD-
preserving.

Data encryption for outsourcing arises the challenge of
performing computations over the encrypted data. A number of
new encryption schemes like searchable encryption [16], order-
preserving encryption [23], [24], attribute-based encryption
[25], [26], and format-preserving encryption [27] are devel-
oped to support a diverse set of data features. These encryption
schemes are called property-preserving [7], as they allow to
learn the properties of the dataset, by only looking at the
encrypted data elements. Most of the known practical property-
preserving solutions leak some information. [8] initialized
the research on the inference attacks against the property-
preserving encryption. The explored inference attacks include
the frequency analysis attack against the classical ciphers, the
query-recovery attack [8] against searchable symmetric en-
cryption (SSE) schemes, the `p-optimization attack [5] against
the deterministic encryption, and various attacks (e.g., [5],
[13]) against the order-preserving encryption. FD-preserving
encryption is a type of property-preserving encryption scheme.
However, none of the existing work considered the inference
attack against the FD-preserving encryption.

Integrity constraints such as FDs are widely used for data
cleaning. There have been very few efforts on finding data
integrity constraints and cleaning of inconsistent data in private
settings. Talukder et al. [28] consider a scenario where one
party owns the private data quality rules (e.g., FDs) and the
other party owns the private data. These two parties wish to
cooperate by checking the quality of the data in one party’s
database with the rules discovered in the other party’s database.
They require that both the data and the quality rules need to
remain private. They propose a cryptographic approach for FD-
based inconsistency detection in private databases without the
use of a third party. The quadratic algorithms in the protocol
may incur high cost on large datasets [28]. Barone et al.
[29] design a privacy-preserving data quality assessment that
embeds data and domain look-up table values with Borugain
Embedding. The protocol requires a third party to verify the
(encrypted) data against the (encrypted) look-up table values
for data inconsistency detection. Both work assume that the
data quality rules such as FDs are pre-defined. None of these
work can be directly applied to our setting due to different
problem definition and possibly high computational cost.

Efficient discovery of FDs in relations is a well-known
challenge in database research. Several approaches (e.g., TANE
[6] and FD MINE [30]) have been proposed. [31] classifies
and compares seven FD discovery algorithms in the literature.
[32] presents an excellent survey of FD discovery algorithms.

VIII. CONCLUSION AND DISCUSSION

In this paper, we presented F 2 algorithm that is FD-
preserving and frequency-hiding. It can provide provable se-
curity guarantee against the FD-preserving chosen plaintext
attack and the frequency analysis attack. Our experiment
results demonstrate the efficiency of our approach.

We acknowledge that F 2 does not support efficient data
updates, since it has to apply splitting and scaling from scratch
if there is any data update. For the future work, we will
consider how to address this important issue.

IX. ACKNOWLEDGEMENT

This material is based upon work supported by the National
Science Foundation (NSF) under Grant No. 1350324 and
1464800. We would also thank the anonymous reviewers for
their comments and suggestions.

REFERENCES

[1] C. Batini et al., “A comparative analysis of methodologies for database
schema integration,” ACM Computing Surveys, pp. 323–364, 1986.

[2] L. Chiticariu et al., “Semi-automatic schema integration in clio,” in
Proceedings of the Very Large Database Endowment, 2007, pp. 1326–
1329.

[3] W. Fan et al., “Discovering conditional functional dependencies,” IEEE
Transactions on Knowledge and Data Engineering, pp. 683–698, 2011.

[4] G. I. Davida et al., “A database encryption system with subkeys,” ACM
Transactions on Database Systems, pp. 312–328, 1981.

[5] M. Naveed et al., “Inference attacks on property-preserving encrypted
databases,” in ACM Conference on Computer and Communications
Security, 2015, pp. 644–655.

[6] Y. Huhtala et al., “Tane: An efficient algorithm for discovering func-
tional and approximate dependencies,” The Computer Journal, vol. 42,
no. 2, pp. 100–111, 1999.

[7] O. Pandey and Y. Rouselakis, “Property preserving symmetric encryp-
tion,” in International Conference on the Theory and Applications of
Cryptographic Techniques, 2012, pp. 375–391.

