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Abstract

In this paper, we consider the outsourcing model in
which a third-party server provides data integration as a
service. Identifying approximately duplicate records in
databases is an essential step for the information integra-
tion processes. Most existing approaches rely on estimating
the similarity of potential duplicates. The service provider
returns all records from the outsourced dataset that are sim-
ilar according to specific distance metrics. A major security
concern of this outsourcing paradigm is whether the ser-
vice provider returns sound and complete near-duplicates.
In this paper, we design ARM , an authentication system
for the outsourced record matching. The key idea of ARM
is that besides the similar record pairs, the server returns
the verification object (V O) of these similar pairs to prove
their correctness. First, we design an authenticated data
structure namedMB-tree for V O construction. Second, we
design a lightweight authentication method that can catch
the service provider’s various cheating behaviors by utiliz-
ing V Os. We perform an extensive set of experiment on
real-world datasets to demonstrate that ARM can verify
the record matching results with cheap cost.

Keywords—authentication, outsourcing, approximate
string matching, verification object, MB-tree

1 Introduction

Big data analytics offers the promise of providing valu-
able insights of knowledge. However, many companies, es-
pecially the small- and medium-sized ones, lack the compu-
tational resources, in-house knowledge and experience of
big data analytics. A practical solution to this dilemma is
that the data owner outsources the data to a computational
powerful third-party service provider (e.g., the cloud) for
cost-effective data analytics solutions.

In this paper, we consider approximate record matching,
an important data analytics operation for information inte-
gration, as the outsourced computations. Generally speak-

ing, the data owner (client) outsources a record database D
to a third-party service provider (server). The server identi-
fies the similar record pairs in D that may refer to the same
entity, where the similarity is measured by a specific string
distance function and user-defined threshold values.

For all the benefits of outsourcing and cloud computing,
though, the outsourcing paradigm deprives the data owner
of direct control over her data. This poses numerous se-
curity challenges. One of the challenges is that the server
may cheat on the record matching results. For example, the
server is incentivized to improve its revenue by computing
with less resources (e.g., only search a portion of D) while
charging for more. Therefore, it is important to authenticate
whether the service provider has performed the matching
faithfully, and returned the correct results to the client. A
naive method is to execute the record matching locally, and
compare the results with the matching results returned by
the server. Apparently this method is prohibitively costly.
We aim to design efficient methods that enable the client
to authenticate that the server returned sound and complete
similar record pairs. By soundness we mean that the re-
turned record pairs are indeed similar. By completeness we
mean that all similar records are returned.

Most existing work (e.g. [2, 7, 21]) solve the data pri-
vacy issue in the outsourced record matching computations,
aiming to prevent the server from possessing the original
data while still enabling the server to perform accurate
record matching. Previous work (e.g. [13, 19, 26]) on au-
thentication mainly focus on the SQL aggregation queries
and similarity search for Euclidean points. To our best
knowledge, ours is the first to consider the authentication
of approximate record matching on outsourced data.

In this paper, we designARM , an Authentication mech-
anism of outsourced Record Matching. The key idea of
ARM is that besides returning the similar record pairs, the
server returns a verification object (V O) that can prove the
soundness and completeness of the returned record match-
ing results. In particular, we make the following con-
tributions. First, we design an authentication tree struc-
ture named MB-tree. MB-tree is constructed by integrat-



ing Merkle hash tree [22], a popularly-used authenticated
data structure, with Bed-tree [28], a compact index for ef-
ficient string similarity search based on edit distance. We
pick Bed-tree because compared with other data structures
for string similarity measurement [25, 12], it is not lim-
ited to main memory usage and incurs minimal I/O time
when there is limited memory in the system. Besides, Bed-
tree supports incremental updates in the dataset. Second,
based on MB-tree, we design a lightweight authentication
method named V S2 for the approximate record matching.
V S2 constructs the verification object V O from the MB-
tree. The V O consists of certain MB-tree entries that can
be later utilized by the client to verify the completeness and
soundness of results. Third, we formally prove that the V O
enables to catch the server’s cheating behaviors such as tam-
pered records, soundness violation, and completeness vio-
lation. Fourth, we complement the theoretical investiga-
tion with a rich set of experiment study on two real-world
datasets. The experiment results show that ARM incurs
cheap cost at the client side. It requires no more than 11
seconds to construct the V O. Furthermore, the data owner
can save up to 87% computational efforts if she outsources
record matching to the server, while only performing veri-
fication locally. This shows that ARM is suitable for the
outsourcing setting.

The rest of the paper is organized as follows. Section 2
discusses the preliminaries. Section 3 defines the problem.
Section 4 and 5 present our verification approach. Section 6
analyzes the security guarantee of our approach. The exper-
iment results are shown in Section 7. Sections 8 discusses
the related work. Section 9 concludes the paper.

2 Preliminaries
2.1 Record Similarity Measurement

Record matching is a fundamental problem in many re-
search areas, e.g., information integration, database joins,
and more. In general, the evaluation that whether two
records match is mainly based on the string similarity of
the attribute values. There are a number of string similarity
functions, e.g., Hamming distance, n-grams, and edit dis-
tance (see [11] for a good tutorial). In this paper, we mainly
consider edit distance, one of the most popular string sim-
ilarity measurement that has been used in a wide spectrum
of applications. Informally, the edit distance of two strings
s1 and s2, denoted asDST (s1, s2), measures the minimum
number of insertion, deletion and substitution operations to
transform s1 to s2. We say two strings s1 and s2 are similar,
denoted as s1 ≈ s2, if DST (s1, s2) ≤ θ, where θ is a user-
specified similarity threshold. Otherwise, we say s1 and s2
are dissimilar (denoted as s1 6≈ s2). Without loss of gen-
erality, we assume that the dataset D only contains a single
attribute. Thus, in the following sections, we use record and
string interchangeably. Our methods can be easily adapted

to the datasets that have multiple attributes.

