
Integrity Verification of Outsourced Frequent
Itemset Mining with Deterministic Guarantee

Boxiang Dong
Department of Computer Science
Stevens Institute of Technology

Hoboken, NJ, USA
Email: bdong@stevens.edu

Ruilin Liu
Department of Computer Science
Stevens Institute of Technology

Hoboken, NJ, USA
Email: rliu3@stevens.edu

Wendy Hui Wang
Department of Computer Science
Stevens Institute of Technology

Hoboken, NJ, USA
Email: Hui.Wang@stevens.edu

Abstract—In this paper, we focus on the problem of result
integrity verification for outsourcing of frequent itemset mining.
We design efficient cryptographic approaches that verify whether
the returned frequent itemset mining results are correct and
complete with deterministic guarantee. The key of our solution
is that the service provider constructs cryptographic proofs of
the mining results. Both correctness and completeness of the
mining results are measured against the proofs. We optimize
the verification by minimizing the number of proofs. Our
empirical study demonstrates the efficiency and effectiveness of
the verification approaches.

Keywords-Data-mining-as-a-service; Cloud computing; in-
tegrity verification; frequent itemset mining;

I. INTRODUCTION

The increasing ability to generate vast quantities of data
presents technical challenges for efficient data mining. Out-
sourcing data mining computations to a third-party service
provider (server) offers a cost-effective option, especially for
data owners (clients) of limited resources. This introduces the
data-mining-as-a-service (DMaS) paradigm. Cloud comput-
ing provides a natural solution for the DMaS paradigm.

Although the DMaS paradigm is advantageous to achieve
sophisticated analysis on large volumes of data in a cost
effective way, it raises a few security issues. One of the main
security concerns is that the server may return incorrect data
mining results due to many possible reasons (e.g., software
bugs and malicious insiders) [3], [7]. After all, a server has the
financial incentive to improve its revenue by returning cheaper
(and thus incorrect) result while charging for more [3], [16].

Given the fact that many data mining applications (e.g.,
fraud detection and business intelligence) are so critical, it is
important to provide efficient and practical methods to enable
computationally-weak clients to verify the result integrity of
data mining computations that are outsourced to a potentially
untrusted service provider. In this paper, we focus on frequent
itemset mining, a popular and important data mining problem.
Our goal is to verify whether the server returned correct
and complete set of frequent itemsets. By correctness, we
mean that all itemsets returned by the server are frequent. By
completeness, we mean that no frequent itemset is missing in
the returned result.
Prior Work. [7] defined the notation of verifiable computation
(VC) that allows a computationally limited client to be able to

verify the correctness of the result of expensive computations
outsourced to a computationally powerful server. Existing
VC protocols can verify high degree polynomial functions
[2], boolean functions [16], and set operations [15]. These
VC protocols assume the same computation is executed on
many different inputs, so that the cost of the expensive one-
time setup phase can be amortized over all instances. This
is not ideal for the DMaS paradigm. Some protocols (e.g.
[4]) consider functions that are encoded as a Boolean circuit
and use fully homomorphic encryption [8], which only can
handle simple operations such as addition, multiplications and
XOR operations. The existing work on result verification of
SQL query evaluation over the outsourced databases (e.g.,
[9], [17]) cannot be applied to the DMaS paradigm, due
to the fundamental difference between SQL query evaluation
and data mining applications. [19], [5] proposed efficient in-
tegrity verification approaches for outsourced frequent itemset
mining. However, both of them only can provide probabilistic
result integrity guarantee.
Contributions. In this paper, we aim at designing verification
techniques that can provide deterministic guarantee for both
correctness and completeness of outsourced frequent itemset
mining. The key idea of our solution is to require the server to
construct cryptographic proofs of its mining results. Both cor-
rectness and completeness of the mining results are measured
against the proofs with 100% certainty. Our contributions
include the following: (1) we adapt the verification protocol
of primitive set intersection operation [15] to our problem,
and show how to construct cryptographic proofs that can
verify the exact support of itemsets; (2) we optimize the
verification algorithm by reducing the number of proofs for
both correctness and completeness verification, and show that
a small number of proofs is sufficient to verify the correctness
and completeness of a large set of frequent itemsets; (3) we
extend our verification approaches for the outsourced frequent
itemset mining to maximal frequent itemset mining; and (4) we
complement our analytical results with extensive experiments
evaluating the performance of our verification algorithm.
Our experimental results show that our verification approach
can achieve both correctness and completeness deterministic
guarantees with a small number of short proofs that can be
constructed fast.