[8] M. S. Islam et al., “Access pattern disclosure on searchable encryption:
Ramification, attack and mitigation.” in Network and Distributed System
Security Symposium, 2012, pp. 12–23.

[9] P. Bohannon et al., “Conditional functional dependencies for data
cleaning,” in IEEE International Conference on Data Engineering,
2007, pp. 746–755.

[10] B. Marnette et al., “Scalable data exchange with functional dependen-
cies,” Proceedings of Very Large Database Endowment, pp. 105–116,
2010.

[11] H. Hacigumus et al., “Executing sql over encrypted data in the database-
service-provider model,” in ACM International Conference on Manage-
ment of Data, 2002, pp. 216–227.

[12] B. Dong et al., “Prada: Privacy-preserving data-deduplication-as-a-
service,” in ACM International Conference on Information and Knowl-
edge Management, 2014, pp. 1559–1568.

[13] F. B. Durak et al., “What else is revealed by order-revealing encryp-
tion?” in ACM Conference on Computer and Communications Security,
2016, pp. 1155–1166.

[14] M. Bellare et al., “A concrete security treatment of symmetric encryp-
tion,” in Symposium on of Foundations of Computer Science, 1997, pp.
394–403.

[15] A. Heise et al., “Scalable discovery of unique column combinations,”
Proceedings of Very Large Database Endowment, pp. 301–312, 2013.

[16] D. X. Song et al., “Practical techniques for searches on encrypted data,”
in IEEE Symposium on Security and Privacy, 2000, pp. 44–55.

[17] B. Dong and W. Wang, “Frequency-hiding dependency-preserving en-
cryption for outsourced databases (full version),” http://www.cs.stevens.
edu/∼hwang4/papers/F2-icde17.pdf, 2017.

[18] T. Sanamrad et al., “Randomly partitioned encryption for cloud
databases,” in Data and Applications Security and Privacy XXVIII,
2014, pp. 307–323.

[19] F. Kerschbaum, “Frequency-hiding order-preserving encryption,” in
ACM Conference on Computer and Communications Security, 2015,
pp. 656–667.

[20] H. Hacigumus et al., “Providing database as a service,” in IEEE
International Conference on Data Engineering, 2002, pp. 29–38.

[21] R. A. Popa et al., “Cryptdb: Processing queries on an encrypted
database,” Communications of the ACM, pp. 103–111, 2012.

[22] A. Arasu et al., “Orthogonal security with cipherbase,” in Conference
on Innovative Data Systems Research, 2013.

[23] A. Boldyreva et al., “Order-preserving symmetric encryption,” in Inter-
national Conference on the Theory and Applications of Cryptographic
Techniques, 2009, pp. 224–241.

[24] A. Boldyreva et al., “Order-preserving encryption revisited: Improved
security analysis and alternative solutions,” in Annual Cryptology Con-
ference, 2011, pp. 578–595.

[25] V. Goyal et al., “Attribute-based encryption for fine-grained access
control of encrypted data,” in Conference on Computer and Communi-
cations Security, 2006, pp. 89–98.

[26] S. Garg et al., “Attribute-based encryption for circuits from multilinear
maps,” in Advances in Cryptology, 2013, pp. 479–499.

[27] M. Bellare et al., “Format-preserving encryption,” in International
Workshop on Selected Areas in Cryptography, 2009, pp. 295–312.

[28] N. Talukder et al., “Detecting inconsistencies in private data with secure
function evaluation,” Purdue University, Tech. Rep., 2011.

[29] D. Barone et al., “A privacy-preserving framework for accuracy and
completeness quality assessment,” Emerging Paradigms in Informatics,
Systems and Communication, 2009.

[30] H. Yao et al., “Fd mine: discovering functional dependencies in a
database using equivalences,” in IEEE International Conference on
Data Mining, 2002.

[31] T. Papenbrock et al., “Functional dependency discovery: An experi-
mental evaluation of seven algorithms,” Proceedings of the Very Large
Database Endowment, 2015.

[32] J. Liu et al., “Discover dependencies from data a review,” IEEE
Transactions on Knowledge and Data Engineering, pp. 251–264, 2010.

