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Abstract—Cloud computing is popularizing the computing
paradigm in which data is outsourced to a third-party service
provider (server) for data mining. Outsourcing, however,
raises a serious security issue: how can the client of weak
computational power verify that the server returned correct
mining result? In this paper, we focus on the specific task
of frequent itemset mining. We consider the server that is
potentially untrusted and tries to escape from verification
by using its prior knowledge of the outsourced data. We
propose efficient probabilistic and deterministic verification
approaches to check whether the server has returned correct
and complete frequent itemsets. Our probabilistic approach
can catch incorrect results with high probability, while our
deterministic approach measures the result correctness with
100% certainty. We also design efficient verification methods
for both cases that the data and the mining setup are
updated. We demonstrate the effectiveness and efficiency of
our methods using an extensive set of empirical results on real
datasets.

Index Terms—Cloud computing, data mining as a service,
security, result integrity verification.

I. INTRODUCTION

The increasing ability to generate vast quantities of data
presents technical challenges for efficient data mining. Out-
sourcing data mining computations to a third-party service
provider (server) offers a cost-effective option, especially
for data owners (clients) of limited resources. This in-
troduces the data-mining-as-a-service (DMaS) paradigm.
Cloud computing provides a natural solution for the DMaS
paradigm. A few active industry projects, for example,
Google’s Prediction APIs and Microsoft’s Daytona project,
provide cloud-based data mining as a service to users.

In this paper, we focus on frequent itemset mining
as the outsourced data mining task. Informally, frequent
itemsets refer to a set of data values (e.g., product items)
whose number of co-occurrences exceeds a given threshold.
Frequent itemset mining has been proven important in
many applications such as market data analysis, networking
data study, and human gene association study. Previous
research has shown that frequent itemset mining can be
computationally intensive, due to the huge search space that
is exponential to data size as well as the possible explosive
number of discovered frequent itemsets [15]. Therefore, for
those clients of limited computational resources, outsourc-
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ing frequent itemset mining to computationally powerful
service providers (e.g., the cloud) is a natural solution.

Although it is advantageous to achieve sophisticated
analysis on tremendous volumes of data in a cost effective
way, end users hesitate to place full trust in cloud comput-
ing. This raises serious security concerns. One of the main
security issues is the integrity of the mining result. There
are many possible reasons for the service provider to return
incorrect answers [3]. For instance, the service provider
would like to improve its revenue by computing with
less resources while charging for more. Since sometimes
the mining results are so critical that it is imperative to
rule out errors during the computation, it is important to
provide efficient mechanisms to verify the result integrity
of outsourced data mining computations.

In this paper, we focus on the problem of verifying
whether the server returned correct and complete frequent
itemsets. By correctness, we mean that all itemsets returned
by the server are frequent. By completeness, we mean that
no frequent itemset is missing in the returned result.

[14] initialized the research on integrity verification of
outsourced frequent itemset mining. Its basic idea is to
insert some fake items that do not exist in the original
dataset into the outsourced data. These fake items will
construct a set of fake (in)frequent itemsets. Then by
checking against the fake (in)frequent itemsets, the client
can verify the correctness and completeness of the mining
answer by the server. Their assumption is that the server has
no background knowledge of the items in the outsourced
datasets, thus it has equal probability to cheat on the fake
and true itemsets. We argue that such assumption may not
stand in practise, as the server may be able to possess
prior knowledge of outsourced data (e.g., domain values
of items and their frequency) from other sources [11].
Apparently such server can escape easily from the verifica-
tion mechanism in [14] that is based on using fake items.
Moreover, the server may also be aware of the knowledge
of verification techniques, and tries to escape verification by
utilizing such knowledge. Our goal is to design efficient and
robust integrity verification methods to catch such server
that may return incorrect and incomplete frequent itemsets.
In particular, we make the following contributions. First,
we design the probabilistic approach to catch mining result
that does not meet the predefined correctness/completeness
requirement with high probability. The key idea is to
construct a set of (in)frequent itemsets from real items,



and use these (in)frequent itemsets as evidence to check
the integrity of the server’s mining results. We do not use
any fake item as in [14] that does not exist in the original
dataset to construct evidence (in)frequent itemsets.

Second, we design the deterministic approach to catch
any incorrect/incomplete frequent itemset mining answer
with 100% probability. The key idea of our deterministic
solution is to require the server to construct cryptographic
proofs of the mining results. Both correctness and com-
pleteness of the mining results are measured against the
proofs with 100% certainty.

Third, for both probabilistic and deterministic ap-
proaches, we provide efficient methods to deal with updates
on both the outsourced data and the mining setup.

Last but not least, we complement our analytical results
with extensive experiments evaluating the performance of
our verification approaches. Our experimental results show
that the probabilistic approach can achieve the desired
verification guarantee with small overhead, while our deter-
ministic approach provides higher security guarantee with
overhead more than the probabilistic approach.

The paper is organized as follows. We discuss preliminar-
ies in Section II. We present our probabilistic approach and
deterministic approach in Section III and IV respectively.
We discuss possible extension of our work in Section V. In
Section VI, we evaluate the performance of our approach.
We discuss related work in Section VII and conclude in
Section VIII.

II. PRELIMINARIES
A. Frequent Itemset Mining

Given a transaction dataset D that consists of n transac-
tions, let I be the set of unique items in D. The support of
the itemset I ⊆ I (denoted as supD(I)) is the number of
transactions in D that contain I . An itemset I is frequent
if its support is no less than a support threshold minsup
[1]. Clearly the search space of all frequent itemsets is
exponential to the number of items in D. The (in)frequent
itemsets behave the following monotone property. For any
given infrequent itemset I , any itemset I ′ s.t. I ⊆ I ′ must
be an infrequent itemset. Similarly, for any frequent itemset
I , any itemset I ′ ⊆ I must be a frequent itemset.
B. Outsourcing Setting

The data owner (client) outsources her dataset D, with
the minimum support threshold minsup, to the service
provider (server). The server performs frequent itemset
mining on the received dataset and returns the mining
results to the client. We allow the client to use privacy-
preserving frequent itemset mining algorithms [11], [6] to
encrypt the dataset; in this case the server will return the
accurate itemsets in encrypted format.
C. Untrusted Server

We consider two types of untrusted servers that may
return erroneous answer: the type-1 server that possesses the
background knowledge of the outsourced dataset, including
the domain of items and their frequency information, and
the type-2 server that is aware of the frequency distribution
information of both items and transactions, as well as the
details of the verification procedure. In this paper, we target
at designing verification approaches to catch these two
types of servers.

Fig. 1: An Example of Merkle Tree

D. Cryptographic Background
Bilinear pairings [19]. Let G1 and G2 be two cyclic
multiplicative groups of order q for some large prime q.
Let e : G1 × G1 → G2 be a bilinear pairing with the
following properties: (1) Bilinearity: there exists a bilinear
map e : G1×G1 → G2 such that e(P a1 , P

b
2 ) = e(P1, P2)ab

for all P1, P2 ∈ G1 and a, b ∈ Z of prime order q; (2)
Non-degeneracy: e(g, g) 6= 1, i.e., not all pairs in G1×G1

are sent to the identity in G2 by e; (3) Computability:
there is an efficient algorithm to compute e(P1, P2) for all
P1, P2 ∈ G1.
Merkle hash trees. A Merkle hash tree [20] is an authenti-
cated data structure that allows data integrity verification. It
is a binary tree T in which each leaf node l is assigned the
value hl = hash(l||T [l]), while each non-leaf node with
children a and b is assigned the value hl = hash(ha||hb),
where hash is a collision-resistant hash function. An impor-
tant algorithm MTproof(v, T ) is equipped with a Merkle
hash tree T , which outputs a proof showing that the digest
value v is indeed the value stored in T . In particular, let
path(i) be a list of nodes on the path from leaf i to the
root and sib(j) denote a sibling of node j in T . Then
MTproof() outputs the ordered list containing the hashes of
the siblings sib(j) of the nodes j in path(i). For example,
consider the Merkle tree T in Figure 1, and the value
h1. Then MTproof() returns {h2, h34}. The complexity of
MTproof() is O(log2|T |). How to use the Merkle tree for
verification will be discussed in Section IV-B.