2013 IEEE 13th International Conference on Data Mining

1550-4786/13 $31.00 © 2013 IEEE

DOI 10.1109/ICDM.2013.81

1025

II. PRELIMINARIES

Frequent Itemset Mining. Given a transaction dataset D that
consists of n transactions, let I be the set of unique items in D.
The support of the itemset I ⊆ I is the number of transactions
in D that contain I . An itemset I is frequent if its support is
no less than a minimum support threshold minsup [1].
Outsourcing Setting. The data owner (client) outsources her
dataset D, with the minimum support threshold minsup, to
the service provider (server). The server performs frequent
itemset mining on the received dataset and returns the mining
results to the client. We assume the service provider runs exact
frequent itemset mining algorithms instead of approximate
ones [14]. We allow the client to use privacy-preserving
frequent itemset mining algorithms [13], [18] to encrypt the
dataset; the server returns the accurate itemsets in encrypted
format. Our verification procedure can verify the support of
the returned itemsets (in encrypted format).
Verification Goal. We formally define the correctness and
completeness of the frequent itemset mining results. Let F be
the real frequent itemsets in the outsourced database D, and
FS be the frequent itemsets returned by the server. We define
the precision P of FS as P = |F∩FS |

|FS | (i.e., the percentage of
returned frequent itemsets that are correct), and the recall R
of FS as R = |F∩FS |

|F | (i.e., the percentage of correct frequent
itemsets that are returned). Our aim is to catch any answer of
P < 1 and/or R < 1 with 100% probability.

III. SET INTERSECTION VERIFICATION PROTOCOL

In this paper, we adapt the set intersection verification
protocol [15] to our problem. Formally, given a collection sets
S = {S1, . . . , Sk}, E = S1 ∩ S2 ∩ · · · ∩ Sk is the correct
intersection of S if and only if:

• E ⊆ S1 ∧ · · · ∧ ⊆ Sk (subset condition);
• (S1−E)∩ · · · ∩ (Sk−E) = ∅ (completeness condition).

Here the completeness condition is on the set intersection. To
avoid confusion with our completeness verification of frequent
itemsets, in the remainder of the paper, we use the term
intersection completeness for the completeness condition on
the set intersection.

Papamanthou et al. proposed a set intersection verification
protocol to verify that E is the correct intersection of S [15].
Next, we explain the protocol details briefly.
Proof construction by the server. Given an intersection result
E = {e1, . . . , eδ}, to prove that E = S1 ∩ · · · ∩ Sk, the
set intersection verification protocol requires the server to
construct its proof Π(E) that consists of four parts: (1) an
encoding of the result (as a polynomial) as the coefficients B
={bδ, bδ−1, · · · , b0} of the polynomial (s+e1)(s+e2) · · · (s+
eδ), where s is a randomly chosen value by the client and kept
as secret; (2) a set of accumulation values A ={acc(Sj)|∀Sj ∈
S} which can be used to verify that the proof is indeed
computed from the original dataset D; (3) the subset witness
W = {Wj |∀Sj ∈ S} as the proof of the subset condition; and
(4) the intersection completeness witness C = {Cj |∀Sj ∈ S} as
the proof of the intersection completeness condition. The total

complexity of proof construction is O(Nlog3N + mεlogm),
where N =

∑k
j=1 |Sj |, m is the number of leaves of the

Merkle tree of the dataset D, and ε ∈ (0, 1) decides the number
of levels of the Merkle tree (as [1/ε]). More details of the
Merkle tree will be present in Section IV.
Correctness verification by the client. After receiving
Π(E) = {B,A,W, C} together with E, the client verifies
the following: (1) whether the coefficients B are computed
correctly by the server; (2) whether any given accumulation
value in A is indeed calculated from the original dataset; (3)
whether E satisfies the subset condition by using W; and (4)
whether E satisfies the intersection completeness condition
by using C. We omit the details of proof construction and
verification due to limited space. Readers can refer to [15] for
more details.

