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Abstract

Cloud computing enables the outsourcing of big data an-
alytics, where a third-party server is responsible for data
management and processing. In this paper, we consider the
outsourcing model in which a third-party server provides
record matching as a service. In particular, given a target
record, the service provider returns all records from the out-
sourced dataset that match the target according to specific
distance metrics. Identifying matching records in databases
plays an important role in information integration and en-
tity resolution. A major security concern of this outsourcing
paradigm is whether the service provider returns the cor-
rect record matching results. To solve the problem, we de-
sign EARRING, an Efficient Authentication of outsouRced
Record matchING framework. EARRING requires the ser-
vice provider to construct the verification object (VO) of the
record matching results. From the VO, the client is able to
catch any incorrect result with cheap computational cost.
Experiment results on real-world datasets demonstrate the
efficiency of EARRING.

Keywords—authentication, integrity, security, record
matching

1 Introduction
With the rapid growth of the capability to generate and

collect data, recent years have witnessed the explosion in
data volumes. To distill fruitful knowledge from the mas-
sive data, sophisticated data analysis models are being de-
veloped progressively in many fields (e.g., healthcare and
market decision). However, in practice, many companies
and organizations, especially those small- and medium-
sized ones, have limited benefits from big data analytics due
to the inadequacy of computational resources. Fortunately,
outsourcing provides a cost-effective alternative. A compu-
tationally powerful service provider can execute the com-
plex and expensive data analytics tasks for the data owners.

In this paper, we consider record matching as the core
computation task, which is an important operation in infor-
mation integration, data cleaning, and information retrieval.

In the outsourcing setting, the data owner outsources a
dataset D to a third-party service provider (server). Here-
after, the legitimate users (clients) send the matching re-
quests of specific target records to the server. The server
is responsible to return all records in the outsourced dataset
D that match the target records, where whether two records
match depends on the similarity metrics.

Although outsourcing provides a cost-effective solution,
there exist several security challenges. One major challenge
is the correctness of the matching results that are returned
by the server. There are numerous incentives for the server
to cheat on the matching results. For instance, the server
may try to save the computational cost by searching a por-
tion of the outsourced dataset and returning the matching
records in the portion. Or the server may use an approxi-
mate (and cheaper) distance metrics [9] instead of the exact
ones for similarity measurement. Therefore, it is essential
for the client to verify the correctness of the results returned
by the server before exploiting them for benefits.

A naive method of correctness verification is that the
client executes record matching locally and compares the
local results with the results returned by the server. Ob-
viously the naive method is not acceptable due to its pro-
hibitively high cost. Considering the limited computational
power of the client, our goal is to design a lightweight
authentication method that enables the client to verify the
correctness of the outsourced record matching results with
cheap verification cost. The correctness verification is two-
fold: (1) soundness - all returned records indeed match the
target records; and (2) completeness - all matching records
are returned by the server.

There are quite a few existing work for authentication
of various computational tasks (e.g. SQL queries [13],
function queries [20], and nearest neighbors search [18]).
Among all the existing work, [5] is the one that is most
relevant to ours. By their approach, the server builds the
verification object (VO) that includes all records, including
both matching and mismatching ones, to prove both sound-
ness and completeness of the matching results. However,



the verification method in [5] can be prohibitively expen-
sive, especially when the number of mismatching records is
large, since the client has to calculate the similarity between
the target record and every single mismatching record.

In this paper, we design EARRING, an Efficient
Authentication of outsouRced Record matchING. The key
idea is that the server constructs a small set of representa-
tive objects of the mismatching records, and only includes
the representative objects in VO instead of the mismatch-
ing records. The client can verify the result correctness by
inspecting the representative objects only. To construct the
representative objects, we first apply a similarity-preserving
mapping function to transform the records into the Eu-
clidean space, in the way that the similar records are embed-
ded as Euclidean points that are close to each other. Then
the Euclidean points of the mismatching records are parti-
tioned into a small number of groups named distant bound-
ing hyper-rectangles (DBHs). The DBHs act as the rep-
resentative objects of the mismatching records and thus are
included in the VO. The client can verify the correctness by
re-computing the Euclidean distance between the embed-
ded Euclidean point of the target record and DBHs. Note
that the computation of Euclidean distance is much cheaper
than the measurement of record similarity.

In particular, we make the following contributions. First,
we prove that it is NP-complete to construct the minimum
number of DBHs for the mismatching records. We de-
sign an efficient heuristic algorithm to build a small number
of DBHs to represent the mismatching records. Second,
we design a lightweight approach to construct VO for re-
sult authentication. Compared with [5], our approach re-
places a large amount of string edit distance calculations
with a small number of cheap Euclidean distance compu-
tations. Therefore, the verification cost at the client side is
significantly reduced. Third, we provide detailed security
analysis to show that EARRING can catch any incorrect re-
sult returned by the server. Last but not least, we launch an
extensive set of experiments on real-world datasets. Exper-
iment results demonstrate that EARRING saves up to 91%
verification time at the client side compared with ARM [5].