2.2 Authenticated Data Structure

To enable the client to authenticate the correctness of
mining results, the server returns the results along with
some supplementary information that permits result verifi-
cation. Normally the supplementary information takes the
format of verification object (V O). In the literature, VO
generation is usually performed by an authenticated data
structure (e.g., [13, 26, 19]). One of the popular authen-
ticated data structures is Merkle tree [22]. In particular, a
Merkle tree is a tree T in which each leaf node N stores
the digest of a record r: hN = h(r), where h() is a
one-way, collision-resistant hash function (e.g. SHA-1 ).
For each non-leaf node N of T , it is assigned the value
hN = h(hC1

|| . . . ||hCk
), where C1, . . . , Ck are the chil-

dren of N . The root signature sig is generated by signing
the digest hroot of the root node using the private key of
a trusted party (e.g., the data owner). The VO enables the
client to re-construct the root signature sig.

2.3 Bed-Tree for String Similarity Search

A number of compact data structures (e.g., [1, 4, 12])
are designed to handle edit distance based similarity mea-
surement. In this paper, we consider Bed-tree [28] due to
its support for external memory and dynamic data updates.
Bed-tree is a B+-tree based index structure that can handle
arbitrary edit distance thresholds. The tree is built upon a
string ordering scheme which is a mapping function ϕ to
map each string to an integer value. To simplify notation,
we say that s ∈ [si, sj ] if ϕ(si) ≤ ϕ(s) ≤ ϕ(sj). Based on
the string ordering, eachBed-tree nodeN is associated with
a string range [Nb, Ne]. Each leaf node contains f strings
{s1, . . . , sf}, where si ∈ [Nb, Ne], for each i ∈ [1, f ].
Each intermediate node contains multiple children nodes,
where for each child of N , its range [N ′b, N

′
e] ⊆ [Nb, Ne],

as [Nb, Ne] is the range of N . We say these strings that
stored in the sub-tree rooted at N as the strings that are cov-
ered by N .

We use DSTmin(sq, N) to denote the minimal edit dis-
tance between a string sq and any string s that is covered
by a Bed-tree node N . A nice property of the Bed-tree is
that, for any string sq and node N , the string ordering ϕ en-
ables to compute DSTmin(sq, N) efficiently by computing
DST (sq, Nb) and DST (sq, Ne) only, where Nb, Ne refer
to the string range values of N . Then:

Definition 2.1 Given a string sq and a similarity threshold
θ, aBed-tree nodeN is a candidate ifDSTmin(sq, N) ≤ θ.
Otherwise, N is a non-candidate.

Bed-tree has an important monotone property.

Property 2.1 Monotone Property of Bed-tree : Given
a node Ni in the Bed-tree and any child node Nj of Ni,



for any string sq , it must be true that DSTmin(sq, Ni) ≤
DSTmin(sq, Nj). Therefore, for any non-candidate node,
all of its children must be non-candidates. This monotone
property enables early termination of search on the branches
that contain non-candidate nodes.

For any given string sq , the string similarity search algo-
rithm starts from the root of the Bed-tree, and iteratively
visits the candidate nodes, until all candidate nodes are
visited. The algorithm does not visit those non-candidate
nodes as well as their descendants. An important note is
that for each candidate node, some of its covered strings
may still be dissimilar to sq . Therefore, given a string sq
and a candidate Bed-tree node N , it is necessary to com-
pute DST (sq, s), for each s that is covered by N .

3 Problem Formulation
In this section, we define our authentication problem.

3.1 System Model
We consider the outsourcing model that involves two

parties - a data owner (client) who possesses a dataset D
that contains n records, and a third-party service provider
(server) that executes the record matching on D. The data
owner outsources D and the similarity threshold θ to the
server. The server provides storage and record matching as
services. To facilitate authenticated record matching, the
data owner generates some auxiliary information of D, and
sends D together with the auxiliary information. Upon fin-
ishing record matching on D, the server returns the match-
ing result MS to the client.

3.2 Threat Model
We assume that the third-party server is not fully trusted

as it could be compromised by the attacker (either inside or
outside). The server may alter the received dataset D and
return any matching result that does not exist in D. It also
may tamper with the matching results. For instance, the
server may return incomplete results that omit some legiti-
mate similar pairs in the matching results [16]. Note that we
do not consider privacy protection for the outsourced data.
This issue can be addressed by privacy-preserving record
linkage [7] and is beyond the scope of this paper.