III. PROBABILISTIC APPROACH

The key idea of our methods is to construct a set
of (in)frequent itemsets from real items, and use these
(in)frequent itemsets as evidence to check the integrity of
the server’s mining result. We remove real items from the
original dataset to construct artificial evidence infrequent
itemsets (EIs), and insert copies of items that exist in
the dataset to construct artificial evidence frequent items
(EFs).
A. Verification Goal

Before discussing the detailed approaches, we formally
define the correctness and completeness of the frequent
itemset mining result. Let F be the real frequent itemsets in
the outsourced database D, and FS be the result returned by
the server. We define the precision P of FS as P = |F∩FS |

|FS |
(i.e., the percentage of returned frequent itemsets that are
correct), and the recall R of FS as R = |F∩FS |

|F | (i.e., the
percentage of correct frequent itemsets that are returned).
The aim of our probabilistic approaches is to catch any
answer that does not meet the predefined precision/recall
requirement with high probability. Formally, given a dataset
D, let F s be the set of frequent itemsets returned by the
server. Let prR and prP be the probability to catch F s of



recall R ≤ α1 and precision P ≤ α2, where α1, α2 ∈ [0, 1]
are given thresholds. We say a verification method M can
verify (α1, β1)-completeness ((α2, β2)-correctness, resp.)
if prR ≥ β1 (prP ≥ β2, resp.), where β1 ∈ [0, 1]
(β2 ∈ [0, 1], resp.) is a given threshold. Our goal is to
find a verification mechanism that can verify (α1, β1)-
completeness and (α2, β2)-correctness.
B. Construction of Evidence Frequent Itemsets (EFs)

Our basic idea of completeness verification is that the
client uses a set of frequent itemsets as the evidence, and
checks whether the server misses any evidence frequent
itemset in its returned result. If it does, the incomplete
answer by the server is caught with 100% certainty. Other-
wise, the client believes that the answer is complete with a
probability. We have:

Theorem 3.1: Given the frequent itemsets FS returned
by the server with recall R, the probability prR of catching
the incomplete answer with ` evidence frequent itemsets
(EFs) is prR = 1−R`.

Clearly, to satisfy (α1, β1)-completeness (i.e., prR ≥
β1), it must be true that ` ≥ dlogα1

(1 − β1)e. Our
analysis shows that with high completeness probability
catching a server that fails to return even a small fraction
of frequent itemsets does not need a large number of
EFs. For instance, when α1 = 0.95 (i.e., 5% of frequent
itemsets are not returned) and β1 = 0.95, we only need
58 EFs. Apparently that the number of required EFs is
independent from the size of the dataset as well as the
number of real frequent itemsets. Therefore our verification
approach is especially suitable for efficient verification for
large datasets.

We propose the MiniGraph approach to construct EFs.
Intuitively, we pick a set of item seeds for EF construction
(Step 1), and find a set of real infrequent itemsets that
contains at least one seed (Step 2 & 3). We take these
infrequent itemsets as EFs and add fake transactions to
make them artificially frequent (Step 4). Below we explain
the details of the four steps of the MiniGraph approach.

Step 1: We pick the infrequent 1-itemset of the largest
frequency as Iseed. The purpose of doing so is to reduce the
number of artificial transactions added by Step 4. If there is
no such 1-itemset, we pick the infrequent 2-itemset of the
largest support. Note that Iseed is not infrequent anymore in
the outsourced dataset after inserting artificial transactions.

Step 2: We find the transactions Dseed ⊆ D that contain
Iseed, and construct the MiniGraph G from Dseed. The
root of G corresponds to Iseed. Each non-root node in G
responds to a transaction in Dseed. There is an edge from
node Ni to node Nj in G if the transaction that node Nj
corresponds to is the smallest superset of the transaction
of node Ni. Each node is labeled with an integer denoting
the frequency of its corresponding transaction. Note that
since Iseed is infrequent, the frequency of each node in
MiniGraph does not exceed minsup.

Step 3: We select ` nodes from the second level of G as
EFs, where ` is the number of required EFs that satisfy
(α1, β1)-completeness. The itemsets that the picked nodes
correspond to are EFs. If there are not sufficient itemsets

to select, we add the next infrequent 1-itemset of the largest
frequency as another Iseed, and repeat Step 1 - 3, until we
either find ` EFs or there is no infrequent 1-itemset left.
If it cannot return enough EFs, we will continue the same
procedure from the lower levels of G. It is easy to see that
the maximum number of EFs that can be constructed by
MiniGraph approach is 2x − 2, where x is the number of
infrequent items in D. We assume that 2x − 2 ≥ `, i.e.,
there are always sufficient EF candidates.

Step 4: For each picked EF : (1) we compute its support
f as the total frequency of all its descendants and itself;
(2) we compute the number of itemsets that need to be
added as (minsup − f); and (3) we construct (minsup −
f) artificial transactions, each being a copy of EF . These
artificial transactions are inserted into D.
C. Construction of Evidence Infrequent Itemsets (EIs)

Similar to the completeness verification, our basic idea
of correctness verification is that the client uses a set of
infrequent itemsets as the evidence, and checks whether
the server returns any evidence infrequent itemset. Next, we
show how to measure the correctness probability guarantee.
Similar to the completeness probability guarantee, we have:

Theorem 3.2: Given the frequent itemsets FS returned
by the server with precision P , the probability prP of
catching the incorrect answer with ` EIs is prP = 1−P `.

To satisfy (α2, β2)-correctness (i.e., prP ≥ β2), it must
satisfy that ` ≥ dlogα2

(1−β2)e. As prP and prR (Theorem
3.1) are measured in the similar way, we have the same
observation as for the completeness verification, which is
that with high probability catching a server that returns even
a small fraction of wrong frequent itemsets does not need
large number of EIs. Furthermore, the number of required
EIs is independent from the database size and the number
of real frequent itemsets.

We propose the lattice-based approach to construct EIs.
Specifically, we consider all infrequent 1-itemsets as EIs.
If the number of such 1-itemsets is not sufficient to satisfy
(α2, β2)-correctness, we transform a number of frequent
1-itemsets to be infrequent for additional EIs (Step 1).
For those EIs that are frequent in the original dataset, we
pick the minimum number of transactions (Step 2), and
delete the minimum number of items (Step 3) from these
transactions to make all EIs infrequent. Next, we explain
the details of the lattice-based approach.

Step 1: Pick Evidence Infrequent Itemsets (EIs).
First, we first all infrequent 1-itemsets. We exclude the
Iseed used for EF construction from the set of 1-itemset
candidates, so that Iseed and all its supersets will not
be considered as the EI candidates. This ensures that
no itemset will be required to be EI and EF at the
same time. Let x be the number of infrequent 1-itemsets.
These x infrequent 1-itemsets are inserted into the evi-
dence repository R. If x > `, where ` is the number of
EIs required to satisfy (α2, β2)-correctness (i.e., there are
sufficient number of EIs), we terminate construction of
EIs; otherwise, we continue. Let h be the minimal value
to make

(
m−x
h

)
≥ `−x, where m is the number of unique

items in D, and x is the number of infrequent items in



D. Also let k be the minimal value to make
(
k
h

)
≥ `− x.

We pick the first k frequent 1-itemsets S1item from the
sorted list of items. We construct all h-itemset candidates
Shitem that contain h items from S1item, and insert those
h-itemset candidates that have non-zero support into R.
If |R|< ` (i.e., there is insufficient number of EIs), we
pick the next k′ sorted items S′1item after S1item in the
sorted list, where

(
k+k′

h

)
−
(
k
h

)
> (` − |R|). We update

S1item = S1item∪S′1item as well as k = k+k′, and repeat
Step 1.4, until there are at least ` h-itemsets of non-zero
supports. If all unique items are inserted into S1item but
there are fewer than ` EIs, we increase h by 1, and repeat
the procedure, until R has ` EIs.

For transaction datasets that have large number of infre-
quent 1-itemsets, the algorithm terminates early without the
need to remove any item. It has been shown [4] that in real-
life transaction datasets, the item support distribution (as
well as the itemset support distribution) follows a power-
law distribution: it is highly likely that there are large
number of infrequent 1-itemsets. This is advantageous as
in practice, the correctness verification can be achieved
without changing the database.

Step 2: Pick Transactions for Item Removal. Out of
` EIs picked by Step 1, some of them are infrequent in
D and some are indeed frequent. We do not need to take
any action on the real infrequent itemsets RI . We aim at
transforming those frequent EIs into artificial infrequent
EIs (notated as AI). To achieve this, we pick a set of
transactions D′ ⊆ D, so that for each frequent itemset
I ∈ AI , supD′(I) ≥ supD(I) − minsup + 1. In other
words, for each I , its support will be decreased to at most
minsup − 1 after their instances in D′ are removed. We
aim at finding the minimal set of such D′.