2 Preliminaries
2.1 Record Matching

In this paper, we consider the categorical datasets where
the records consist of a certain number of strings as the at-
tribute values. For the sake of simplicity, we assume that
each record only contains a single string value. In the rest
of the paper, we use strings and records interchangeably.
The key of record matching is to evaluate the similarity of
attribute values. There exist quite a few evaluation metrics
for strings, e.g., Hamming distance, Jaccard distance based
on q-grams, and Levenshtein (edit) distance [3]. Among
these options, we concentrate on the edit distance due to its
popularity. Informally, the edit distance between two strings

s1 and s2, denoted asDST (s1, s2), is the minimum number
of character operations to transform s1 to s2. We say two
records s1 and s2 match (or similar) if DST (s, sq) ≤ θ,
where θ is a user-specified threshold. Otherwise we say s1
and s2 mismatch (or dissimilar). Given a dataset D and a
target string sq , the record matching problem is to search
for all strings M ⊆ D that match sq .

2.2 Mapping Records to Euclidean Space
Given two records s1 and s2, normally the complex-

ity of computing edit distance is O(|s1||s2|), where |s1|
and |s2| are the lengths of s1 and s2. One way to reduce
the complexity of similarity measurement is to map the
records into a multi-dimensional Euclidean space, such that
the similar strings are mapped to close Euclidean points.
The main reason of the embedding is that the computation
of Euclidean distance is much cheaper than that of string
edit distance. In this paper, we use dst() and DST () to
denote the Euclidean distance and edit distance. A few
string embedding techniques (e.g., [9, 8]) exist in the lit-
erature. In this paper, we use the SparseMap method [8]
for string embedding, since it preserves the contractiveness
property. An embedding method is contractive [7] if for
any pair of strings (si, sj) and their embedded Euclidean
points (pi, pj), dst(pi, pj) ≤ DST (si, sj), where dst()
andDST () are the distance function in the Euclidean space
and string space respectively. We will show how to lever-
age this property to reduce the verification cost in Section 4.
Note that the embedding methods may introduce false posi-
tives, i.e. the embedding points of dissimilar strings may be
close in the Euclidean space.

2.3 MB-tree
In [5], an authentication tree structure named MB-tree

is designed. MB-tree integrates Merkle hash tree [19] and
Bed-tree [24]. To construct MB-tree, first, all string val-
ues in D are sorted based on a function φ that maps each
string to an integer value. Then the sorted strings are split
into disjoint ranges; each range corresponds to a leaf node
in the MB-tree. After range partitioning, the leaf nodes of
the MB-tree are constructed. Each leaf node contains the
entry of the format (s, p), where s is the string value, and
p is the pointer to the disk position that stores s. Each in-
ternal node consists of up to f children nodes that corre-
spond to adjacent f ranges, where f is the fanout of the
tree. For each internal node N , its range is the union of the
ranges of all of its children. The range is stored in the for-
mat of [Nb, Ne]; all the strings encoded by N fall into the
range [Nb, Ne]. After the tree structure is constructed, for
each node N , a hash value hN = h(h(Nb)||h(Ne)||h1→f )
is computed, where h is a collision-free hash function and
h1→f = h(hC1

|| . . . ||hCf
), with C1, . . . , Cf being the

children of N . If N is a leaf node, then C1, . . . , Cf are
the strings s1, . . . , sf that are covered by N . Finally, the
root hash value hroot is computed as the digest of the whole
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Figure 1: An example of MB-tree

tree structure. The signature of the hash value of the root is
generated at the end for the verification purpose. Figure 1
shows an example of MB-tree.

We use DSTmin(sq, N) to denote the minimal edit dis-
tance between a string sq and any string s that is covered
by a MB-tree node N . Based on this, next, we define non-
candidate nodes (NC-nodes) and C-strings.
Definition 2.1. Given a dataset D and its MB-tree T , for
any string sq , we say a MB-tree node N in T is a non-
candidate node (NC-node) of sq if DSTmin(sq, N) > θ,
where θ is a user-specified similarity threshold for record
matching. Otherwise, we say N is a candidate node. For
any string s ∈ D that does not match sq but is not covered
by any NC-node in T , we call it a C-string.

A nice property of NC-nodes is that it is guaranteed that
none of the strings covered by either these NC-nodes or
their descendents in the MB-tree match the given string sq .
Thus the matching search algorithm can stop at the NC-
nodes. We will utilize this property to reduce VO size (more
details in Section 4).

3 Problem Definition
3.1 System Framework

We consider the outsourcing model that involves three
parties: (1) a data owner who possesses a dataset D that
contains n records; (2) the user (client) who requests for
record matching services onD; and (3) a third-party service
provider (server) that provides storage and record match-
ing as services. The client can be the data owner or an au-
thorized party. To facilitate authenticated record matching,
the data owner generates some auxiliary information of D,
and sends D together with the auxiliary information to the
server. The client sends the target record sq and the similar-
ity threshold θ to the server, asking for all records in D that
matches sq in terms of θ. The server returns the matching
result MS , as well as the verification object V O of MS ,
to the client. The client checks the correctness of MS via
V O. Given the fact that the client may not possess D, we
require that the availability of D is not necessary for the
authentication.
3.2 Verification Goal

In this paper, we assume that the server may return in-
correct record matching results to the client. Given a target
string sq and the similarity threshold θ, let MS be the result
returned by the server. We consider the following cheating
behaviors that are executed by the server.

• Data integrity violation. The server may manipu-
late the data after receivingD and return any matching
record that does not exist in D. In other words, there
exists s ∈MS s.t. s 6∈ D.