3.3 Verification Goal of Result Integrity
To catch the cheating on the matching results, we for-

mally define the integrity of the record matching result from
two perspective: soundness and completeness. Let M be
the set of matching pairs in the outsourced database D, and
MS be the result returned by the server. We define the pre-
cision pre of MS as pre = |M∩MS |

|MS | (i.e., the percentage
of returned pairs that are similar to each other), and the re-
call rec of MS as rec = |M∩MS |

|M | (i.e., the percentage of
matching pairs that are returned). We say the result MS is

incorrect if pre < 1 and incomplete if rec < 1. The sound-
ness verification is straightforward. For each record pair
(si, sj) ∈ MS , the data owner checks whether si ≈ sj .
On the other hand, the completeness verification requires
to verify for each record pair (si, sj) /∈ MS , it is true that
si 6≈ sj . A naive method for the data owner to verify the
result integrity (for both soundness and completeness) is to
re-compute the similarity of all record pairs, which is pro-
hibitively costly. In this paper, we design an efficient veri-
fication approach for the client to verity both the soundness
and completeness of matching results.

3.4 Overview of Our Approach
Given a dataset D, the server finds all similar pairs

in the format (si, sj). The pairs that have the same
first record si (called target) are assigned to the same
group. For instance, given a set of similar pairs M =
{(s1, s2), (s1, s3), (s2, s3), (s2, s5)}, the similar pairs are
grouped into G1 = {(s1, s2), (s1, s3)} and G2 =
{(s2, s3), (s2, s5)}. Intuitively, G1 (G2, resp.) contains the
records that are similar to its target s1 (s2, resp.). Then
for each group, the server constructs a verification object
V O. The V O of G1 (G2, resp.) can be used to verify the
soundness and completeness of records that are similar to
its target s1 (s2, resp.). We require that by utilizing V O, the
client only needs to perform a small number of string sim-
ilarity calculations. This is enabled by using the monotone
property of the Bed-tree (Property 2.1). In particular, for a
given target record sq and its Bed-tree T , the VO only in-
cludes the non-candidate nodes N in T but not all children
strings that are covered by N . Therefore, the client is cer-
tain that all children strings of N are dissimilar to sq , and
avoids a large number of edit distance calculations.

4 VO Construction for A Single Target
Record

In this section, we consider a set of similar record pairs
{(sq, s1), (sq, s2), . . . , (sq, st)} for a single target record
sq . We design a verification method of similarity search
(V S2) approach. V S2 constructs a proof that proves S =
{s1, s2, . . . , st} include all strings (records) that are sim-
ilar to sq (completness), and all strings (records) in S is
indeed similar to sq (correctness), where θ is the similar-
ity threshold. V S2 consists of three phases: (1) the pre-
processing phase in which the data owner constructs the
authenticated data structure T of the dataset D. Both D
and the root signature sig of T are outsourced to the server;
(2) the matching phase in which the server executes the
approximate matching on D to find similar strings for sq ,
and constructs the verification object (V O) of the search re-
sults MS . The server returns both MS and V O to the data
owner; and (3) verification phase in which the data owner
verifies the integrity of MS by leveraging V O. Next we
explain the details of these three phases.
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Figure 1: An example of Merkle Bed tree

4.1 Pre-Processing

In this one-time phase, the data owner constructs the au-
thenticated data structure of the dataset D before outsourc-
ing D to the server. We design a new authenticated data
structure named the Merkle Bed tree (MB-tree). Next, we
explain the details of MB-tree.

The MB-tree is constructed on top of the Bed tree
by assigning the digests to each Bed node. In particu-
lar, every MB-tree node contains a triple (Nb, Ne, hN ),
where Nb, Ne correspond to the string range values as-
sociated with N , and hN is the digest value computed
as hN = h(h(Nb)||h(Ne)||h1→f ), where h1→f =
h(hC1

|| . . . ||hCf
), with C1, . . . , Cf being the children of

N . If N is a leaf node, then C1, . . . , Cf are the strings
s1, . . . , sf covered by N . Besides the triple, each MB-tree
node contains multiple entries. In particular, for any leaf
node N , assume it covers f strings. Then it contains f en-
tries, each of the format (s, p), where s is a string that is
covered by N , and p is the pointer to the disk block that
stores s. For any intermediate node, assume that it has f
children nodes. Then it contains f entries, each entry con-
sisting of a pointer to one of its children nodes.

The digests of the MB-tree T can be constructed in the
bottom-up fashion, starting from the leaf nodes. After all
nodes of T are associated with the digest values, the data
owner signs the root with her private key. The signature can
be created by using a public-key cryptosystem (e.g., RSA).
An example of theMB-tree structure is presented in Figure
1. The data owner sends both D and T to the server. The
data owner keeps the root signature of T locally, and sends it
to any client who requests for it for authentication purpose.

Following [6, 13], we assume that each node of theMB-
tree occupies a disk page. For the constructed MB-tree T ,
each entry in the leaf node occupies |s| + |p| space, where
|p| is the size of a pointer, and |s| is the maximum length of
a string value. The triple (Nb, Ne, hN ) takes the space of
2|s|+ h, where |h| is the size of a hash value. Therefore, a
leaf node can have f1 = [P−2|s|−|h||p|+|s| ] entries at most, where
P is the page size. Given n unique strings in the dataset,
there are [ nf1 ] leaf nodes in T . Similarly, for the internal
nodes, each entry takes the space of |p|. Thus each inter-
nal node can have at most f2 = [P−2|s|−|h||p| ] entries (i.e.,

[P−2|s|−|h||p| ] children nodes). Therefore, the height h of T
h ≥ logf2 [ nf1 ].

4.2 V O Construction

For each target string sq , the server constructs a verifica-
tion object V O to show that the matching result MS is both
sound and complete.