To help pick D′, we construct the transaction matrix M
of D. M is a u× n binary matrix, where u is the number
of itemsets in AI , and n is the number of transactions in
D. M [i, j] = 1 means that the frequent itemset Ii appears
in transaction Tj ; otherwise, M [i, j] = 0. We also define a
n-length binary vector V , in which V [i] = 1 means that the
i-th transaction is picked. Let A = M×V . Apparently A[i]
equals the number of picked transactions that contain the
i-th frequent itemsets in AI . Then the problem of finding
the transactions D′ for transforming AI to be infrequent is
equivalent to finding a n-length binary vector V such that
∀Ii ∈ AI , A[i] ≥ supD(Ii)−minsup, where A = M ×V .
We initialize A as:

A =

 supD(AI1) −minsup + 1
. . .

supD(AIu) −minsup + 1


Then we calculate V such that: (1) M × V = A, and

(2) V is a binary vector. To satisfy (1), we calculate V =
(MTM)−1MTA. If V is a binary vector, we return V .
Otherwise, we pick the smallest value in A, and increase
it by 1 (i.e. allow more instances to be removed). If there
are multiple entries in A of the same values, we break the
tie randomly. Whenever we update A, we increment the
relaxed cost (initialized as 0) by 1. We repeat the calculation
of V , until either there is a V to be returned or the amount

of relaxed cost exceeds a given threshold.
Step 3: Pick Item Instances for Removal. Given the

transactions D′ obtained by Step 2, we need to decide
which items in D′ will be removed. We aim at minimizing
the total number of removed items. To address this issue,
we put high priority on removing the items that are shared
among patterns in AI . Therefore, we do the following to
pick the items. First, for each unique item in AI , we count
its frequency in AI . Second, we sort the items by their
frequency in descending order. Third, we construct the item
matrix IM of AI . IM is a u× y binary matrix, where u
is the number of itemsets in AI , and y is the number of
unique items in AI . In the matrix, IM [i, j] = 1 means
that the frequent itemset Ii contains the item ij ; otherwise,
IM [i, j] = 0. Then we repeat the following procedure on
IM . We add the item that corresponds to the first column
of IM to the output, update IM by removing all rows i
such that IM [i, 1] = 1 (i.e., all patterns that contain the
item of the largest support), and re-sort the columns in the
updated IM by their sum in descending order. We repeat
until IM becomes empty. The sequence of the removed
columns outputs the items to be picked for removal.

After item removal, by following the property of the
downward closure of infrequentness, the client adds all
descendant itemsets of the EIs picked by Step 1 that
are of non-zero support into the evidence repository R.
Furthermore, we are aware that changing frequent itemsets
to be infrequent will modify all of its frequent descendants
to be infrequent. This will lead to incomplete frequent
itemsets even when the server is honest. To solve this
problem, for each descendant itemset of AI that is added
to R, we count its support and mark it as recoverable if
it is frequent. Those recoverable itemsets are maintained
locally by the client and will be added back to the mining
result from the server. Finding recoverable frequent itemsets
completes the construction of EIs.
D. Robustness Analysis

In this section, we analyze the robustness of our verifi-
cation approach based on EF s and EIs.
Robustness of EFs. The type-1 server may compare the
frequency of items between its background knowledge and
that collected from the outsourced D′. It may notice that
some items that are infrequent in D turn to be frequent in
D′. Let these items be J . The server may choose not to
cheat over the itemsets that contain any item in J . Note
that J is a superset of all Iseed items that are used for
EF construction. Let pr be the probability that the attacker
can escape verification based on EFs constructed from
one specific Iseed. Let j1 and j2 denote the number of
Iseed items and items other than Iseed in J respectively.
Then pr = j1

j1+j2
. Thus the probability that the attacker

can escape verification based on EFs constructed from j1
Iseed items equals Pr = 1 − (1 − pr)j1 . The client may
require γ-security, i.e., the probability Pr that the attacker
can escape the EF -based verification is no greater than γ.
To ensure γ-security, we need to add artificial transactions
to convert j2 = d j1

1−(1−γ)
1
j1

− j1e infrequent 1-itemsets,

besides Iseed, to be artificially frequent in D′.



The type-2 server is aware that the infrequent 1-
itemset(s) with the largest frequency are always picked as
Iseed items. Therefore, the probability that the server can
identify those Iseed items (and thus escape the verification
based on EFs constructed from these items) is 100%. To
fix this issue, instead of picking Iseed from infrequent items
in descending order of frequency, the client has to pick
Iseed from the infrequent items randomly.
Robustness of EIs. The type-1 server may observe that
the frequency drop of some items in the outsourced data
and may decide not to cheat on EIs that contain these
items. Let O be those items. Indeed, these items are those
we choose to remove when constructing EIs. In this case,
those EIs that contain any item of O would not be able to
catch the server. Only

(
k−o
h

)
EIs that do not contain any

of O are still effective, where o is the number of items in
O, and k is number of unique frequent items we pick to
build h-itemsets as EIs. To fix this issue, we may require
that o satisfies

(
k−o
h

)
≥ ` − x, where ` is the number of

EIs required to satisfy (α2, β2)-correctness, and x is the
number of infrequent items picked as EIs.

The type-2 server understands how EIs are constructed.
Thus, it can infer that all infrequent 1-itemsets must be
EIs, and thus reduce the catching probability from (1 −
Pr|EI|) to (1−Pr|AI|), where AI are the set of EIs that
are indeed frequent in D. To fix this problem, we require
that |AI| ≥ `. But it is likely that we can not find sufficient
number of AIs. In this case, the probabilistic approach fails
to provide the required correctness guarantee.

E. Complexity Analysis
In this section, we theoretically analyze the time and

space complexity of our EF and EI construction.
1) EF construction: The time and space complexity of

the MiniGraph approach are O(|D|) and O(|G|) respec-
tively, where G is the constructed MiniGraph. Normally |G|
is a small portion of |D|. Compared with the complexity
O(2m) of frequent itemset mining, where m is the number
of items in D, our verification preparation approach has
cheaper overhead than mining locally.

2) EI construction: The complexity of the lattice-based
approach is O(|EI||D|). The complexity of removing item
instances is O(y|AI|), where y is the number of unique
items in AI . Since |AI| ≤ |EI| and y << |D|, the
complexity of verification preparation for correctness veri-
fication is O(|EI||D|).

F. Update Operations
The client may need to update her data from time to

time and/or want to continuously execute frequent itemset
mining over the outsourced dataset with different minsup
values. Let ∆D be the update over dataset D, and ∆minsup
the change in minsup. For simplicity, we only consider
insertion-only and deletion-only operations. We use |∆D|
to denote the size of ∆D. When ∆D corresponds to a
sequence of deletions, we still consider |∆D| as a positive
value, which equals the number of deleted transactions.
∆minsup could be either positive or negative integer val-
ues. Next, we discuss how to adapt our verification method

to deal with the update on the dataset, as well as the update
on minsup.
When ∆minsup > 0. First, we discuss EF s update. The
client has to ensure that the EF s are still frequent with
regard to the new minsup. Therefore, for each itemset I ∈
EF , if ∆f(I) = ∆minsup − sup∆D(I) > 0, the client
inserts ∆f(I) artificial copies of I to D. Otherwise, no
update is needed on I .

Regarding EIs update, we will ensure the infrequentness
of EIs after update. If ∆D is a sequence of insertions
and |∆D| ≥ ∆minsup, the client applies Step 2 and 3
in Section III-C on ∆D to make sure that ∆D does not
change the infrequentness of EIs. Specifically, the matrix
M is constructed from ∆D, while A is constructed as

A =

 sup∆D(EI1) − ∆minsup + 1
. . .

sup∆D(EIu) − ∆minsup + 1

 .

Otherwise, no update on EIs is needed.
When ∆minsup ≤ 0. First, we discuss EF s update.
When ∆D is constructed by deletion-only transactions and
|∆D| + ∆minsup > 0, it is likely that a EF may turn
to be infrequent. Therefore, for each I ∈ EF , the client
evaluates ∆f(I) = sup∆D(I) + ∆minsup. If ∆f(I) < 0,
the client inserts |∆f(I)| copies of I to ∆D. Otherwise,
there is no update on I .

Regarding EIs update, EIs may become frequent for
the smaller minsup value. Therefore, the client checks
supD′(I) for each I ∈ EI , where D′ is the dataset
after update. Let fmax = max{supD′(I)|I ∈ EI}. If
fmax ≥ minsup + ∆minsup, the client applies the Step
2 and 3 in Section III-C on D′, with M constructed from
D′, and A is constructed as following:

A =

 supD′ (EI1) − (minsup + ∆minsup) + 1
. . .

supD′ (EIu) − (minsup + ∆minsup) + 1

 .