• Result soundness violation. The server returns at
least one record that does not match sq , i.e., there ex-
ists s ∈MS s.t. DST (s, sq) > θ.

• Result completeness violation. The server may miss
at least one matching record of sq , i.e., there exists s ∈
D such that DST (s, sq) ≤ θ, but s 6∈MS .

Our authentication goal is to catch these three types of
cheating behaviors on the matching results and assuring the
client of the correctness of MS with 100% certainty.

4 Authentication Approach
4.1 Approach Overview

We design an efficient authentication approach named
EARRING to check the correctness of the outsourced record
matching computations. EARRING consists of three phases.
• Preparation phase. The data owner constructs the

MB-tree T from the dataset D and generates the em-
bedding function f that transforms the strings to Eu-
clidean points. The data owner sendsD, T and f to the
server. To reduce the network bandwidth consumption
and the store overhead at the client side, the data owner
sends the signature sig(T ) of the MB-tree T to the le-
gitimate clients, as well as the embedding function f .

• VO construction phase. Upon receiving a target
record sq and the record matching request from the
client, the server executes the computation to obtain
the result MS . In order to verify the correctness of
MS , the server also constructs the VO ofMS from the
tree T and the embedded Euclidean points of D. After
that, the server sends both MS and VO to the client.

• VO verification phase. The client inspects the cor-
rectness of MS by checking the VO against the auxil-
iary information (i.e., sig(T ) and f ) obtained from the
data owner.

It is worth noting that the preparation phase is only a one-
time setup. Once the signature sig(T ) and the embedding
function f are produced, they can be readily utilized for all
the matching requests.
4.2 Authentication Preparation

Before outsourcing the dataset D to the server, the data
owner constructs the MB-tree T on D [5]. He signs the
root hash value of T and generates the signature sig(T ) =
Encryptsk(hroot) with his secret key sk. In addition,
the data owner maps D to the Euclidean space E via a
similarity-preserving embedding function f . In this paper,
we use SparseMap [8] as the embedding function due to its
contractive property (Section 2). The complexity of the em-
bedding is O(cdn2), where c is a constant value between



0 and 1, d is the number of dimensions of the Euclidean
space, and n is the number of strings of D. We admit that
the complexity of string embedding is comparable to the
complexity of record matching over D. However, the em-
bedding procedure is performed only once. Its cost will be
amortized over all record matching requests.

After embedding, the data owner sends D, T and the
embedding function f to the server. The server constructs
the embedded space of D by using the embedding function
f . Meanwhile, the data owner sends the signature sig(T )
and the function f to the client for result authentication.
4.3 VO Construction

Given the record matching request (sq, θ) from the
client, the server discovers the set of matching strings in D
whose edit distance to sq is no larger than θ. We call those
strings that do not match sq the false hits. According to the
property of MB-tree (Section 2.3), for any NC-node N of
the MB-tree (i.e.,DSTmin(sq, N) > θ), all the strings cov-
ered by N must be false hits. We call a NC-node N in the
MB-tree a (maximal false hit) node (MF-node) if the parent
of N is a candidate node. Each MF-node covers at least
f false hits, where f is the fan-out of the MB-tree. Thus,
intuitively, to reduce the verification cost and the network
communication overhead, the server only needs to include
the MF-nodes in the VO. However, there may still exist a
large fraction of false hits that are not covered by any MF-
node. In [5], it is required that the client calculates the exact
edit distance between sq and any such false hit. However,
it can lead to high verification overhead when there a large
number of false hits that are not covered by any MF-node.

Our intuition to further reduce the verification cost of
those false hits that are not covered by any MF-node is to:
(1) substitute the expensive edit distance calculations with
cheap Euclidean distance computation; and (2) use a small
number of objects that represent those false hits that are not
covered by any MF-node, and include these objects in the
VO instead. Before we discuss the details of the VO con-
struction, we define four types of the strings. We say two
Euclidean points P and Pq are distant if dst(P, Pq) > θ,
where θ is the similarity threshold for record matching.
• M -strings: the strings that match the target sq;

• NC-strings: the false hits that are covered by a MF-
node;

• E-strings: the false hits that are not covered by any
MF-node, but their Euclidean points are distant from
the embedded point Pq of sq , and

• FP -strings: the false hits that are neither NC-strings
nor E-strings.

Obviously, any string in D must belong to exactly one of
the four types.

In order to verify both soundness and completeness, all
four types of strings must be represented in VO for the

verification. Intuitively, NC-strings can be represented by
MF-nodes. Our next task is to build the representative ob-
jects for E-strings. We design a novel concept as distant
bounding hyper-rectangles (DBHs) as such representative
objects. Before we define DBH, first, we define the mini-
mum bounding hyper-rectangle (MBH).
Definition 4.1. Given a set of points P = {P1, . . . , Pt}
in a d-dimensional Euclidean space, a hyper-rectangle
R(〈l1, u1〉, . . . , 〈ld, ud〉) is the minimum bounding hyper-
rectangle (MBH) of P if li = mintk=1(Pk[i]) and ui =
maxtk=1(Pk[i]), for 1 ≤ i ≤ d, where Pk[i] is the i-
dimensional value of Pk. For any point P and any hyper-
rectangle R, the minimum Euclidean distance between P
and R is dstmin(P,R) =

√∑
1≤i≤dm[i]2, where m[i] =

max{li − p[i], 0, p[i]− ui}.
Intuitively, if the node P is inside R, the minimum dis-

tance between P and R is 0. Otherwise, we pick the length
of the shortest path that starts from P to reach R. We have:

Lemma 4.1. Given a hyper-rectangle R and a point
P 6∈ R, for any point P ′ ∈ R, the Euclidean distance
dst(P ′, P ) ≥ dstmin(P,R).