IV. BASIC SOLUTION

In this section, we present our basic verification approach.

A. Authenticated Data Structure

Before sending the dataset D to the server, the client
constructs an authenticated data structure. The authenticated
data structure is constructed from the item-based inverted
index. In particular, given a dataset D that contains p unique
items, its item-based inverted index EI consists of p inverted
lists {L1, . . . , Lp}, each maintaining the index of transactions
that contains the item Ii. We construct the authenticated
data structure as the Merkle hash tree T [12] of the inverted
index. In particular, for each leaf lj of T that corresponds
to the jth inverted list Lj in EI , the client executes the set
intersection verification protocol to construct acc(lj). Then
the client applies a collision-resistant hash function hash(·)
recursively over the nodes of T . Each leaf lj of T is assigned
the value hj = hash(acc(lj)

(s+j)), where s is a randomly
chosen value by the client and kept as secret. Each inter-
nal node that has children c1, . . . , ck is assigned the value
hv = hash(hc1 || . . . ||hck). The root of the tree is signed to
produce signature sig(EI). The client sends T to the server
with D, and keeps sig(EI) locally. At this point, besides
constructing the Merkle tree, the client finds all frequent and
infrequent 1-itemsets from the inverted index. She maintains
such information for later verification.

B. Verification Procedure

The frequent itemset verification problem can be mapped
to the set intersection verification problem by treating each
inverted list Li as a set. Then verifying whether any itemset I
is included in a set of transactions T I is equivalent to verifying
whether T I is the correct intersection of the inverted lists of
all items in I . Following this idea, we design the verification
procedure based on the set intersection verification protocol.
The details of the procedure are discussed below.
Verification Preparation by the client. Before outsourcing
the dataset D to the server, the client constructs the item-based
inverted index EI of D and the Merkle hash tree T of EI . The
client keeps the hash value of the root element of T locally,
and sends D and T to the server.

1026

Proof construction by the server. After the server receives
D and T from the client, the server runs frequent itemset
mining on D and discovers a set of frequent itemsets. Before
the server sends its result FS to the client, it constructs proofs
for result integrity verification. In particular, for each itemset
I ∈ FS and each itemset I �∈ FS , the server constructs a
proof that can be used to verify the exact support of I . The
proof of the itemset I ∈ FS (I �∈ FS , resp) is used for the
correctness (completeness, resp.) verification.
Result verification by the client. For each itemset I ∈ FS ,
let Π(I) = {B,A,W, C} be its proof, the client launches the
following steps for verification: (1) it runs the set intersection
verification protocol on Π(I) to verify I is contained in a
set of transactions T I ; (2) it computes the support of I as
Isup = |B| −1. Then the correctness is to verify whether the
support of any I ∈ FS is no less than minsup, while the
completeness verification is to verify whether the support of
any itemset I �∈ FS is less than minsup.

The complexity of the basic verification approach can be
prohibitively expensive, due to the fact that the total number of
(correctness and completeness) proofs is the same as the size
of the search space of frequent itemsets. This will introduce
considerable amounts of overhead at both the client and the
server sides.

V. VERIFICATION OPTIMIZATION

In this section, we discuss how to reduce the number
of proofs for verification. The optimization is based on the
concept of maximal frequent itemsets (MFI) and minimal
infrequent itemsets (MII). In particular, given a set of frequent
itemsets FS by the server, MFI is a subset of FS such that
for each itemset I ∈ MFI , there does not exist any itemset
I ′ ∈ FS such that I ⊆ I ′; while MII is a set of itemsets
that do not appear in FS such that for each itemset I ∈MII ,
there does not exist any itemset I ′ �∈ FS such that I ′ ⊆ I .

A. Proof Construction at Server Side

To prepare for correctness (completeness, resp.) verification,
the server constructs a cryptographic proof for each MFI
(MII , resp.) itemset. The MII itemsets should include all
infrequent 1-itemsets. To further reduce the number of proofs,
the server only needs to construct the proofs of those MII
itemsets that are of length greater than one and only contain
frequent 1-itemsets. After the proof construction is finished,
the server sends the proofs together with FS to the client.