First, we define false hits. Given a target string sq and a
similarity threshold θ, the false hits of sq , denoted as F , are
all the strings that are dissimilar to sq . In other words, F =
{s|s ∈ D, sq 6≈ s}. Intuitively, to verify that MS is sound
and complete, the V O includes both similar stringsMS and
false hits F . Apparently including all false hits may lead to
a large V O, and thus high network communication cost and
the verification cost at the data owner side. Therefore, we
aim to reduce the V O size of F .

Before we explain how to reduce V O size, we first de-
fine C-strings and NC-strings. Apparently, each false hit
string is covered by a leaf node of the MB-tree T . Based
on whether a leaf node in MB-tree is a candidate, the false
hits F are classified into two types:

• C-strings: the strings that are covered by candidate leaf
nodes; and

• NC-strings: the strings that are covered by non-
candidate leaf nodes.

Our key idea to reduce V O size of F is to include rep-
resentatives of NC-strings instead of individual NC-strings.
The representatives of NC-strings take the format of max-
imal false hit subtrees (MFs). Formally, given a MB-
tree T , we say a subtree TN that is rooted at node N is
a false hit subtree if N is a non-candidate node. We say
the false hit subtree TN rooted at N is maximal if the par-
ent of N is a candidate node. The MFs can root at leaf
nodes. Apparently, all strings covered by the MFs must be
NC-strings. And each NC-string must be covered by a MF
node. Furthermore, MFs are disjoint (i.e., no two MFs
cover the same string). Therefore, instead of including in-
dividual NC-strings into the V O, their MFs are included.
As the number of MFs is normally much smaller than the
number of NC-strings, this can effectively reduce V O size.
Now we are ready to define the V O.

Definition 4.1 Given a dataset D, a target string sq , let
MS be the returned similar strings of sq . Let T be theMB-
tree of D, and NC be the strings that are covered by non-
candidate nodes of T . LetM be a set ofMFs ofNC. Then
the V O of sq consists of: (i) string s, for each s ∈ D −
NC; and (ii) a pair (N,h1→f ) for each MF ∈ M that is
rooted at node N , where N is represented as [Nb, Ne], with
[Nb, Ne] the string range associated with N , and h1→f =
h(hC1

|| . . . ||hCf
), with C1, . . . , Cf being the children of

N . If N is a leaf node, then C1, . . . , Cf are the strings
s1, . . . , sf covered by N . Furthermore, in V O, a pair of



brackets is added around the strings and/or the pairs that
share the same parent in T .
Intuitively, in V O, the similar strings and C-strings are
present in the original string format, while NC-strings
are represented by the MFs (i.e., in the format of
([Nb, Ne], hN )).

Example 4.1 Consider the MB-tree T in Figure 1, and the
string s1 to construct V O. Assume the similar strings are
MS = {s3, s5}. Also assume that node N3 of T is the
only non-candidate node. Then NC-strings are NC =
{s7, s8, . . . , s12}, and C-strings are {s2, s4, s6}. The set
of MFsM ={N3}. Therefore,

V O = {(((s1, s2, s3), (s4, s5, s6)), ([s7, s12], h7→12))},
where h7→12 = h(hN6

||hN7
),

hN6
= h(h(s7)||h(s9)||h(h(s7)||h(s8)||h(s9))),

and hN7
= h(h(s10)||h(s12)||h(h(s10)||h(s11)||h(s12))).

For each MF , we do not require that h(Nb) and h(Ne)
appear in V O. However, the server must include both Nb
and Ne in V O. This is to prevent the server to cheat on
the non-candidate nodes by including insound [Nb, Ne] in
V O. More details of the robustness of our authentication
procedure can be found in Section 6.

4.3 Authentication Phase
For a given target string sq , the server returns V O to-

gether with the matching set MS to the client. The verifica-
tion procedure consists of three steps. In Step 1, the client
re-constructs the MB-tree from V O. In Step 2, the client
re-computes the root signature sig′, and compares sig′ with
sig. In Step 3, the client re-computes the edit distance be-
tween sq and a subset of strings in V O. Next, we explain
the details of these steps.
Step 1: Re-construction ofMB-tree: First, the client sorts
the strings and string ranges (in the format of [Nb, Ne]) in
V O by their mapping values according to the string order-
ing scheme. String s is put ahead of the range [Nb, Ne] if
s < Nb. It returns a total order of strings and string ranges.
If there exists any two ranges [Nb, Ne] and [N ′b, N

′
e] that

overlap, the client concludes that the V O is not sound. If
there exists a string s ∈ MS and a range [Nb, Ne] ∈ V O
such that s ∈ [Nb, Ne], the client concludes that MS is
not sound, as s indeed is a dissimilar string (i.e., it is in-
cluded in a non-candidate node). Second, the client maps
each string s ∈ MS to an entry in a leaf node in T , and
each pair ([Nb, Ne], hN ) ∈ V O to an internal node in
T . The client re-constructs the parent-children relationships
between these nodes by following the matching brackets ()
in V O.
Step 2: Re-computation of root signature: After the
MB-tree T is re-constructed, the client computes the root
signature of T . For each string value s, the client calculates

Phase Measurement V S2

Pre-processing
Time O(n)
Space O(1)

VO construction
Time O(n)

V O Size O((nC + nR)σS + nMFσM )

Verification Time O((nR + nMF + nC)CEd)