Complexity Analysis. The time complexity of updates
on EF s is O(|∆D|). The time complexity of update on
EIs can be O(|∆D|) (when ∆minsup > 0) or O(|D′|)
(otherwise).
G. Post-Processing

Removal of artificial frequent itemsets is straightforward.
As the client is aware of Iseed that is contained in all EF s,
it needs to remove all the returned frequent itemsets that
contain Iseed. Besides, we recover the original frequency
of those itemsets that are contained by EF . Specifically,
for any itemset I which is a subset of at least one
EF , supD(I) = supD′(I) −

∑
I⊂I′, I′∈EF (supD′(I ′) −

supD(I ′)). In this way, we eliminate those originally in-
frequent itemsets from the returned result.

To recover missing real frequent itemsets, the client
maintains locally all AIs and their recoverable descendants
when it constructs EIs. During post-processing, the client
adds these AIs and the recoverable descendants back to
FS as frequent itemsets.

IV. DETERMINISTIC APPROACH
Our deterministic approach is based on an efficient

authenticated data structure, which is built upon standard
Merkle trees and bilinear-map accumulators. It enables



the proof-based verification. We optimize the verification
algorithm by reducing the number of proofs for both
correctness and completeness verification. We show that a
small number of proofs is sufficient to verify the correctness
and completeness of a large set of frequent itemsets.
A. Set Intersection Verification Protocol

In this paper, we adapt the set intersection verification
protocol [21] to our problem. Formally, given a collection
sets S = {S1, . . . , Sv}, E = S1∩S2∩· · ·∩Sv is the correct
intersection of S if and only if:
• E ⊆ S1 ∧ · · · ∧ ⊆ Sv (subset condition);
• (S1−E)∩· · ·∩(Sv−E) = ∅ (completeness condition).

Here the completeness condition is on the set intersection.
To avoid confusion with our completeness verification of
frequent itemsets, in the remainder of the paper, we use
the term intersection completeness for the completeness
condition on the set intersection.

Papamanthou et al. proposed a set intersection verifica-
tion protocol to verify that E is the correct intersection of
S [21]. Next, we explain the protocol details briefly.
Proof construction by the server. Given an intersection
result E = {e1, . . . , eδ}, to prove that E = S1 ∩ · · · ∩ Sv ,
the set intersection verification protocol requires the server
to construct its proof Π(E) that consists of four parts:
(1) an encoding of the result (as a polynomial) as the
coefficients B ={bδ, bδ−1, · · · , b0} of the polynomial (s +
e1)(s+e2) · · · (s+eδ), where s is a randomly chosen value
by the client and kept as secret; (2) a set of accumulation
values A ={acc(Sj)|∀Sj ∈ S} which can be used to
verify that the proof is indeed computed from the original
dataset D; (3) the subset witness W = {Wj |∀Sj ∈ S} as
the proof of the subset condition; and (4) the intersection
completeness witness C = {Cj |∀Sj ∈ S} as the proof of the
intersection completeness condition. The total complexity
of proof construction is O(Blog3B + mεlogm), where
B =

∑v
j=1 |Sj |, m is the number of leaves of the Merkle

tree of the dataset D, and ε ∈ (0, 1) decides the number
of levels of the Merkle tree (as [1/ε]). More details of the
Merkle tree will be present in Section IV-B.
Correctness verification by the client. After receiving
Π(E) = {B,A,W, C} together with E, the client verifies
the following: (1) whether the coefficients B are computed
correctly by the server; (2) whether any given accumulation
value in A is indeed calculated from the original dataset;
(3) whether E satisfies the subset condition by using W;
and (4) whether E satisfies the intersection completeness
condition by using C. We omit the details of proof con-
struction and verification due to limited space. Readers can
refer to [21] for more details.
B. Basic Solution

In this section, we present our basic verification ap-
proach. We first present in Section IV-B1 the authenticated
data structure that we will design. Then in Section IV-B2,
we show how to adapt the set operation verification protocol
to the problem of frequent itemset mining by utilizing the
authenticated data structure. In Section IV-B3, we discuss
the robustness and weakness of the basic approach.

TID Transactions
1 {i1, i2, i3, i4}
2 {i1, i2, i4}
3 {i2, i4}
4 {i1, i2, i3}
5 {i1, i3, i4}
6 {i4}
7 {i2, i3}
8 {i1, i2}

Item Inverted List
i1 1, 2, 4, 5, 8
i2 1, 2, 3, 4, 7, 8
i3 1, 4, 5, 7
i4 1, 2, 3, 5, 6

(a) Transaction dataset D (b) Item-based Inverted index EI

Fig. 2: An example of the dataset and its inverted index

1) Authenticated Data Structure: Before sending the
dataset D to the server, the client constructs an authen-
ticated data structure. Before we discuss the details of the
authenticated data structure, we first discuss the item-based
inverted index. The authenticated data structure will be
constructed from the inverted index. In particular, given
a dataset D, its item-based inverted index EI consists of
a set of inverted lists {L1, L2, . . . , Lm}, where m is the
number of unique items in D. Each inverted list Li ∈ EI
corresponds to the item Ii in D, and maintains the index
of transactions that contains the item Ii. As an example,
consider the transaction dataset D shown in Figure 2 (a),
Figure 2 (b) shows its item-based inverted index of D.

Now we are ready to discuss how to construct the
authenticated data structure. We use the Merkle hash tree
T of the inverted index as our authenticated data structure.
In particular, the client picks a random value s ∈ Z which
is kept secret. Then, for each leaf lj of T that corresponds
to the j-th inverted list Lj in EI , the client constructs
acc(lj) = g

∏
x∈Lj

(s+x), where g is a generator of the group
G1 from an instance of bilinear pairing parameters. Then
the client applies a collision-resistant hash function hash(·)
recursively over the nodes of T . Each leaf lj of T is
assigned the value hj = hash(v1|| . . . ||vw||acc(lj)), where
v1, . . . , vw are the values in the j-th inverted list Lj that
lj corresponds to, while each internal node v with children
a and b is assigned to hv = hash(ha||hb). The root of
the tree is signed to produce signature sig(EI). The client
sends T to the server with D, and keeps sig(EI) locally.
The complexity of constructing a Merkle tree of level d1/εe
levels and m leaves is O(m + H), where ε ∈ (0, 1) is a
user-specified constant, and H =

∑m
j=1 |lj |.

At this point, the client can find all frequent 1-itemsets
and infrequent 1-itemsets from the inverted index. It main-
tains such information for later verification.

2) Verification Procedure: Before outsourcing the
dataset D to the server, the client constructs the item-based
inverted index EI of D, as well as the Merkle hash tree T
of EI . The client keeps the hash value of the root element
of T , and sends D and T to the server.
Proof construction by the server. After the server receives
D and T from the client, the server runs frequent itemset
mining on D and discovers a set of frequent itemsets.
Before the server sends its result FS to the client, it con-
structs proofs for correctness and completeness verification.
In particular, for each itemset I ∈ FS , the server constructs
a proof Π(I) [21]. Similarly, for each itemset I 6∈ FS ,
the server constructs a proof too. The proof of the itemset



I ∈ FS will be used for the correctness verification, while
the proof of the itemset I 6∈ FS will be used for the
completeness verification,
Result verification by the client. After receiving the
frequent itemsets FS , for each itemset I ∈ FS and its proof
Π(I) = {B,A,W, C}, the client launches the following
steps to verify that I is frequent (i.e., I is contained in
at least minsup transactions T I ): (1) It checks the size of
T I by checking whether |B|≥ minsup + 1; (2) It verifies
the validity of B∈ Π(I); (3) For each accumulation value
v ∈ A that will be used in the following steps, it validates
that v is indeed constructed from D by using the root
element of T ; and (4) it verifies that I is indeed the correct
intersection of all transactions in T I by using W and C.

The completeness verification is very similar to the
correctness verification, except the first step by which the
client verifies whether |B| ≤ minsup.

The complexity of the verification of a single itemset
I is O(|I|). Given a set of itemsets F , the complexity
of verifying its correctness/completeness is O(Z), where
Z =

∑
∀I∈F |I|. This shows that the required complexity

of the verification depends only on the outcome of frequent
itemset mining, but not on the size of the involved dataset.
This makes our verification approaches especially suitable
for outsourcing of large datasets.

3) Discussion: The basic verification approach is expen-
sive, due to the fact that the total number of ( correctness
and completeness) proofs is 2m−1, where m is the number
of unique items of D. This will introduce considerable
amounts of overhead at both the client and the server sides.
C. Verification Optimization

In this section, we discuss how to reduce the number
of proofs for verification to improve the performance of
verification at both server and client sides.