B. Verification at Client Side

Correctness verification. The client uses the server’s proofs
to verify that each MFI itemset is frequent by running the set
intersection verification protocol. Though simple, only sending
proofs of MFI itemsets to the client raises two new issues.
The first issue is to verify that the server has computed the
proof of all MFI itemsets of FS . To do this, for each itemset
I ∈ FS , the client verifies whether there exists a MFI
itemset I ′ satisfies that I ⊆ I ′. If it does not, the client
concludes that the server misses the proof of at least one MFI
itemset. Another issue is that the client needs to ensure that

all MFI itemsets are honestly constructed from FS , not from
the (correct) mining results of D. This can be achieved by
verifying: (1) for each MFI itemset I , whether there exists
an itemset I ′ ∈ FS such that I ′ ⊆ I; and (2) for each itemset
I ∈ FS , whether there exists a MFI itemset I ′ satisfies that
I ⊆ I ′.
Completeness Verification. First, the client verifies the
correctness and completeness of returned MII itemsets by
constructing MII from MFI , assuming she has verified
that MFI is correct and complete. Next, the client uses
the proof of MII itemsets to prove the completeness of
returned frequent itemsets. Based on their relationships with
the returned frequent itemsets FS , we categorize the missing
frequent itemsets into four types. In particular, given a frequent
itemset I that is not returned by the server, it belongs to one
of the following four types: (1) type-1 (non-overlap): for each
itemset I ′ ∈ FS , I ∩ I ′ = ∅; (2) type-2 (subset): there exists
a frequent itemset I ′ ∈ FS such that I ⊆ I ′; (3) type-3
(superset): there exists a frequent itemset I ′ ∈ FS such that
I ′ ⊆ I; and (4) type-4 (overlap): there is no frequent itemset
I ′ ∈ FS such that I ⊆ I ′ or I ′ ⊆ I . However, there exists
a frequent itemset I ′ ∈ FS such that I ∩ I ′ �= ∅. Next, we
describe how to verify these four types of missing frequent
itemsets respectively.

Verification of type-1 missing itemsets. It is easy to infer
that any type-1 missing itemset must only contain frequent 1-
itemsets that do not appear in FS . Therefore, the client simply
checks whether there is any frequent 1-itemsets of D that is
not included in FS . If there is, the client concludes that there
must exist at least one type-1 missing frequent itemset. The
complexity of verification is O(|FS |). Proof-based verification
is not needed. The frequent 1-itemsets are collected when the
client constructs the inverted index.

Verification of type-2 missing itemsets. The client verifies
whether for each MFI itemset, all subsets of its corresponding
itemset are included in FS . In this case, as long as I is
frequent (verified by correctness verification), this verification
procedure does not need to use any proof.

Verification of type-3 & 4 missing itemsets. We show
that if there is any type-3/4 frequent itemset missing, the MII
itemsets of FS include at least one frequent itemset. Therefore,
the client verifies whether there exists any type-3/4 missing
frequent itemsets by verifying the infrequentness of each MII
itemset via its proof. If there exists any MII itemset whose
proof cannot show that it is infrequent, there exists at least
one type-3/4 missing itemset. The complexity of verification
is O(N), where N =

∑
∀I∈MII |I|.

We can prove that the optimized verification approach
provides the same security guarantee as our basic approach.
The details of proof are omitted due to limited space.

C. Complexity Analysis

Proof construction at server side. The total complexity
of proof construction is O(Nlog3N + pεlogp), where N =∑

I∈MFI∪MII |I|, p is the number of unique items of D, and

1027

ε ∈ (0, 1) is a user-specified constant that is used to specify
the number of levels of the Merkle tree (as [1/ε]).
Verification at client side. The complexity of verification is
O(N), where N =

∑
∀I∈MII∪MFI |I|.

Upper bound of number of MFI and MII itemsets. The
complexity of both proof construction and verification is linear
in the number of MII and MFI itemsets. We next estimate
the theoretical upperbound of total number of MII and MFI
itemsets, as well as their total length. The upperbound of the
number of MFI itemsets is

(
p

[p2]−1

)
, while the upperbound of

the number of MII itemsets is
(

p
[p2]

)
, where p is the number

of unique items of D. The upperbound of the total length of
MFI and MII itemsets is

(
p

[p2]−1

)
([p2]− 1) +

(
p
[p2]

)
[p2].