The proof of Lemma 4.1 is trivial. We omit the details
due to the space limit.

Now we are ready to define (DBHs).
Definition 4.2. Given a hyper-rectangleR and a point P 6∈
R, R is a distant bounding hyper-rectangle (DBH) of P if
dstmin(P,R) > θ, where θ is the given threshold.

Next, we have the following theorem:
Theorem 4.1. Given a target record sq , let Pq be its em-
bedded point in Euclidean space. Then for any record s, s
must be a false hit of sq if there exists a DBH R of Pq such
that P ∈ R, where P is the embedded point of s.

Based on Theorem 4.1, the server can build a number of
DBHs from the embedded Euclidean points to represent all
E-strings. In order to minimize the verification cost at the
client side, our aim is to minimize the number of DBHs.
Next, we define the MDBH problem formally below.

MDBH problem: Given a set of E-strings {s1, . . . , st},
let P = {P1, . . . , Pt} be their embedded points in the Eu-
clidean space. The MDBH problem is to find a mini-
mum number of DBHs R = {R1, . . . , Rk} such that: (1)
∀Ri, Rj ∈ R, Ri and Rj do not overlap; and (2) ∀Pi ∈ P ,
there exists a DBH R ∈ R such that Pi ∈ R.

Next, we discuss the intractability of the MDBH prob-
lem and present our heuristic solution. We first present the
simple case for the 2-D space (i.e. d = 2). Then we discuss
the scenario when d > 2. For both settings, consider the
same input that includes a query point Pq and a set of Eu-
clidean points P = {P1, . . . , Pt} which are the embedded
points of a target string sq and its E-strings respectively.
When d = 2. We construct a graph G = (V,E) such that
for each point Pi ∈ P , it corresponds to a vertex vi ∈ V .
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Figure 2: An example of VO construction by EARRING

For any two vertices vi and vj that correspond to two points
Pi and Pj , there is an edge (vi, vj) ∈ E if dstmin(Pq, R) >
θ, where R is the MBH of Pi and Pj . We have:
Theorem 4.2. Given the graph G = (V,E) constructed as
above, for any clique C inG, letR be the MBH constructed
from the points corresponding to the vertice in C. Then R
must be a DBH.

Due to the space limit, the proof of Theorem 4.2 is omit-
ted. Based on Theorem 4.2, next, we show the intractability
of the MDBH problem for the 2D space.
Theorem 4.3. Given a constant k, it is NP-complete to
determine if there exists a solution to the MDBH problem
whose size is at most k.
Proof. Due to the space limit, we only show the proof
sketch of Theorem 4.3. The proof is by a polynomial-time
reduction from the well-known clique partition problem,
which is to find the smallest number of cliques in a graph
such that every vertex in the graph belongs to exactly one
clique.

Given the NP-completeness of the MDBH problem, we
design a heuristic solution to solve the problem efficiently.
Our heuristic algorithm is based on the concept of maximal
cliques. Formally, a clique is maximal if it cannot be ex-
tended by one more adjacent vertex. The maximal cliques
can be constructed in polynomial time [6]. It is shown
that every maximal clique is part of some optimal clique-
partition [6]. Based on this, finding a minimal number of
cliques is equivalent to the problem of finding a number of
maximal cliques. Based on this, we construct the maximal
cliques of G iteratively by adapting the RLF algorithm in
[12], until all the vertices belong to at least one clique.
When d > 2. Unfortunately, Theorem 4.2 can not be ex-
tended to the case of d > 2. There may exist MBHs of the
pairs (vi, vj), (vi, vk), and (vj , vk) that are DBHs. How-
ever, the MBH of the triple (vi, vj , vk) is not a DBH, as
it includes a point w such that w is not inside R(vi, vj),
R(vi, vk), and R(vj , vk), but dst(Pq, w) < θ.

To construct the DBHs for the case d > 2, we slightly
modify the clique-based construction algorithm for the case
d = 2. In particular, when we extend a clique C by adding
an adjacent vertex v, we check if the MBH of the extended
clique C ′ = C ∪ {v} is a DBH. If not, we delete the edge
(u, v) from G for all u ∈ C. This step ensures that if we

merge any vertex into a clique C, the MBH of the newly
generated clique is still a DBH.

For both cases d = 2 and d > 2, the complexity of
constructing DBHs from E-strings is O(n3ES), where nES
is the number of E-strings.