Fig. 3: An example of LTST tree; nodes in dotted rectangles
are positive border nodes (minsup = 3)

Before we discuss our optimization strategy, we intro-
duce the lexicographic transaction subset tree (LTST ),
which is adapted from [24]. Given a dataset D, assume
there is a total lexicographic ordering of the items in the
database. We say i ≤ j if item i occurs before item j in
the ordering. We construct the transaction subset tree with
the root being an empty set, while each internal node at
level h of the tree contains a unique h-itemset that exists
in D. There is an edge between a node Ni at level h and a
node Nj at level (h + 1) if their corresponding itemsets
Ii = {i1, . . . , ih} and Ij = {i1, . . . , ih+1} satisfy that
Ij−Ii = {ih+1}, where ih+1 is immediately after ih in the
ordering. Figure 3 shows an example of LTST . Note that
the downward closure of the infrequentness and the upward

closure of the frequentness are hold in LTST . We decide
the lexicographic order of the items by their frequency. The
items of higher frequency are assigned with smaller orders.
For those items of the same frequency, we break the tie
by assigning an ordering of these items. The lexicographic
ordering is guaranteed to be a total ordering scheme.

Given two LTST nodes N and N ′, we say N consumes
N ′, denoted as N ′ � N , if the itemset that N ′ correspond
to is contained in the itemset that N correspond to. Next, we
define the (maximal) positive border and (minimal) negative
border of a LTST tree.

Definition 4.1: [Maximal Positive Border (MPB)]
Given a LTST L, its positive border (PB) consists of
the nodes that corresponds to frequent itemsets but none of
their children correspond frequent itemsets. Furthermore,
we say a positive border node P is maximal if 6 ∃ a positive
border node P ′ such that P � P ′.
For those nodes that correspond to frequent itemsets but
have no children, we consider them as PB nodes too.

Definition 4.2: [Minimal Negative Border (MNB)]
Given a LTST L, its negative border consists of the nodes
that corresponds to infrequent itemsets while their parents
correspond to frequent itemsets. Furthermore, we say a
negative border node P is minimal if 6 ∃ a negative border
node P ′ such that P ′ � P .

Consider the LTST L in Figure 3 as an example, assume
minsup = 3. The positive border consist of ABC, AC,
AD, BC, C, and D, and MPB consists of ABC and AD.
Unlike the problem of mining the frequent itemsets that
tries to find the positive and negative borders, our problem
is to verify whether the MPB and MNB discovered by
the server is correct. The verification of MPB ensures the
correctness of returned itemsets, while the verification of
MNB verifies the completeness of the returned itemsets.

Next we describe an efficient algorithm to find MPB
and MNB of the server’s returned answer FS . Given a
set of frequent itemsets FS that is returned by the server,
assume each of them is ordered by the lexicographic order
of items. We traverse the LTST in a top-down fashion;
for any node that corresponds to an itemset in FS , we
mark it as frequent. After we finish node marking, on each
path, we pick the lowest node that is marked as frequent
as a positive border node, and the highest node that is not
marked as frequent as a negative border node. The MPB
(MNB, resp.) nodes are collected as those nodes whose
corresponding itemsets are not contained in (contain, resp.)
any other positive border (negative border, resp.) nodes.

D. Proof Construction at Server Side
To prepare for correctness verification, the server con-

structs a cryptographic proof [21] for each MPB node.
Similarly, to prepare for completeness verification, the
server constructs a cryptographic proof for each MNB
node. The MNB nodes should include all infrequent 1-
itemsets. To further reduce the number of proofs, the server
only needs to construct the proofs of those MNB nodes
of length greater than one that only contain frequent 1-
itemsets. After the proof construction is finished, the server
sends the proofs with FS to the client.



E. Verification at Client Side
Correctness verification. The correctness verification at
the client side is straightforward. The client uses the
server’s proofs to verify that the itemset that each MPB
node corresponds to is frequent by running the set intersec-
tion verification protocol. Though simple, sending proofs of
only MPB nodes to the client raises two new issues. The
first issue is that the client must ensure that the server has
computed the proof of all MPB nodes of FS ; missing
the proof of any MPB node may enable the server to
escape from the verification. A naive method to verify the
completeness of MPB nodes is that the client re-computes
MPB from FS , which may end up with high time cost. We
design a more efficient method as following. Given FS and
the MPB nodes that are returned by the server, for each
itemset I ∈ FS , the client verifies whether there exists a
MPB node whose corresponding itemset I ′ satisfy that
I ⊆ I ′. If it does not, the client concludes that the server
misses the proof of at least one MPB node.

Another issue is that the client needs to ensure that all
MPB nodes are honestly constructed from FS , not from
the (correct) mining result of D. Otherwise, the server
may be able to escape from the verification. This can be
achieved by verifying: (1) for each MPB node P , whether
there exists an itemset I ′ ∈ FS such that I ′ ⊆ I , where
I is the corresponding itemset of P ; and (2) for each
itemset I ∈ FS , whether there exists a MPB node whose
corresponding itemset I ′ satisfies that I ⊆ I ′.
Completeness Verification. First, the client has to verify
that the server does not miss the proof of any MNB node.
To do this, the client can construct MNB from MPB,
assuming that it has verified that the proof of MPB nodes
is correct and complete.

Assume now the server has passed the verification of
MNB nodes, next, the client uses the proof of MNB
nodes to prove the completeness of returned frequent
itemsets (i.e., each itemset that is not returned must be
infrequent). Before we discuss how the client verifies the
completeness, we categorize the possible missing frequent
itemsets into four types, based on their relationships with
the returned frequent itemsets FS . In particular, consider
a frequent itemset I that is not returned by the server, it
should belong to one of the following four types:
• Type-1 (non-overlap): For each itemset I ′ ∈ FS , I ∩
I ′ = ∅.

• Type-2 (subset): There exists a frequent itemset I ′ ∈
FS such that I ⊆ I ′.

• Type-3 (superset): There exists a frequent itemset
I ′ ∈ FS such that I ′ ⊆ I .

• Type-4 (overlap): There is no frequent itemset I ′ ∈
FS such that I ⊆ I ′ or I ′ ⊆ I . However, there exists
a frequent itemset I ′ ∈ FS such that I ∩ I ′ 6= ∅.

Next, we describe how to verify these four types of
missing frequent itemsets respectively.
Verification of type-1 missing itemsets. Since type-1
itemsets do not overlap with any frequent itemset in FS ,
any type-1 missing itemset must only contain frequent 1-
itemsets that do not appear in FS . Therefore, to verify

whether there is any type-1 missing frequent itemset, the
client checks whether all frequent 1-itemsets of D are
included in FS . If it does not, the client can conclude
that there must exist at least one type-1 missing frequent
itemset. The complexity of verification is O(|FS |), as
its major effort is to collect unique items in FS . Proof-
based verification is not needed. The frequent 1-itemsets
are collected when the client constructs the inverted index.
Verification of type-2 missing itemsets. This is equivalent
to verifying whether all subsets of each itemset I ∈ FS also
exist in FS . To do this, the client verifies whether for each
MPB node, all subsets of its corresponding itemset are
included in FS . In this case, as long as I is frequent (veri-
fied by correctness verification), this verification procedure
does not need to use any proof.
Verification of type-3 & type-4 missing itemsets. If there
is any type-3/type-4 frequent itemset missing, the MNBs
of FS include at least one node whose corresponding
itemset is frequent. Therefore, the client verifies whether
there exists any type-3/type-4 missing frequent itemsets
by verifying the infrequentness of each MNB node via
its proof (Section IV-B). If there exists any MNB node
whose proof cannot show it is infrequent, there exists at
least one type-3/type-4 missing itemset. The complexity of
verification is O(X), where X =

∑
∀I∈MNB |I|.

F. Security Analysis
In this section, we will prove that although we reduce the

number of proofs greatly, our verification optimization still
provides the same security guarantee as our basic approach
which requires correctness proofs for all itemsets in FS and
completeness proofs for all itemsets that do not appear in
FS , denoted as FS . Following our verification procedure,
the client only checks proofs of MPB and MNB nodes.

In the aspect of correctness verification, as now the
client only verifies the frequentness of all MPB nodes,
our optimization eliminates the correctness proofs of all
itemsets in FS − MPB. Next, we will show that for
each itemset in FS −MPB, its proof can be consumed
by the proof of at least one itemset in MPB. Note that
for each itemset I in FS − MPB, there must exists
an MPB itemset I ′ such that I ⊆ I ′. According to
the upward closure of frequentness property of frequent
itemsets, the frequentness of the MPB itemset I ′ ensures
the frequentness of I .