VI. EXTENSION

In this section, we explain how to adapt our verification
approaches to maximal frequent itemsets (i.e., those itemsets
that do not have any superset itemset that is frequent). We use
MFI and MII that are defined in Section V. In particular,
To prove a returned itemset I ∈ FS is correct, the proof must
show that I is frequent and maximal (i.e., all supersets of I are
infrequent). Frequentness can be verified by using the proof of
I . To prove that all returned itemsets are maximal, the server
constructs the proof for all MFI itemsets of FS . The server
does not need to prepare any other proof for completeness
verification; the proofs for correctness verification will be used
for completeness verification too.

The correctness verification at the client side is trivial.
Regarding the completeness verification, we categorize the
possible missing maximal frequent itemsets into two types. In
particular, consider a maximal frequent itemset I that is not
returned by the server, it should either overlap or not overlap
with any returned frequent itemset. The verification of missing
non-overlapped maximal frequent itemsets is similar to the
verification of type-1 missing itemsets for frequent itemset
mining. The verification of missing overlapping maximal
frequent itemsets is consumed by the correctness verification
via using the proofs of MFI and MII . We can prove that the
our verification approach can catch any incorrect/incomplete
maximal frequent itemset mining results. The details of proof
are omitted due to limited space.

VII. EXPERIMENTS

We ran a battery of experiments to measure the performance
of proof construction at the server side and verification at the
client side and explored various factors that impact the ver-
ification performance, including various error ratio, frequent
itemsets of different lengths, and different database sizes. In
this section, we discuss our experimental results.

A. Setup

Hardware. We run our experiment on an Intel machine with
2.4GHz CPU, 4GB memory, running Mac OS X 10.7.5.
Datasets. We use the IBM generator to generate four synthetic
datasets S1, S2, S3, and S4 of various sizes. We also use the
real-world Retail dataset available at the Frequent Itemset

Dataset # of # of Avg. trans. minsup # of freq.
trans. items length itemsets

S1 103 49 10 250 36
S2 104 49 10 250 3854
S3 105 49 10 250 149744
S4 106 49 10 250 3074610
R1 88162 16470 124 50 16778
R2 500 100 2.4 5 97

TABLE I
DETAILS OF DATASETS

Mining Dataset Repository1. The Retail dataset R1 contains
88162 transactions and 16470 items. We also construct a
small dataset R2 from the Retail dataset that contains 500
transactions and 100 items. Both Retail datasets are much
sparser than the synthetic datasets. Table I shows the details
of the datasets and our mining setup.
Simulation of malicious actions. We set the error ratio r =
1%, 2%, 5%, 10%, and 20%. For the simulation of incomplete
result, we randomly pick r percent of frequent itemsets from
the mining results and remove these picked itemsets. For the
simulation of incorrect result, we randomly generate r percent
of infrequent itemsets and insert them into the result.

B. Implementation

We implement the code in C++. We use the PBC library2

to implement bilinear pairing, and SHA256 for the implemen-
tation of the hash function in Merkle tree construction. The
accumulation values in Merkle tree are computed by using the
element power function in the PBC library. The coefficientsW
in the proof are computed using the NTL library3. To improve
the performance at the server side, we use multi-threading
programming to allow parallel proof construction and client
preparation. We implemented the Apriori algorithm [1] for
frequent itemset mining.

C. Proof Construction at the Server Side

Time performance. First, we measure the time of preparing
one single proof of (in)frequent itemsets of various lengths.
As shown in Figure 1 (a), the proof preparation time increases
with the length of frequent itemset. This is consistent with our
theoretical analysis that the complexity of proof construction
is dependent on the size of mining results.