Now we are ready to describe the VO construction pro-
cedure. Given a dataset D and a target string sq , the server
constructs V O from the M -strings, FP -strings, MF-nodes,
and DBHs. Formally,

Definition 4.3. Given a target string sq , let T be the MB-
tree, andR be the set of DBHs constructed from E-strings.
The V O of matching records of sq consists of:
(i) string s, for each M -string or FP -string;
(ii) a pair ([Nb, Ne], h

1→f ) for each MF-node N , where
[Nb, Ne] is the range of the strings covered by N , and
h1→f = h(hC1 || . . . ||hCf

), withC1, . . . , Cf being the chil-
dren of N ;
(iii) the DBHs inR; and
(iv) a pair (s, pR) for eachE-string, where pR is the pointer
to the DBH inR that covers the Euclidean point of s.
Furthermore, in V O, a pair of square bracket is added
around the strings that share the same parent in T .

Intuitively, M -strings and FP -strings are included as
original strings in VO, while NC-strings are represented
by MF -nodes, and E-strings are represented by DBHs.

Example 4.1. Consider the MB-tree in Figure 2 (a). The
target record is sq . s2 is the only M -string. The NC-
strings are s10, s11, and s12. Consider the embedded Eu-
clidean space shown in Figure 2 (b). Apparently s6 is
a FP -string as dst(pq, p6) < θ. So the E-strings are
s1, s3, s4, s5, s7, s8, and s9. The DBHs of these E-strings
are shown in the rectangles in Figure 2 (b). The V O of
target record sq is
V O = {((((s1, pR1

), s2, (s3, pR2
)), ((s4, pR2

), (s5, pR1
), s6)),

(((s7, pR1), (s8, pR1), (s9, pR2)), ([s10, s12], h
10→12))), {R1,

R2}}, where h10→12 = h(h(s10)||h(s11)||h(s12)).

4.4 VO Verification
After receiving MS and V O from the server, the client

uses V O to verify if MS meets the data integrity, sound-
ness, and completeness requirements. The verification of
V O consists of four steps.



Step 1: Re-construction of MB-tree. First, the client sorts
the strings and string ranges (in the format of [Nb, Ne]) in
V O according to the string ordering scheme. String s is
put ahead of the range [Nb, Ne] if s < Nb. It returns a
total order of strings and string ranges. If there exists any
two ranges [Nb, Ne] and [N ′b, N

′
e] that overlap, the client

concludes that the V O is not correct. If there exists a
string s ∈ MS and a range [Nb, Ne] ∈ V O such that
s ∈ [Nb, Ne], the client concludes that MS is not sound,
as s indeed is a false hit (i.e., it is included in a MF-node).
Second, the client maps each string s ∈ MS to an entry in
a leaf node in T , and each pair ([Nb, Ne], hN ) ∈ V O to
an internal node in T . The client re-constructs the parent-
children relationships between these nodes by following the
matching brackets () in V O.
Step 2: Re-computation of root hash. After the MB-tree
T is re-constructed, the client computes the root hash value
of T . For each string value s, the client calculates h(s),
where h() is the same hash function used for the construc-
tion of the MB-tree. For each internal node that corresponds
to a pair ([Nb, Ne], h1→f ) in V O, the client computes the
hash hN of N as hN = h(h(Nb)||h(Ne)||h1→f ). Fi-
nally, the client re-computes the hash value of the root node,
namely h′root. The client recovers the original MB-tree’s
root hash value hroot = Decryptpk(sig(T )) by decrypting
sig(T ) received from the data owner using the data owner’s
public key pk. The client then compares h′root with hroot.
If h′root 6= hroot, the client concludes that the server’s result
fails the verification.
Step 3: Re-computation of necessary edit distance. First,
for each string s ∈ MS , the client re-computes the edit
distance DST (sq, s), and verifies whether DST (sq, s) ≤
θ. If all strings s ∈ MS pass the verification, then the
client concludes that MS is sound. Second, for each FP -
string s ∈ V O (i.e., those strings appear in V O but not
MS), the client verifies whether DST (sq, s) > θ. If it
is not (i.e., s matches sq indeed), the client concludes that
the server fails the completeness verification. Third, for
each range [Nb, Ne] ∈ V O, the client verifies whether
DSTmin(sq, N) > θ, where N is the corresponding MF-
node associated with the range [Nb, Ne]. If it is not (i.e.,
node N is indeed a candidate node), the client concludes
that the server fails the completeness verification.
Step 4: Re-computation of necessary Euclidean dis-
tance. Step 3 only checks the if the NC-strings and FP -
strings in V O are indeed false hits. In this step, the client
checks the E-strings. First, for each pair (s, pR) ∈ V O, the
client checks if Ps ∈ R, where Ps is the embedded point of
s, and R is the DBH that pR points to. If all pairs pass the
verification, the client ensures that the DBHs in V O cover
the embedded points of all the E-strings. Second, for each
DBH R ∈ V O, the client checks if dstmin(Pq, R) > θ. If
not, the client concludes that the results are not complete.

Note that we do not require to re-compute the edit dis-
tance between any E-string and the target string. Instead
we only require the computation of the Euclidean distance
between a set of DBHs and the embedded points of the
target record. Since the Euclidean distance computation
is much faster than that of the edit distance, our approach
saves much verification cost compared with [5]. More com-
plexity analysis can be found in Section 4.5.