Our completeness verification optimization only needs
the proofs of MNB nodes of FS . Similar to the proof
above, we will show that for each itemset in FS −MNB,
its proof can be consumed by the proof of at least one
itemset in MNB. Here for each itemset I ′ ∈ FS−MNB,
there must exists an MNB itemset I ′ such that I ′ ⊆ I .
According to the downward closure of infrequentness prop-
erty, the infrequentness of the MNB itemset I ′ ensures the
infrequentness of I .

G. Robustness Analysis

Robustness against Type-1 server. As the deterministic
approach does not modify the outsourced data, the prior
background knowledge about the data distribution does not



change. Therefore, the type-1 server is not able to escape
the verification.
Robustness against Type-2 server. As discussed in Section
IV-E and IV-F, our optimized deterministic approach is
able to catch incorrect and incomplete mining result with
100% guarantee. The power of the verification approach
relies on the cryptographic proof. The server may try to
cheat the client by claiming some infrequent itemsets as
frequent, and constructing (fake) proofs for these itemsets
from the modified dataset with these itemsets inserted into
some transactions that they do not belong to. For example,
consider the transaction dataset in Figure 2 (a). Assume
minsup = 4. If the server intends to cheat the client with
the claim that I = {i2, i3} (support = 3) is a frequent
itemset, it may insert i3 into transaction T8, and return the
proof as following: (1) B constructed from the four claimed
transactions {T1, T4, T7, T8}, (2) A from the original
Merkle tree T , and (3) the subset witness W and subset
completeness proof C constructed from T ′8 with i3 inserted.
Such proof will pass the verification of co-efficients and
accumulation values, but fail the subset correctness proof
as it uses the original correct acc(L3) but incorrect co-
efficients. Therefore, even though the server is aware of
the authenticated data structure and proof construction
procedure, it is not able to construct a correctness proof
for an infrequent itemset and a completeness proof for a
frequent itemset.
H. Complexity Analysis
Proof construction at server side. The total complexity of
proof construction is O(Y log3Y + mεlogm), where Y =∑
I∈MPB∪MNB |I|, m is the number of unique items of

D, and ε ∈ (0, 1) is a user-specified constant that is used
to specify the number of levels of the Merkle tree.
Verification at client side. The complexity of type-3 &
type-4 missing frequent itemsets of completeness verifi-
cation dominates the completeness verification. Therefore
the total complexity of verification is O(Y ), where Y =∑
∀I∈MNB∪MPB |I|. It is linear to the size of the returned

mining result.
Upper bound of size of MPB and MNB nodes. The
complexity of both proof construction and verification is
linear to the size of MNB and MPB nodes. The number
of MPB and MNB nodes, as well as the length of their
corresponding itemsets, relies on the data distribution of the
outsourced dataset and the support threshold minsup. But
we can estimate the theoretical upperbound of total number
of MNB and MPB nodes, as well as the total length of
their corresponding itemsets. We do this by estimating the
upperbound of number of NB and PB nodes. Assume
there are p PB nodes. As all of their children are NB
nodes, the maximum total number of such NB nodes is
m + (m − 1) + · · · + (m − p + 1) = mp − (p−1)(p−2)

2 .
The other NB nodes are those infrequent nodes which are
not children of any PB node. The maximum of the total
number of such nodes is

(
m

[ m2 ]

)
− p (i.e., these NB nodes

and all PB nodes appear at the same level [m2 ]. Therefore,
the maximum of total number of PB and NB nodes c can
be computed as:

c = mp− p(p− 1)

2
+

(
m

[m2 ]

)
.

The c value reaches the maximum when p = m.
Therefore,

|MPB ∪MNB| ≤ m2

2
+
m

2
+

(
m

[m2 ]

)
.

These MPB and MNB nodes cover all possible item-
sets of length [m2 ], and (m

2

2 +m
2 ) itemsets of length [m2 ]+1.

Therefore, the upperbound of total length of the itemsets
that MPB and MNB nodes correspond to is

Y ≤ ([
m

2
] + 1)(

m2

2
+
m

2
) + [

m

2
]

(
m

[m2 ]

)
.

I. Update Operations
Update on minsup. The update on minsup does not change
the authentication data structure. Therefore, no update is
needed at the client side.
Update on D. The update on D requires the client to update
the data structure partially. Specifically, for any update of a
leaf node L in the Merkle tree, only the nodes on the path
from the root to L are to be updated. If the client inserts
a transaction T = {i1, . . . , iz} to D, T is to be added to
the inverted lists Li1 , . . . , Liz of the items in T . All the
leaf nodes of the items in T and their ancestors in the
Merkle tree are to be updated. After updating the Merkle
tree, the client sends the updated structure to the server,
together with the updated data. The proof construction at
the server side is similar to Section IV-D. Specifically, the
server constructs new cryptographic proofs for new MPB
and MNB nodes. The client verifies the results against
proofs in the same way.

V. DISCUSSION
A. Various Outsourcing Scenarios

There two types of outsourcing paradigm: (1) the
infrastructure-as-a-service (IaaS) paradigm in which the
client outsources both data and the data mining software
to the service provide (server). The server provides storage
and hardware for the computation. A typical IaaS example
is Amazon EC2 Web Service; (2) the software-as-a-service
(SaaS) paradigm in which the client only outsources data to
the server, while the server runs its own mining software
on the outsourced data. We believe that our verification
methods can be applied to both paradigms. This is because
that frequent itemset mining is deterministic in the sense
that the output is fixed for a given dataset and minsup, no
matter how the algorithm is implemented.
B. Extension to Other Data Mining Algorithms

In general, our strategy of constructing cryptographic
proofs for verification (for deterministic guarantee) and
artificial verification objects (for probabilistic guarantee)
can be applied to most data mining algorithms. The chal-
lenge is that the design of proofs and verification objects
has to be customized for different data mining algorithms.
Below we discuss briefly how to extend our approaches
to association rule mining, which is related to frequent
itemset mining. The association rule mining aims to find
association rules that meet the pre-defined support and con-
fidence threshold value minsup and minconf . First, for the
probabilistic approach, we can build evidence association



Dataset # of # of Avg. trans. minsup # of freq.
trans. items length itemsets

S1 103 49 10 250 36
S2 104 49 10 250 3854
S3 105 49 10 250 149744
S4 106 49 10 250 3074610
R1 88162 16470 124 50 16778

10 155111
R2 500 100 2.4 5 97

NCDC 500 365 332.9 450 559368361

TABLE I: Details of Datasets
rules EFi → EFj by constructing two evidence frequent
itemsets EFi and EFj , requiring that EFi ⊂ EFj and
supD′ (EFj)
supD′ (EFi)

≥ minconf . EFi and EFj can be constructed
by using our MiniGraph approach. Second, for the deter-
ministic verification approach, the server returns the proofs
of all frequent itemsets and MNB itemsets. The client
checks if the server returns all the frequent itemsets from
the proof. If the server does, for any pair of itemsets Ii and
Ij such that Ii ⊂ Ij , the client calculates the confidence of
Ii → Ij to check whether it is indeed an association rule.

VI. EXPERIMENTS
We ran a battery of experiments to evaluate the perfor-

mance of our probabilistic and deterministic approaches.
We also have a comparison of our two approaches.
A. Setup
Hardware. We run our experiment on a Intel machine with
2.4GHz CPU, 4GB memory, running Mac OS X 10.7.5.
Datasets. We use the IBM generator to generate four
synthetic datasets S1, S2, S3, and S4 of various sizes. We
also use two real-world datasets named Retail dataset and
NCDC dataset1. The Retail dataset is available at the
Frequent Itemset Mining Dataset Repository2. The Retail
dataset R1 contains 88162 transactions and 16470 items.
We also construct a small dataset R2 from the Retail dataset
that contains 500 transactions and 100 items. The NCDC
dataset comes from National Climatic Data Center of U.S.
Department of Commerce. Table I shows the details of the
datasets and our mining setup. Among these datasets, the
NCDC dataset is a dense dataset, in which most of the
transactions are of similar length, and contain > 75% of
items; and the R1 dataset is a sparse dataset in which the
transactions are of skewed length distribution. Due to
Simulation of malicious actions. We set the error ratio
p = 1%, 2%, 5%, 10%, and 20%. For the simulation of
incomplete result, we randomly pick p percent of frequent
itemsets from the mining result and remove these picked
itemsets. For the simulation of incorrect result, we ran-
domly generate p percent of infrequent itemsets and insert
them into the result.
Implementation. We implemented a prototype of our prob-
abilistic approach in Java, and the deterministic approach
in C++. We use the PBC library3 to implement bilinear
pairing, and SHA256 for the implementation of the hash
function in Merkle tree construction. The accumulation
values in Merkle tree are computed by using the element

1http://lwf.ncdc.noaa.gov/oa/climate/rcsg/datasets.html
2Frequent Itemset Mining Dataset Repository: http://fimi.ua.ac.be/data/.
3PBC library: http://crypto.stanford.edu/pbc/manual/.
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Fig. 4: Time Performance of EF Construction

power function in the PBC library. The coefficients W in
the proof are computed using the NTL library4.