Table 1: Complexity analysis of V S2

( n: # of strings in D; σS : AVG. length of string;
σM : AVG. size of MB-tree node; nMF : # of MF nodes;

nR: # of strings in MS ; nC : # of C-strings;
CEd: the complexity of an edit distance computation )

h(s), where h() is the same hash function used for the con-
struction of theMBed-tree. For each internal node that cor-
responds to a pair ([Nb, Ne], h1→f ) in V O, the client com-
putes the hash hN of N as hN = h(h(Nb)||h(Ne)||h1→f ).
Finally, the client re-computes the hash value of the root
node, and rebuilds the root signature sig′ by signing hroot
using the data owners’s public key. The client then com-
pares sig′ with sig. If sig′ 6= sig, the client concludes that
the server’s results are not sound.
Step 3: Re-computation of necessary edit distance: First,
for each string s ∈MS , the client re-computes the edit dis-
tance DST (sq, s), and verifies whether DST (sq, s) ≤ θ.
If all strings s ∈ MS pass the verification, then the client
concludes that MS is sound. Second, for each C-string
s ∈ V O (i.e., those strings appear in V O but not MS),
the client verifies whether DST (sq, s) > θ. If it is not
(i.e., s is a similar string indeed), the client concludes that
the server fails the completeness verification. Third, for
each range [Nb, Ne] ∈ V O, the client verifies whether
DSTmin(sq, N) > θ, where N is the corresponding MB-
tree node associated with the range [Nb, Ne]. If it is not
(i.e., node N is indeed a candidate node), the client con-
cludes that the server fails the completeness verification.

Example 4.2 Consider the MB-tree in Figure 1 as an ex-
ample, and the target string s1. Assume the similar strings
MS = {s3, s5}. Consider the VO shown in Example 4.1.
The C-strings are C = {s2, s4, s6}. After the client re-
constructs the MB-tree, it re-computes the hash values
of strings MS ∪ C. It computes the root signature sig′

from these hash values. It also performs the following dis-
tance computations: (1) for MS = {s3, s5}, compute the
edit distance between s1 and string in MS , (2) for C =
{s2, s4, s6}, compute the edit distance between s1 and any
C-string in C, and (3) for the pair ([s7, s12], hN3

) ∈ V O,
compute DSTmin(sq, N3).

4.4 Complexity Analysis
We formally analyze the time and space complexity of

the three phases of V S2, and present the result in Table 1.
In the pre-processing phase, the data owner needs to hash

all the records to construct the leaf nodes of the MB-tree,



which results inO(n) time complexity, where n is the num-
ber of records in the dataset D. As the total number of
nodes in the MB-tree is O(nf ), where f is the fanout of the
nodes, the total time complexity of the pre-processing phase
is O(n). Regarding the space complexity, as the data owner
only needs to keep the root signature of the MB-tree locally,
the storage overhead is only O(1).

Regarding the VO construction phase, the server tra-
verse the MB-tree to construct the VO. In the worst case,
the server scans all the MB-tree nodes to find C-strings
and MF nodes. Thus, the time complexity is O(n). The
VO size of the V S2 approach is calculated as the sum of
two parts: (1) the total size of the similar strings and C-
strings (in string format), which is O((nR + nC)σS) and
(2) the size of MF nodes, which is O(nMFσM ). Note that
σM = 2σS + |h|, where |h| is the size of a hash value. In
our experiments, it turned out that σM/σS ≈ 20.

Regarding the authentication phase, in order for the
client to authenticate the matching results based on the VO,
the main time complexity comes from calculating the string
edit distance, as it is very efficient to compute the hash val-
ues and the root signature of the MB-tree. Specifically,
for each similar string and C-string, the client calculates
its edit distance to the target string. Besides, the com-
pleteness verification requires to compute the edit distance
DSTmin(sq, N), for each MF node N . Thus, the com-
plexity of VO verification is O((nR + nMF + nC)CEd).

5 VO Construction for Multiple Target
Records

So far we discussed the authentication of record match-
ing of a single target string (record). To authenticate the
matching result for multiple target strings (records) S =
{s1, . . . , s`}, a straightforward solution is to create VO for
each string si ∈ S and its similarity result MS(si). Appar-
ently this solution may lead to V O of large sizes in total.
Thus, we aim to reduce the size of VOs. Our V O opti-
mization method consists of two main strategies: (1) op-
timization by triangle inequality; and (2) optimization by
overlapping dissimilar strings.

5.1 Optimization by Triangle Inequality

It is well known that the string edit distance satisfies the
triangle inequality, i.e. |DST (si, sk) − DST (sj , sk)| ≤
DST (si, sj) ≤ DST (si, sk) + DST (sj , sk). Therefore,
consider two strings si, sj ∈ D, assume the the server has
executed the approximate matching of si and prepared the
VO of the results. Then consider the authentication of the
search results of string sj , for any string s ∈ D such that
DST (s, si)−DST (si, sj) > θ, there is no need to prepare
the proof of s showing that it is a false hit for sj . A straight-
forward method is to remove s from theMB-tree T for V O
construction for the string sj . Now the question is whether

removing s always lead to V O of smaller sizes. We have
the following theorem.

Theorem 5.1 Given a string s and aMB-tree T , letN ∈ T
be the corresponding node of s, and NP be the parent of N
in T . Let C(NP ) be the set of children of P in T , and N ′P
be the node constructed from C(NP )\N (i.e., the children
nodes of Np excluding N ). Then if NP is a non-candidate,
it must be true that N ′P must be a non-candidate.