Example 4.2. Following the running example in Ex-
ample 4.1, after calculating the root hash h′root from
V O and comparing it with the one decrypted from the
signature sig received from the data owner, the client
performs the following computations: (1) for MS =
{s2}, compute DST (sq, s2); (2) for FP -string s6, com-
pute DST (sq, s6); (3) for NC-strings s10, s11, and
s12, compute DSTmin(sq, N7); and (4) for E-strings
s1, s3, s4, s5, s7, s8 and s9, compute dstmin(Pq, R1) and
dstmin(Pq, R2). Compared with [5] which computes 10
edit distances, our approach only computes 3 edit distances,
and 2 Euclidean distances. Note that the Euclidean dis-
tances computation is much cheaper than the edit distance
computation.

4.5 Complexity Analysis
In this section, we compare our approach EARRING with

the ARM approach [5] in terms of the time and space of the
authentication preparation, V O construction, and verifica-
tion phases. The comparison results are summarized in Ta-
ble 1. Regarding the V O construction overhead at the server
side, the DBH construction introduces O(n3ES) complexity.
This makes the higher VO construction complexity of EAR-
RING than that of ARM. However, such overhead can be
afforded by the server given its computational power.

Regarding the VO size, the VO size of ARM is calculated
as the sum of two parts: (1) the total size of the M -strings,
FP -strings andE-strings (in string format), and (2) the size
of MF - nodes. Note that σM = 2σS + |h|, where |h| is
the size of a hash value. In our experiments, it turned out
that σM/σS ≈ 10. The VO size of the our approach is
calculated as the sum of three parts: (1) the total size of
the M -strings, FP -strings and E-strings (in string format),
(2) the size of MF-nodes, and (3) the size of DBHs. Our
experimental results show that σD is small, and the VO size
of EARRING is comparable to that of ARM.

Regarding the complexity of verification time, note that
usually nDBH << nES as a single DBH can cover the Eu-
clidean points of a large number of E-strings, where nDBH
and nES are the number of DBHs and E-strings respec-
tively. Also note that CEd (i.e., complexity of an edit dis-
tance computation) is much more expensive than CEl (i.e,
the complexity of Euclidean distance calculation). Our ex-
periments show that the time to compute one single edit dis-
tance can be 20 times of computing one Euclidean distance.



Phase Measurement EARRING (our approach) ARM [5]

Authentication preparation
Time O(cdn2) O(n)
Space O(n) O(n)

VO construction
Time O(n+ n3

ES) O(n)
V O Size (nM + nES + nFP )σS + nMFσM + nDBHσD (nM + nES + nFP )σS + nMFσM

Verification Time O((nM + nMF + nFP )CEd + nDBHCEl) O((nM + nMF + nES + nFP )CEd)

Table 1: Complexity comparison between ARM and EARRING
( n: # of strings in D; c: a constant in [0, 1]; d: # of dimensions of Euclidean space; σS : the average length of the string;

σM : Avg. size of a MB-tree node; σD: Avg. size of a DBH; nM : # of M -strings; nFP : # of FP -strings;
nES : # of E-strings; nDBH : # of DBHs; nMF : # of MF-nodes;

CEd: the complexity of an edit distance computation; CEl: the complexity of Euclidean distance calculation.)

Therefore, compared with ARM, EARRING significantly re-
duces the verification overhead at the client side. We admit
that it increases the overhead of authentication preparation
at the data owner side and the V O construction at the server
side. We argue that, as the authentication preparation phase
is a one-time operation, the cost of constructing the em-
bedding function can be amortized by a large number of
queries from the client. And as the server is equipped with
strong computing resources, it is of the highest priority to
reduce the verification complexity at the client side. There-
fore, EARRING is remarkably advantageous over ARM [5].

5 Security Analysis
In this section, we discuss how EARRING can catch any

data integrity, result soundness and completeness violation
based on VO.
Data integrity. The server may include tampered values in
MS . The tampered values can be easily caught by the VO
verification procedure, as the hash values of the tampered
strings are not the same as the original strings. This leads
to that the root hash value of MB-tree re-constructed by
the client different from the root value of original dataset.
The client can catch the tampered values by Step 2 of the
verification procedure.
Result soundness. To violate soundness, the server returns
MS = M ∪ FS, where M is the set of matching strings
in D, and FS is a subset of false hits. We consider two
possible ways that the server constructs V O: (Case 1.) the
server constructs the V O of the correct result M , and re-
turns {MS , V O} to the client; and (Case 2.) the server
constructs the V O of MS , and returns {MS , V O} to the
client. Note that the strings in FS can be NC-strings, FP-
strings, and E-strings. Next, we discuss how to catch these
three types of strings for both cases.

For Case 1, for each NC-string s ∈ FS, s must fall into
aMF -tree node in V O. Thus, there must exist anMF -tree
node whose associated string range overlaps with s. The
client can catch s by Step 1 of the verification procedure.
For any FP-string s ∈ FS, s can be caught by re-computing
the edit distance DST (s, sq) (i.e., Step 3 of verification).
For any E-string s ∈ FS, let Ps be the embedded point of
s. Since the VO is constructed from the correct M and F ,

there must exist a DBH in VO that includes Ps. Therefore, s
can be caught by verifying whether there exist any DBH that
includes the embedded points of s (Step 4 of verification).

For Case 2, the NC-strings and FP-strings in FS can be
caught in the same way as in Case 1. The E-strings cannot
be caught by Step 4 now, as: (1) the DBHs constructed from
a subset of E-strings are still DBHs, and (2) no string in FS
is included in a DBH in the VO. However, these E-strings
are treated as FP-strings (i.e., not included in any DBH),
and thus can be caught by Step 3.
Result completeness. To violate the completeness require-
ments, the server returns returns MS = M − SS, where
SS ⊆ M . Let V and V ′ be the VO constructed from M
and MS respectively. We again consider the two cases as
for the discussion of result soundness violation.