Second, we measure the total time of proof preparation.
Figure 1 (b) shows the total preparation time for the mining
results of various error ratios. We consider the error ratio
r = 1%, 2%, 5%, 10%, and 20%. We observe that the correct-
ness proof preparation time increases slowly with the growth
of the error ratio. By further analysis we found that adding
infrequent itemsets to the mining results leads to significant
change of number of MFI itemsets. For example, when the
error ratio changes from 10% to 20%, the number of MFI
itemsets changes from 32 to 40 (25% increase). However, the
total proof construction time does not increase much since the

1Frequent Itemset Mining Dataset Repository: http://fimi.ua.ac.be/data/.
2PBC library: http://crypto.stanford.edu/pbc/manual/.
3NTL library: http://www.shoup.net/ntl/doc/tour-intro.html.

1028

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

1 2 3 4 5 6

P
ro

of
 P

re
p.

 T
im

e
(S

ec
on

ds
)

Itemset Length

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

1% 2% 5% 10% 20%

P
ro

of
 P

re
p.

 T
im

e
(S

ec
on

ds
)

Error Ratio (%)

Completeness Verification
Correctness Verification

(a) Construction time of (b) Total proof
one single proof preparation time

Fig. 1. Proof Construction Time (R2 dataset)

 0

 0.2

 0.4

 0.6

 0.8

 1

1% 2% 5% 10% 20%

O
pt

im
iz

at
io

n
R

at
io

 (
%

)

Error Ratio (%)

Completeness Verification
Correctness Verification

 0
 0.05

 0.1
 0.15

 0.2
 0.25

 0.3
 0.35

 0.4
 0.45

1% 2% 5% 10% 20%

V
er

ifi
ca

tio
n

T
im

e
(S

ec
on

ds
)

Error Ratio (%)

Completeness Verification
Correctness Verification

(a) Proof optimization ratio (b) Client verification time
Fig. 2. Proof Optimization Ratio & Verification Time (R2 dataset)

proofs of new MFI itemsets can be constructed very fast.
Figure 1 (b) also shows that opposite to the correctness proof
preparation, the completeness proof preparation time decreases
when the error ratio increases. To find the reason we studied
how MII itemsets change when the error ratio grows. We
found that the MII itemsets include fewer items when more
frequent itemsets are missing. For instance, when the error
ratio changes from 2% to 5%, the number of completeness
proofs changes from 33 to 27. This explains why the proof
construction time decreases indeed.
Proof size. First, we measure the optimization ratio of number
of proofs for various error ratios. We define the optimization
ratio as 1 − k′/k, where k and k′ are the number of proofs
by our basic approach and by our optimization respectively.
Intuitively, the closer the optimization to 1, the better. Figure
2 (a) displays the optimization ratio. We observe that the
optimization ratio of the number of completeness proofs is
very close to 1. In particular, the basic verification approach
requires (2|I| − |FS |) proofs (for this experiment |I| =
100 and |FS | = 97) for completeness verification, while
our optimization approach only requires no more than 34
completeness proofs. This proves that our optimization can
dramatically reduce the number of proofs. We also observe
that the optimization ratio of the number of correctness proofs
deceases when the error ratio increases. The reason is that
adding infrequent itemsets into the result leads to more MFI
itemsets and thus the number of proofs, which decreases the
optimization ratio. Nevertheless, the optimization ratio of the
number of correctness proofs is still high; it is at least 0.6
even when the error ratio is 20%.

We also measure the total size of the proofs for various
error ratios. The result shows that the trend of the total size of
the proofs with regard to various error ratios is consistent with
the trend of number of proofs (Figure 2 (a)). In particular, the
total size of completeness proofs decreases dramatically when

the error ratio grows, while the total number of the correctness
proofs increase with the growth of the error ratio. In most of
the cases, the total size of proofs does not exceed 16KB. We
omit the results due to limited space.

D. Verification Time at the Client Side

First, we measure the verification time at the client side
for various error ratios, and show the result in Figure 2
(b). First, we observe that both completeness and correctness
verification are very fast. It never exceeds 0.45 seconds.
Second, we observe that the completeness verification time
decreases dramatically when the error ratio increases from 2%
to 5%, then keeps stable afterward. We analyzed why this
happens. It turned out that when the ratio equals to 2% (1%
as well), the incomplete itemsets were caught by checking
against the proofs, while for the error ratio changes to 5% and
more, the incomplete itemsets were caught by missing at least
one proper subset or one frequent 1-itemset, which is much
faster than using proofs. Third, we observe that the correctness
verification time drops sharply when the error ratio changes
from 1% to 5%. The reason is that higher error ratio leads to
higher chance that the client catches an infrequent itemset at
earlier trials. When the error ratio increases from 5% to 20%,
the verification time is stable because now the client can catch
the infrequent itemset by the first trial.