Let [Nb, Ne] be the range of NP . The proof of Theorem
5.1 considers two cases: (1) s 6= Nb and s 6= Ne. Removing
s will not change Nb and Ne, which results in that both N ′p
and Np have the same range [Nb, Ne]. (2) s = Nb or s =
Ne. Removing s from C(NP ) changes the range of NP to
be [N ′b, N

′
e]. Note that it must be true [N ′b, N

′
e] ⊆ [Nb, Ne].

Therefore, N ′P must be a non-candidate.
Based on Theorem 5.1, removing the MB-tree nodes

that correspond to any dissimilar string does not change the
structure of the MB-tree. Therefore, we can optimize the
VO construction procedure by removing those strings cov-
ered by the triangle inequality from the MB-tree.

Another possible optimization is that for any two tar-
get strings si and sj , for any string s ∈ D such that
DST (s, si)+DST (si, sj) ≤ θ, the client does not need to
re-compute DST (s, sj) to prove that si is a similar string
in the results. We omit the details due to the space limit.

5.2 Optimization by Overlapped Dissimilar
Strings

Given multiple target records (strings), the key optimiza-
tion idea is to merge the VOs of various target strings. This
is motivated by the fact that any two strings si and sj may
share a number of dissimilar strings. These shared dissimi-
lar strings can enable to merge the VOs of si and sj . Note
that simply merging all similar strings of si and sj into one
set and constructing MB-tree of the merged set is not cor-
rect, as the resulting MB-tree may deliver non-leaf MFs
that are candidates to both si and sj . Therefore, given two
target strings si and sj such that their false hits overlap,
let NCi (NCj , resp.) be the NC-strings of si (sj resp.),
the server finds the overlap of NCi and NCj . Then the
server constructs V O that shares the same data structure on
these overlapping strings. In particular, given the overlap
O = NCi ∩NCj , the server constructs the non-leaf MFs
from O, and include the constructed MFs in the VOs of
both si and sj .

6 Security Analysis
Given a target string sq and a similarity threshold θ, let

M (F , resp.) be the similar strings (false hits, resp.) of sq .
Let MS be the similar strings of sq returned by the server.
An untrusted server may perform the following cheating be-
haviors the real results MS : (1) tampered values: some



strings in MS do no exist in the original dataset D; (2)
soundness violation: the server returns MS = M ∪ FS,
where FS ⊆ F ; and (3) completeness violation: the server
returns MS =M − SS, where SS ⊆M .

The tampered values can be easily caught by the au-
thentication procedure, as the hash values of the tampered
strings are not the same as the original strings. This leads
to that the root signature of MB-tree re-constructed by the
client differet from the root signature of original dataset be-
fore outsourcing. The client can catch the tampered values
by Step 2 of the authentication procedure. Next, we mainly
focus on the discussion of how to catch soundness and com-
pleteness violations.
Soundness. The server may deal with the V O construction
of MS =M ∪ FS in two different ways:
Case 1. The server constructs the V O of the correct result
M , and returns {MS , V O} to the client;
Case 2. the server constructs the V O of MS , and returns
{MS , V O} to the client. Note that the strings in FS can
be either NC-strings or C-strings. Next, we discuss how to
catch these two types of strings for both Case 1 and 2.

For Case 1, for each NC-string s ∈ FS, s must fall into
aMF -tree node in V O. Thus, there must exist anMF -tree
node whose associated string range overlaps with s. The
client can catch s by Step 1 of the authentication procedure.
For each C-string s ∈ FS, smust be treated as a C-string in
V O. Thus the client can catch it by computing DST (s, sq)
(i.e., Step 3 of the authentication procedure).

For Case 2, the C-strings in FS will be caught in the
same way as Case 1. Regarding NC-strings in FS, they
will not be included in any MF-tree in V ′. Therefore, the
client cannot catch them by Step 1 of the authentication pro-
cedure (as Case 1). However, as these strings are included
in MS , the client still can catch these strings by computing
the edit distance of sq and any string in MS (i.e., Step 3 of
the authentication procedure).
Completeness. To deal with the V O construction ofMS =
M −SS, we again consider the two cases as for the discus-
sion of soundness violation.

For Case 1 (i.e., the server returns {MS , V O}), where
V O is constructed from the correct result M , any string
s ∈ SS is a C-string. These strings can be caught by re-
computing the edit distance between the target string and
any C-string (i.e., Step 3 of the authentication procedure).

For Case 2 (i.e., the server returns {MS , V O}), where
V O is constructed from theMS , any string s ∈ SS is either
a NC-string or a C-string in V ′. For any C-string s ∈ SS,
it can be caught by re-computing the edit distance between
the target string and the C-strings (i.e., Step 3 of the authen-
tication procedure). For any NC-string s ∈ SS, it must be
included into a non-candidate MB-tree node. We have the
following theorem.
Theorem 6.1 Given a target string sq and a non-candidate

node N of range [Nb, Ne], including any string s′ into N
such that s′ ≈ sq will change N to be a candidate node.
The proof is straightforward. It is easy to see that s′ 6∈
[Nb, Ne]. Therefore, including s′ into N must change
the range to be either [s′, Ne] or [Nb, s

′], depending on
whether s′ < Nb or s′ > Ne. Now it must be true that
DSTmin(sq, N) ≤ θ, as DST (s′, sq) ≤ θ.