For Case 1, where the VO is constructed from the correct
result M , any string s ∈ SS is a FP-string, as s is not in-
cluded in M . Then by calculating DST (s, sq), (i.e., Step 3
of the verification procedure), the client discovers that s is
indeed similar to sq and thus catch the incomplete results.

For Case 2, where the VO is constructed from MS , any
string s ∈ SS is either a FP-string or a E-string. If s is
treated as a FP-string, it can be caught by recomputing of
edit distance (Step 3 of verification). If s is a E-string, then
its Euclidean point Ps must be included in a DBH R. In-
cluding Ps into any MBH will make it a non-DBH. The
client can easily catch it by re-computing the euclidean dis-
tance (Step 4 of verification).

6 Experiments
6.1 Experiment Setup
Datasets and queries. We use two real-world datasets
: (1) the Actors dataset from IMDB1 that contains 260K
last names; and (2) the Authors dataset from DBLP2 in-
cluding 1,000,000 researcher names. As both datasets are
very large, it is too time-consuming to execute approxi-
mate matching for all records in these two datasets. Thus,
we picked 10 target strings for approximate matching. For
the following results, we report the average performance of
matching of the 10 target strings.

1http://www.imdb.com/interfaces
2http://dblp.uni-trier.de/xml/
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Figure 3: VO construction time w.r.t. distance threshold θ
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Figure 4: VO construction time w.r.t. MB-tree fanout f
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Figure 5: VO size w.r.t. distance threshold θ
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Figure 6: VO size w.r.t. MB-tree fanout f

Experimental environment. We implement our EARRING
approach in C++. The hash function we use is the SHA256
function from the OpenSSL library. We execute the exper-
iments on a machine with 2.4 GHz CPU and 48 GB RAM,
running Linux 3.2.
Baseline. As the baseline method, we implement the ARM
approach [5] that authenticates the record matching result
purely based on the MB-tree.
Parameter setup. In the experiments, we use various string
edit distance threshold θ and fanout f of MB-tree nodes.
We are interested in observing the performance of our ap-
proach under different parameter values.

6.2 VO Construction Time
First, we measure the impact of distance threshold θ on

the VO construction time. In Figure 3, we show the VO
construction time with regard to different θ values on both
datasets. First, we observe a dramatic decrease in V O con-
struction time of EARRING when θ increases. The reason
lies in the sharp reduction in nES , i.e., the number of E-
strings. For example, on the Actors dataset, when θ changes
from 2 to 3, nES decreases from 113, 673 to 49, 886. Since
the complexity of V O construction is cubic to nES , the to-
tal V O construction time decreases intensively when nES
decreases. Second, we note that EARRING consumes more
time on constructing VOs than ARM, especially when θ is a
small value. This is because besides traversing theMB-tree
like ARM, EARRING constructs DBHs for the E-strings.
The number of E-strings nDS is large when θ is small. As a
result, the DBH construction complexity is higher when the
threshold is small.

We also measured the impact of the MB-tree structure
on the VO construction time. From Figure 4, we observe
that, in all the experiments, the VO construction time in-
creases with the fanout value f . Even though the total num-
ber of nodes in the MB-tree decreases with larger fanout

values, the decrease in the number ofMF s nMF is more in-
tense. For example, on the Authors dataset, when f = 100,
nMF = 5, 420; while when f = 1, 000, nMF = 57. The
reason behind the significant reduction in nMF is that when
f is large, DSTmin(sq, N) becomes a loose lower-bound
for any MB-tree node N . This leads to a significant por-
tion of the MB-tree nodes to become candidates. Besides,
EARRING demands more VO construction time than ARM
regardless of the fanout of the MB-tree. The underlying
reason resides in the DBH construction cost of EARRING.

6.3 VO Size
We measure the impact of the distance threshold θ on

the VO size. The results are shown in Figure 5. We no-
tice that the VO size of EARRING and ARM is very close.
The reason is two manifold. On the one hand, the size of
each DBH is very small. On the other hand, the number
of DBHs nDBH is also very small. In the experiments,
nDS/nDBH ≈ 26. In other words, each DBH covers the
Euclidean points of 26 DBH-strings. Due to these two rea-
sons, even though EARRING introduces DBHs additionally
to the VO, the increment in VO size is small. Another ob-
servation is that the VO size increases with the growth of θ
value, especially when θ increases from 1 to 2. Apparently,
larger θ values lead to more M -strings (i.e., larger nM ),
fewer MF -nodes (i.e., smaller nMF ), and fewer FP-strings
and E-strings. When we increase θ, the intensive growth of
nM leads to the increase of VO size. For example, on the
Actors dataset, when θ = 1, nM = 27, 655. While when
θ = 3, nM = 49, 373.

Furthermore, we measure the impact of the MB-tree
fanout f on the VO size. Following the same reason as
before, we notice in Figure 6 that EARRING produces VO
of similar size as ARM. For both approaches, the VO size
increases with the growth of f .