E. Client VS. Server

We compared the time performance at both the client and
the server sides for various support threshold values. We vary
the support threshold values so that the number of frequent
itemsets is approximately 1%, 5%, and 10% of the number
of transactions. Table II shows the comparison result. First, it
is not surprising that the verification time at the client side
increases with the growth of the number of frequent itemsets.
The same pattern also holds for the server side. Second, in
all of our testings, the total overhead at the client side is
much smaller than that at the server side. Furthermore, the
verification procedure at the client side is much faster than
the mining at the server side. This proves that the client
can outsource the mining task to the server, while verifying
the result integrity with the cost that is cheaper than mining
locally.

minsup # of Freq. Client side Server side
Itemsets Verify Proof prep. mining

402 10 0.000164 24.72 0.03707
203 50 0.001358 266.985 0.08984
157 99 0.00332 572.591 0.1355

TABLE II
CLIENT VS. SERVER W.R.T TIME PERFORMANCE (S1 DATASET)

F. Deterministic VS. Probabilistic Approaches

We implemented a verification approach that returns prob-
abilistic verification guarantee for outsourced frequent itemset
mining [5], and compared its performance with our determin-
istic approach. Table III shows the comparison result on S3

dataset of various settings. We pick the error ratios of 1%,

1029

and vary the probabilistic guarantee threshold from 90% to
100% (probability = 100% corresponds to our deterministic
approach). Table III shows the details of the comparison result.
In general, the deterministic approach brings higher overhead
at the server side than the probabilistic approach. However, this
is the sacrifice that we have to pay for higher result integrity
guarantee. We also observe that in some cases (marked as
N/A in Table III), the probabilistic approach fails as it cannot
provide required probabilistic correctness guarantee due to the
data distribution. The deterministic approach does not have
such limit.

Error Integrity Type Client Server
ratio Prob. Verify Proof prep. Mining

1% 90%
R N/A 0 0.042
M 1.433 0 1024.53

1% 95%
R N/A 0 0.042
M 0.945 0 1204.59

1% 99%
R N/A 0 0.042
M 0.689 0 1498.67

1% 100%
R 0.000628 1660.12 0.5707
M 0.4123 2785.6 0.5707

TABLE III
TIME PERFORMANCE (IN SECONDS) OF DETERMINISTIC VS

PROBABILISTIC APPROACHES (S3 DATASET; R: CORRECTNESS, M :
COMPLETENESS)

G. Scalability

To measure the scalability of our verification approaches,
we measured the time performance on the datasets of various
sizes. Figure 3 (a) shows that the time of constructing one
single proof increases with the data size. However, the proof
can be constructed fast; it only needs 35 seconds even for a
dataset of 106 records. Figure 3 (b) shows that the verification
time does not change much with the data size, since: (1) the
verification complexity is decided by the number of MII
and MFI itemsets, and (2) the verification procedure always
catches the first incomplete itemset by type-1/2 checking for
most of the cases. Similar observations hold on the Retail
dataset (88162 transactions); it only requires 0.001045 seconds
for verification. This convinces us that our approach can be
used for efficient verification of outsourced frequent itemset
mining.

 0
 5

 10
 15
 20
 25
 30
 35
 40

103 104 105 106

T
im

e
(S

ec
on

ds
)

Dataset Size

 0
 0.001
 0.002
 0.003
 0.004
 0.005
 0.006
 0.007
 0.008

103 104 105 106V
er

ifi
ca

tio
n

T
im

e
(S

ec
on

ds
)

Dataset Size

(a) Construction time of (b) Client verification time
one proof (itemset length = 3)

Fig. 3. Scalability (error ratio=1%)

VIII. CONCLUSION

In this paper, we presented an efficient result integrity
verification approach that can provide deterministic guarantee

for outsourced frequent itemset mining. The key idea of the ap-
proach is to construct cryptographic proofs of all (in)frequent
itemsets. We discussed how to optimize the number of proofs
to improve the performance. We also extended our study to
the verification of maximal frequent itemset mining.