B. Probabilistic Approach
We measure the time performance and amount of noise

brought to the original dataset by our probabilistic ap-
proach. We tried various settings for α2, α1, β2 and β1

values. In particular, we use α2, α1 = 0.9, 0.99, 0.999, and
β2, β1 = 0.9, 0.99, 0.999. On R1 dataset, we set the minsup
to be 10.

1) Robustness: We measure the robustness of our prob-
abilistic approach by studying the probability that the
incorrect/incomplete frequent itemsets can be caught by
using artificial EIs/EFs. We use the R1 dataset and vary
α1 and α2 values to control the amount of mistakes that
the server can make on the mining result. For each α1 (α2,
resp.) value, we simulate the incomplete (incorrect, resp.)
mining result. Then with various β1 and β2 values, we con-
struct artificial tuples to satisfy (α1, β1)-completeness and
(α2, β2)-correctness. Detection of any missing EF or the
presence of any EIs will be recorded as a successful trial
of catching the server. We repeat 1,000 times and record the
percentage of trials (as detection probability) that the server
is caught, with α1, α2 ∈ [0.7, 0.9] and β1, β2 ∈ [0.7, 0.9].
It shows that the detection probability for the completeness
and correctness verification is always higher than β1 and β2

respectively. This proves the robustness of our probabilistic
approach. The results are omitted due to limited space.

2) Completeness Verification:
Time performance. We measure the time performance of
EF construction with various α1 and β1 values. Figure
4 shows the result of using NCDC and R1 datasets. For
both datasets, the time of constructing EFs grows with
the increase of α1 when β1 = 0.99 and 0.999. This is
not surprising as higher completeness probability guaran-
tee requires more EFs for verification. However, when
β1 = 0.9, the EF construction time decreases when α1

increases from 0.9 to 0.99. This is because the size of
Dh when α1 = 0.99 is smaller than the size of Dh

when α1 = 0.9. Since the construction time relies on
both |EF | and |Dh|, the construction time decreases when
α1 increases. Another interesting observation is that the
construction time on NCDC dataset grows faster than R1
dataset. This is because the EF construction algorithm,
which is driven by transaction length, will pick a large
portion of transactions in NCDC dataset where most of
transactions are of similar length but a small portion of

4NTL library: http://www.shoup.net/ntl/doc/tour-intro.html.
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transactions in R1 dataset where transaction lengths are of
skewed distribution.
Amounts of artificial transactions. We measured the
amount of inserted artificial transactions compared with
the size of the database. In particular, let t be the number
of artificial transactions to be inserted, we measured the
ratio r = t

n , where n is the number of real transactions
in D. As shown in Figure 5 (a), for Retail dataset, the
inserted artificial transactions only take a small portion
of the original database (no more than 0.01025%). On
the other hand, we observed that the ratio of artificial
transactions is not increasing with the α and β values. That
is because the number of artificial tuples is bounded to
the minsup, i.e., the number of artificial transactions is at
most minsup − 1. We also measured the mining overhead
introduced by artificial transactions. Figure 5 (b) shows the
result. It is expected that the mining overhead is negligible.

3) Correctness Verification: Time Performance. We
measure the time for correctness verification preparation
that satisfy (α2, β2)-correctness on NCDC dataset. The
result is shown in Figure 6 (a). It is not surprising that
it needs more time to construct EIs for higher α2 and
β2 values. Furthermore, when β2 = 0.9 and 0.99, EI
construction is very fast (no more than 1 second). This is
because for these cases, all EIs are real infrequent itemsets;
there is no need to remove any item. However, when β2

grows to 0.999, the preparation time jumps to 400 - 600
seconds, since now the algorithm needs to find more itemset
candidates from deeper level of the lattice to be EIs as
well as the items to be removed to make EIs infrequent.
We also measure the EI construction time of R1 dataset.
It does not increase much when β2 increases from 0.9 to
0.999, since all EIs are real infrequent items.
Amounts of removed items. We measure the amount of
item instances that are removed by EI construction. In
particular, let d be the number of item instances to be
removed, we measure the ratio r = d

|D| . The result of
NCDC dataset is shown in Figure 6 (b). It can be seen that
the number of item instances to be removed is a negligible
portion (no more than 0.045%) of NCDC dataset. There
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is no item that is removed from R1 dataset, as it has a large
number of infrequent 1-itemsets, which provides sufficient
number of EI candidates. This shows that we can achieve
high correctness guarantee to catch small errors by slight
change of the dataset.

4) Outsourcing versus mining locally.: We also com-
pared the time of executing frequent itemset mining locally
with the time of verification preparation by measuring the
ratio tV P /tDM , where tV P and tDM are the time of
verification preparation and frequent itemset mining. Figure
7 shows the result of NCDC dataset. It can be seen that
our verification preparation is always cheaper than mining
locally. This convinces the client to outsource her data
mining task to the server and prepare for verification locally
with affordable overhead.
C. Deterministic Approach

In this section, we measure the performance of proof
construction at the server side and verification at the client
side and explored various factors that impact the verifica-
tion performance of our deterministic approach, including
various error ratio, frequent itemsets of different lengths,
and different database sizes. We set the support threshold
on R1 dataset to be 50.

1) Proof Construction at the Server Side: In this section,
we show the experiments of proof preparation at the server
side.
Time performance. First, we measure the time of prepar-
ing one single proof of (in)frequent itemsets of various
lengths. We show the preparation time for itemsets of size
up to six because in our main experiment, the size of
itemsets to be verified is no more than six. As shown
in Figure 8 (a), the proof preparation time increases with
the length of frequent itemset. This is consistent with our
theoretical analysis (Section IV-H) that the complexity of
proof construction is dependent on the size of mining result,
not on the input dataset.

Second, we measure the total time of preparing all
the proofs for verification. Figure 8 (b) shows the total
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preparation time for various error ratios. We consider the
same error ratios p = 1%, 2%, 5%, 10%, and 20% that we
used for simulation of malicious actions. First, we observe
that for correctness verification the proof preparation time
increases slowly with the increase of error ratio. It is
obvious that adding infrequent itemsets to the mining result
leads to more MPB nodes. Indeed, the number of MPB
nodes change much. For example, when p changes from
10% to 20%, the number of MPB nodes changes from
32 to 40. However, the total proof construction time does
not increase much, since the proofs of new MPB nodes,
which indeed correspond to infrequent itemsets, can be
constructed very fast, due to the reason that the polynomial
Pj [21] used in their subset witness and set completeness
witness is of low degree. Second, the result shows that
the proof preparation time for completeness verification
decreases when the error ratio increases. We studied how
MNB nodes change when the error ratio grows. Our
results show that the MNB nodes move to the higher levels
of the LTST tree when more frequent itemsets are missing.
This is because now those missing frequent itemsets were
changed to be NB nodes, while their ancestor nodes in
the LTST tree become MPB nodes. As MNB nodes are
constructed from the children and sibling of MPB nodes,
there are fewer MNB nodes especially due to the fact
that higher LTST nodes have fewer children. For instance,
when the error ratio changes from 2% to 5%, the number
of completeness proofs changes from 33 to 27.
Proof size. First, we measure the optimization ratio of
proofs for the mining results of various error ratios. We
define the optimization ratio as 1− p1/p1, where p1 is the
number of proofs by our optimization, and p2 is the number
of proofs by the basic approach. Intuitively, the closer the
optimization to 1, the better. Figure 9 (a) displays the
optimization ratio. We observe that the optimization ratio of
the number of completeness proofs is very close to 1. This
is because the basic verification approach needs to construct
(2|I| − |FS |) proofs (for this experiment |I| = 100 and
|FS | = 97) for completeness verification, our optimized
approach only needs no more than 34 completeness proofs.
This proves that our optimization can reduce the number of
proofs dramatically. We also observe that the optimization
ratio of the number of correctness proofs deceases when the
error ratio increases. The reason is that adding infrequent
itemsets into the result leads to more MPB nodes and
thus the number of proofs, which decreases the optimization
ratio. Nevertheless, the optimization ratio of the number of
correctness proofs is high; it is at least 0.6 even when the
error ratio is 20%.
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Fig. 10: Verification Time at the Client Side

Second, we measure the total size of the proofs for the
mining result with various error ratio. Figure 9 (b) shows
the result. It is not surprising that the trend of total size of
the proofs is consistent with the trend of number of proofs
(Figure 9 (a)). In particular, the total size of completeness
proofs decreases dramatically when the error ratio grows.
The reason is similar to our analysis of the number of
proofs: as MNB nodes move to the higher levels of the
LTST tree, both the number of MNB nodes and the
length of their corresponding itemsets decrease. This lead
to the decrease of the total size of the completeness proofs.
Regarding the correctness proofs, since the number of
MPB nodes and the number of correctness proofs increase,
the total size of correctness proofs increases.