6.4 VO Verification Time
In this section, we measure the VO verification time of

EARRING at the client side. We compare the VO verifica-
tion time with the performance of ARM, aiming to show that
EARRING reduces the client’s verification effort.

In Figure 7, we report the VO verification time with re-
gard to various distance threshold values. First, the VO
verification time of EARRING increases when θ increases.
Recall that the complexity of VO verification is O((nM +
nMF + nFP )CEd + nDBHCEl). When θ increases, nMF

decreases, while nM and nFP increase. As nM and nFP
increase faster than the decrease of nMF , it leads to more
edit distance calculations. Therefore, the total verification
time increases. Second, the verification time of EARRING
is always smaller than that of ARM, and when θ is smaller,
EARRING wins more over ARM. We conduct deeper study
to explore the reason. We find that rather than θ, the key
factor to verification time is the fraction of E-strings (de-
noted as pES), where pES = nES

n . In Figure 8, we com-
pare the VO verification time of EARRING and ARM with
regard to various pES values. In particular, let t1 and t2 be
the verification time of of EARRING and ARM respectively.
We report the ratio r = t1

t2
under different pES values. Intu-

itively, smaller r values show the effectiveness of EARRING
in saving the verification time at the client side. The main
observation is that r is smaller for larger pES value. This
is because with EARRING, the client replaces the edit dis-
tance calculation for E-strings by efficiently computing the
Euclidean distance of a small amount of DBHs. The larger
pES is, the larger fraction of edit distance calculations that
the client can avoid. In particular, EARRING can save up to
91% verification cost at the client side than ARM (r = 9%).
This demonstrates the strength of EARRING in reducing the
VO verification complexity.
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Figure 9: VO verification time w.r.t. MB-tree fanout f

We also measure the VO verification time with various
MB-tree fanout f . On both datasets, the VO verification
of EARRING is always more efficient than ARM. Moreover,
the advantage of EARRING is more evident when f grows.
This is straightforward as larger f results in the growth of
the number of E-strings.

In sum, the experiment results demonstrate that, com-
pared with ARM [5], EARRING dramatically saves the ver-
ification cost at the client side, especially for small θ value.
Meanwhile, the VO size is comparable with ARM.

7 Related Work
There are a lot of previous research that focus on the

security issues of the outsourced computing. In this section,
we discuss the related work in four directions.

When outsourcing the record matching task that involves
private information to a third party, it is necessary to pre-
vent the sensitive data from leakage. Karapiperis et. al [10]
design a secure multi-party computation protocol based on
homomorphic operations to calculate the distance between
a pair of records over the ciphertext values. To make the
solution practical for real-world applications, a blocking
technique is applied to find candidate matching pairs in ad-
vance. Dong et al. [4] propose two encoding techniques to
transform the sensitive data values in a similarity-preserving
way. The record matching on the encoded data yields high
accuracy. Zhang et al. [23] consider the potential collu-
sions between parties that execute the record matching. By
exploiting cryptographic operations such as pseudorandom
permutations, a collusion-resistant protocol is proposed to
protect the data privacy.

The correctness of outsourced SQL queries have been
the research concentration for decades. Narasimha et al.
[16] integrate digital signature aggregation and chaining to
ensure the soundness and completeness of range selection
queries and projections. Mykletun et al. [15] focus on the
selection-projection queries. An authentication approach
based on signature aggregation is proposed. Cheng et al.
[2] propose a new authenticated data structure named veri-
fication R-tree (VR-tree) to check the correctness of queries
on multidimensional databases. Bajaj et al. [1] propose
CorrectDB by incorporating trusted hardware and crypto-
graphic techniques. It supports the authentication of arbi-
trary SQL queries over the outsourced database.

Regarding the authentication of nearest neighbor search,
Yang et al. [21] designs a MR-tree index that integrates
an R-tree with the Merkle hash tree for authentication of
multi-dimensional range queries. Yiu et al. [22] focus on
the moving KNN queries that continuously reports the k
nearest neighbors of a moving query point. They designed
the Voronoi MR-tree as the authenticated data structure for
V O construction and authentication. [5] is the closest to
our work. The authors propose a new authenticated data
structure named MB-tree. To prove the correctness of the
result, V O is constructed by traversing the tree. We improve
the VO construction procedure, so that the verification cost
at the client side is significantly reduced.

A large body of works authenticate various types of out-
sourced computations. Li et al. [14] integrate Merkle tree
with a multi-dimensional indexing method to verify the rec-
ommendations made by the cloud broker. Papadopoulos et
al. [17] design a new authenticated data structure based
on bilinear mapping to verify outsourced pattern matching.
Lee et al. [11] propose a reversible image authentication ap-
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Figure 7: VO verification time w.r.t. distance threshold θ
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proach based on watermarking. The original image can be
recovered after the hidden watermark is removed. However,
these techniques cannot be directly applied to authenticate
record matching due to the intrinsic difference in the com-
putations.

8 Conclusion
In this paper, we design a lightweight authentication

framework named EARRING to check the result correct-
ness of the outsourced record matching. We require the
server to construct verification object (VO) from the MB-
tree and the embedding space to prove the result correct-
ness. In the future, we plan to study how to authenticate the
record matching on dynamic dataset. We also plan to de-
sign the authentication methods that support other types of
similarity metrics such as semantic similarity and Hamming
distance.
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