Following Theorem 6.1, for any string s ∈ SS that is
considered a NC-string in V O, the client can easily catch
it by verifying whether DSTmin(sq, N) > θ, for any non-
candidate node (i.e., Step 3 of the authentication procedure).

7 Experiments

In this section, we report the experiment results.

7.1 Experiment Setup

Datasets and queries. We use two real-world datasets :
(1) the Actors dataset from IMDB 1 that contains 260K last
names. The maximum length of a name is 63, while the av-
erage is 14.627; and (2) the Authors dataset from DBLP
2 including 1,000,000 researcher names. The maximum
length of a name is 99 while the average length is 14.732.
As both datasets are very large, it is too time-consuming to
execute approximate matching for all records in these two
datasets. Thus, we picked 10 target strings for approximate
matching. For the following results, we report the average
performance of matching of the 10 target strings.
Experimental environment. We implement the V S2 ap-
proach in C++. The hash function we use is the SHA256
function from the OpenSSL library. We execute the exper-
iments on a machine with 2.4 GHz CPU and 48 GB RAM,
running Linux 3.2.
Baseline. As the baseline method, we implement the brute-
force approximate string matching algorithm that calculates
the edit distance between every string in the dataset and the
target string sq .
Parameter setup. The parameters include: (1) string edit
distance threshold θ, and (2) the fanout f ofMB-tree nodes
(i.e., the number of entries that each node contains). The
details of the parameter settings can be found in Table 2.

Parameter setting
Similarity threshold θ 2,3,4,5,6,7

MB-tree fanout f 10, 100, 1000, 10000

Table 2: Parameter settings
In the discussions, we use the following notations: (1) n:

the number of strings in the dataset, (2) nR: the number of
similar strings, (3) nMF : the number of MFs, and (4) nC :
the number of C-strings. We use σS to indicate the average
string size, and σM as the size of MB-tree node.

1http://www.imdb.com/interfaces
2http://dblp.uni-trier.de/xml/

http://www.imdb.com/interfaces
http://dblp.uni-trier.de/xml/


7.2 VO Construction Time
We measure the VO construction time at the server side.

The impact of θ. In Figure 2, we show the VO construc-
tion time with regard to different θ values on both datasets.
First, in all our experiments, the VO construction time is
very short; it never exceeds 11 seconds for both datasets.
It only needs around 3 seconds for the Actor dataset. Sec-
ond, we observe that the VO construction time grows when
θ increases. This is because nMF reduces with the increase
of θ. When θ is small, a node N may be a MF , because
DSTmin(sq, N) > θ. While with a larger θ values, the
node N becomes a candidate. Thus, the server needs to
search deep in the MB-tree to find the MF nodes, if there
is any. Third, we observe the dramatic increase in VO con-
struction time when θ changes from 2 to 3. With further
analysis, we discover that the change in VO construction
time is consistent with how nMF varies. For example, on
the Actors dataset, when θ = 2, nMF = 2, 958. However,
nMF decreases to 649 when θ = 3. The abrupt reduction in
nMF leads to the immense increment effort that the server
devotes to traverse the MB-tree to find MF s. Fourth, the
VO construction time on the Authors dataset is larger than
that on the Actors dataset. This is because with the same
fanout f , theMB-tree’s size of the Authors dataset is larger,
due to the greater data size.
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Figure 2: VO construction time w.r.t. θ (f = 100)
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Figure 3: VO construction time w.r.t. f

The impact of f . From Figure 3, we observe that the
VO construction time increases with the fanout value f .
Even though the total number of nodes in the MB-tree de-
creases with larger fanout values, the decrease in the num-
ber of MF s nMF is more intense. For example, on the Au-
thors dataset, when f = 100, nMF = 5, 420; while when
f = 1, 000, nMF = 57. The reason behind the significant
reduction in nMF is that when f is large, DSTmin(sq, N)
becomes a loose lower-bound for any MB-tree node N .
This leads to a significant portion of the MB-tree nodes to

become candidates. The observation from Figure 3 suggests
that small fanout values fit our V S2 method better.

7.3 VO Size

We measure the size of the VO constructed by V S2.
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Figure 4: VO size w.r.t. θ (f = 100)
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Figure 5: VO size w.r.t. f

The impact of θ. The results are shown in Figure 4. The
observation is that the VO size increases with the growth of
θ value. Apparently, larger θ values lead to more similar
strings (i.e., larger nR), fewer MF s (i.e., smaller nMF ),
and fewer C-strings (i.e., smaller nC). The VO size is
decided by (nR + nC)σS + nMFσM , where σM

σS
≈ 20.

When we increase θ, even though nMF reduces, the in-
tensive growth of nR and nC leads to the increase of VO
size. For example, on the Actors dataset, when θ = 2,
nR + nC = 126, 858, nMF = 2, 958. While when θ = 3,
nR + nC = 230, 821, nMF = 649.
The impact of f . As shown in Figure 5, the VO size in-
creases with the growth of the fanout f . Recall that the V O
size is (nR + nC)σS + nMFσM . When f increases, nR is
unchanged. Meanwhile, nC dramatically increases with f
(e.g., on the Actors dataset, when f increases from 100 to
1, 000, nC increases by 122, 515). Furthermore, when f in-
creases, nMF decreases by a small degree (when f changes
from 100 to 1, 000, nMF decreases by 2, 937). Consider
that σM

σS
≈ 20. The intensive increase of nC leads to a

larger VO size. We observe the sharp increase in VO size
when f increases from 100 to 1, 000. This is because at this
point, nC experiences the maximum extent of growth.