We also measure the total size of the proofs, with MPB
and MNB nodes of various lengths. It is not surprising
that the size of proofs grows with itemsets of larger size,
as the space complexity is dependent on the size of output
frequent itemsets. We omit the results due to limited space.

2) Verification Time at the Client Side: First, we measure
the verification time at the client side for mining result with
various error ratios. From the result shown in Figure 10 (a),
first, we observe that both completeness and correctness
verification are very fast. Second, we observe that the
completeness verification time decreases dramatically when
the error ratio increases from 2% to 5%, then keeps stable
afterwards. We analyzed the reason, and it turned out that
when the ratio equals to 2% (1% as well), the incomplete
itemsets were caught by checking against the proofs, while
for the error ratio changes to 5% and more, the incomplete
itemsets were caught by missing at least one proper subset
or one frequent 1-itemset, which is much faster than using
proofs. Third, we observe that the correctness verification
time drops sharply when the error ratio changes from
1% to 5%. The reason is that higher error ratio leads to
larger chance that the client catches an infrequent itemset
earlier. When the error ratio increases from 5% to 20%, the
verification time is stable because now the client can catch
the infrequent itemset by the first trial.

To measure the scalability of our verification approach,
we measure the verification time on datasets of different
sizes. The result is shown in Figure 10 (b). We observe
that our verification scheme is very fast even for very large
datasets. For example, for the dataset of 88162 transactions,
it only requires 0.001045 seconds for verification.

3) Client VS. Server: We compared the time perfor-
mance at both the client and the server sides for various sup-
port threshold values. We vary the support threshold values



so that the number of frequent itemsets is approximately
1%, 5%, and 10% of the number of transactions. Table
II shows the comparison result. First, it is not surprising
that the verification time at the client side increases with
the growth of the number of frequent itemsets. The same
pattern also holds for the server side. Second, in all of our
testings, the total overhead at the client side is much smaller
than that at the server side. Furthermore, the verification
procedure at the client side is much faster than the mining
at the server side. This proves that the client can outsource
the mining task to the server, while verifying the result
integrity with the cost that is cheaper than mining locally.

minsup # of Freq. Client side Server side
Itemsets Verify Proof prep. mining

402 10 0.000164 24.72 0.03707
203 50 0.001358 266.985 0.08984
157 99 0.00332 572.591 0.1355

TABLE II: Client VS. Server w.r.t Time Performance (S1 dataset)
4) Scalability: We measured the time performance on

the datasets of various sizes. Figure 11 (a) shows that the
time of constructing one single proof increases with the
data size. However, the proof can be constructed fast; it
only needs 35 seconds even for a dataset of 106 records.
Figure 11 (b) shows that the verification time does not
change much with the data size, since: (1) the verification
complexity is decided by the number of MII and MFI
itemsets, and (2) the verification procedure always catches
the first incomplete itemset by type-1/2 checking for most
of the cases. Similar observations hold on the Retail dataset
(88162 transactions); it only requires 0.001045 seconds for
verification. This convinces us that our approach can be
used for efficient verification of outsourced frequent itemset
mining.
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D. Probabilistic VS. Deterministic Approaches
We ran experiments to compare the performance of our

probabilistic and deterministic approaches. Table III shows
the comparison result on S3 dataset of various settings.
We pick the error ratios of 1%, and vary the probabilistic
guarantee threshold from 90% to 100% (probability =
100% corresponds to our deterministic approach). Table III
shows the details of the comparison result. In general, the
deterministic approach brings higher overhead at the server
side than the probabilistic approach. However, this is the
sacrifice that we have to pay for higher result integrity
guarantee. We also observe that in some cases (marked
as N/A in Table III), the probabilistic approach fails as it
cannot provide required probabilistic correctness guarantee
due to the data distribution. The deterministic approach
does not have such limit.

Error Integrity Type Client Server
ratio Prob. Verify Proof prep. Mining

1% 90% R N/A 0 0.042
M 1.433 0 1024.53

1% 95% R N/A 0 0.042
M 0.945 0 1204.59

1% 99% R N/A 0 0.042
M 0.689 0 1498.67

1% 100% R 0.000628 1660.12 0.5707
M 0.4123 2785.6 0.5707

TABLE III: Time performance: deterministic V.S. proba-
bilistic approaches (S3 dataset; R: correctness, M : com-
pleteness)
E. Comparison with Existing Work

Among all the related work, [14] and [22] are the closest
to ours. It has been proven that the evidence patterns con-
structed by the encoding method in [14] can be identified
even by an attacker without priori knowledge of the data
[11]. We argue that our probabilistic verification approach is
robust against the attack in [11]. Besides, our probabilistic
approach is more efficient. In [14], it shows that it may
take 2 seconds to generate one evidence pattern, while our
method only takes 600 seconds to generate 6900 evidence
itemsets (i.e., 0.09 second per pattern).

Goodrich el al. [22] propose an efficient cryptographic
approach to verify the result integrity of web-content
searching by using the same set intersection verification
protocol as ours. It shows that the time spent on the server
to construct the proof for a query that involves two terms
is between 0.35 to 0.8 seconds. Our deterministic approach
requires 0.5 seconds to construct the proof for an itemset of
length 2 at average, which is comparable to the performance
of [22].

VII. RELATED WORK
The problem of verifiable computation was tackled pre-

viously by using interactive proofs [7], probabilistically
checkable proofs [2], and non-interactive verifiable com-
puting [5]. This body of theory is impractical [13], due
to the complexity of the algorithms and difficulty to use
general-purpose cryptographic techniques in practical data
mining problems. To reduce the complexity, Goodrich et al.
[21] design efficient cryptographic approaches to verify the
correctness of keyword search by using Bilinear pairings
and Merkle hash trees. A large body of work design
authenticated data structures (e.g., [21], [12]) that provide
a cryptographic proof of the answer to a query. These work
focus on query evaluation and set operations.

In the last decade, intensive efforts have been put on
the security issues of the database-as-a-service (DaS)
paradigm (e.g., [8], [9]). The focus is the correctness of
SQL query evaluation. Only until recently some attention
was paid to the security issues of the data-mining-as-a-
service (DMaS) paradigm [11], [6]. However, most of
these work only focus on how to encrypt the data to protect
data confidentiality and pattern privacy, while we focus on
integrity verification of mining result.

There is surprisingly very little research [14], [10] on
result correctness verification in the DMaS paradigm.
Among these work, only [14] focused on integrity ver-
ification methods for frequent itemset mining. Its basic



idea is to insert some fake items that do not exist in
the original dataset into the outsourced data; these fake
items will construct a set of fake (in)frequent itemsets.
The correctness of mining results is verified against the
fake (in)frequent itemsets. Though effective, this method
assumes that the server has no background knowledge of
the items in the outsourced datasets, and thus it has equal
probability to cheat on the fake and true itemsets. We argue
that using fake items cannot catch our type-1 malicious
server that may have some background knowledge of the
original data and be able to escape the verification by
distinguishing between real and fake items. We aim at
designing effective verification approaches that can catch
the incomplete/incorrect frequent itemsets from such a
malicious server.

VIII. CONCLUSION
In this paper, we present two integrity verification

approaches for outsourced frequent itemset mining. The
probabilistic verification approach constructs evidence
(in)frequent itemsets. In particular, we remove a small set
of items from the original dataset and insert a small set of
artificial transactions into the dataset to construct evidence
(in)frequent itemsets. The deterministic approaches requires
the server to construct cryptographic proofs of the mining
result. The correctness and completeness are measured
against the proofs with 100% certainty. Our experiments
show the efficiency and effectiveness of our approaches.

An interesting direction to explore is to extend the model
to allow the client to specify her verification needs in terms
of budget (possibly in monetary format) besides precision
and recall threshold.
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