Our solution mainly focuses on correctness and complete-
ness of the mining results. An interesting extension to our
method would be the verification of freshness, i.e., whether
the returned mining results are from the latest version of
outsourced data, assuming that the client updates her dataset
from time to time.

REFERENCES

[1] Rakesh Agrawal and Ramakrishnan Srikant. Fast algorithms for mining
association rules in large databases. In VLDB, 1994.

[2] Siavosh Benabbas, Rosario Gennaro, and Yevgeniy Vahlis. Verifiable
delegation of computation over large datasets. In CRYPTO, 2011.

[3] Ran Canetti, Ben Riva, and Guy N. Rothblum. Practical delegation of
computation using multiple servers. In CCS, 2011.

[4] Kai-Min Chung, Yael Tauman Kalai, and Salil P. Vadhan. Improved
delegation of computation using fully homomorphic encryption. In
CRYPTO, 2010.

[5] Boxiang Dong, Ruilin Liu, and Wendy Hui Wang. Result Integrity
Verification of Outsourced Frequent Itemset Mining. In DBSec, 2013.

[6] Hakan Hacigümüş, Bala Iyer, Chen Li, and Sharad Mehrotra. Executing
sql over encrypted data in the database-service-provider model. In
SIGMOD, 2002.

[7] Rosario Gennaro, Craig Gentry, and Bryan Parno. Non-interactive
verifiable computing: outsourcing computation to untrusted workers. In
CRYPTO, 2010.

[8] Craig Gentry. Fully homomorphic encryption using ideal lattices. In
STOC, 2009.

[9] Feifei Li, Marios Hadjieleftheriou, George Kollios, and Leonid Reyzin.
Dynamic authenticated index structures for outsourced databases. In
SIGMOD, 2006.

[10] Ruilin Liu, Hui Wang, Anna Monreale, Dino Pedreschi, Fosca Giannotti,
and WengeGuo. Audio: An integrity auditing framework of outlier-
mining-as-a-service systems. In ECML/PKDD, 2012.

[11] Menezes, Alfred and Vanstone, Scott and Okamoto, Tatsuaki. Reducing
elliptic curve logarithms to logarithms in a finite field. In STOC, 1991.

[12] R.C.Merkle. Protocols for public key cryptosystems. In Symposium on
Security and Privacy, 1980.

[13] Ian Molloy, Ninghui Li, and Tiancheng Li. On the (in)security and
(im)practicality of outsourcing precise association rule mining. In ICDM,
2009.

[14] Jyothsna R. Nayak and Diane J. Cook. Approximate association rule
mining. In Proceedings of the Fourteenth International Florida Artificial
Intelligence Research Society Conference, 2001.

[15] Charalampos Papamanthou, Roberto Tamassia, and Nikos Triandopou-
los. Optimal verification of operations on dynamic sets. In CRYPTO,
2011.

[16] Bryan Parno, Mariana Raykova, and Vinod Vaikuntanathan. How to
delegate and verify in public: verifiable computation from attribute-based
encryption. In TCC, 2012.

[17] HweeHwa Pang, Arpit Jain, Krithi Ramamritham, and Kian-Lee Tan.
Verifying completeness of relational query results in data publishing. In
SIGMOD, 2005.

[18] Chih-Hua Tai, Philip S. Yu, and Ming-Syan Chen. k-support anonymity
based on pseudo taxonomy for outsourcing of frequent itemset mining.
In SIGKDD, 2010.

[19] W. K. Wong, David W. Cheung, Ben Kao, Edward Hung, and Nikos
Mamoulis. An audit environment for outsourcing of frequent itemset
mining. In PVLDB, 2:1162–1172, 2009.

[20] Min Xie, Haixun Wang, Jian Yin, and Xiaofeng Meng. Integrity auditing
of outsourced data. In Proceedings of the International Conference on
Very Large Data Bases (VLDB), 2007.

[21] D. Burdick, M. Calimlim, J. Gehrke, MAFIA: A Maximal Frequent
Itemset Algorithm for Transactional Databases. In Proceedings of the
International Conference on Data Engineering (ICDE), 2001.

1030