7.4 VO Verification Time

In this section, we measure the VO verification time at
the data owner side. We compare the VO verification time
with the performance of our baseline algorithm, aiming to
show that the client’s verification effort is less than by doing
string matching locally.
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Figure 6: VO verification time w.r.t. θ (f = 100)
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Figure 7: VO verification time w.r.t. f

The impact of θ. In Figure 6, we report the VO verification
time of V S2. First, we observe that the VO verification time
is always smaller than the baseline. In particular, V S2 can
save up to 87% computational effort at the data owner side
if she outsources the string matching to the server and does
verification locally. This proves that our verification method
is suitable for the outsourcing setting. Second, the VO ver-
ification time increases when θ increases. Recall that the
complexity of VO verification isO((nR+nC+nMF )CEd).
This is because when θ increases, nMF decreases, while
both nR and nC increase. As nR and nC increase faster
than the decrease of nMF , it leads to more edit distance
calculations for the verification. Therefore, the total verifi-
cation time increases.
The impact of f . We also measure the VO verification time
of V S2 with various fanout values. On both datasets, the
VO verification is always more efficient than the baseline
method. When the fanout is 10, V S2 can save up to 90%
computational effort at the client side. Besides, the veri-
fication time increases when f grows. This is straightfor-
ward as larger f results in the growth of the number of C-
strings. This requires more calculations for the edit distance
between C-strings and the target string.

In sum, the experiment results suggest that V S2 is an
efficient authentication approach to verify the result of out-
sourced record matching computations. In particular, V S2

is more suitable for the setting in which the similarity
threshold is small and the MB-tree’s fanout is small.

8 Related Work
The security problem of outsourced computations caught

much attention in recent years. Based on the the perspec-
tive to enforce security and the type of computations that
are executed on the data, we classify these techniques into
the following types: (1) authentication of outsourced SQL
query evaluation, (2) authentication of keyword search,

and (3) privacy-preserving record linkage. There are also
other work on authentication of data integration [5] and in-
network aggregation in distributed systems (e.g. [18, 27]).
None of these work considered the authentication of out-
sourced approximate string matching .
Authentication of outsourced SQL query evaluation.
The issue of providing authenticity for outsourced database
was initially raised in the database-as-a-service (DaS)
paradigm [10]. The aim is to assure the correctness of SQL
query evaluation over the outsourced databases. The pro-
posed solutions include Merkle hash trees [13, 15], signa-
tures on a chain of paired tuples [17], and authenticated B-
tree and R-tree structures for aggregated queries [14]. The
key idea of these techniques is that the data owner out-
sources not only data but also the endorsements of the data
being outsourced. These endorsements are signed by the
data owner against tampering with by the service provider.
For the cleaning results, the service provider returns both
the results and a proof, called the verification object (V O),
which is an auxiliary data structure to store the processing
traces such as index traversals. The client uses the V O,
together with the answers, to reconstruct the endorsements
and thus verify the authenticity of the results. An efficient
authentication technique should minimize the size of V O,
while requiring lightweight authentication at the client side.
In this paper, we follow the same VO-based strategy to de-
sign our authentication method.
Authentication of keyword search. Pang et al. [16] tar-
geted at search engines that perform similarity-based docu-
ment retrieval, and designed a novel authentication mecha-
nism for the search results. The key idea of the authentica-
tion is to build the Merkle hash tree (MHT) on the inverted
index, and use the MHT for V O construction. Though ef-
fective, it has several limitations, e.g., the MHT cannot deal
data updates efficiently [9]. To address these limitations,
Goodrich et al. [9] designed a new model that considered
conjunctive keyword searches as equivalent with a set in-
tersection on the underlying inverted index data structure.
They use the authenticated data structure in [20] to verify
the correctness of set operations.
Privacy-preserving record linkage. The privacy of sensi-
tive information in the outsourced record matching has been
the focus of research for two decades. Schnell et al. [23]
and Durham et al. [8] propose to store the q-grams in the
Bloom Filters (BFs); the BFs of two similar strings (i.e.,
many q-grams in common) have a large number of identical
bit positions set to 1. However, Schnell et al. [23] observed
that the BFs are still open to the frequency attack. Storer et
al. [24] consider the duplicates as exact identical contents.
They use convergent encryption that uses a function of the
hash of the plaintext of a chunk as the encryption key, so
that any identical plaintext values will be encrypted to iden-
tical ciphertext values. However, the convergent encryption



disables the approximate matching on outsourced records.
Bonomi et al. [3] propose a new transformation method
that integrates embedding methods with differential privacy.
Its embedding strategy projects the original data on a base
formed by a set of frequent variable length grams. The pri-
vacy of the gram construction procedure is guaranteed to
satisfy differential privacy. Atallah et al. [2] design a SMC
protocol based on homomorphic encryption for record link-
age based on edit distance similarity.

9 Conclusion
In this paper, we designed an efficient authentication

method, namely ARM , for outsourced approximate record
matching. ARM is based on a novel authentication data
structure named MB-tree that integrates both Bed-tree and
Merkle hash tree. Experimental results show that our meth-
ods can authenticate the record matching result efficiently.
In the future, we will investigate how to reduce the VO size
as well as the verification time.
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