Truth Inference on Sparse Crowdsourcing Data with Local Differential Privacy
IEEE BIG DATA '18

Haipei Sun1 Boxiang Dong2 Hui (Wendy) Wang1
Ting Yu3 Zhan Qin4

1Stevens Institute of Technology
Hoboken, NJ

2Montclair State University
Montclair, NJ

3Qatar Computing Research Institute
Doha, Qatar

4The University of Texas at San Antonio
San Antonio, Texas
Data curator releases tasks on a crowdsourcing platform.
Crowdsourcing

- Data curator releases tasks on a crowdsourcing platform.
- The workers provide their answers to these tasks in exchange for a reward.
Collecting answers from individual workers may pose potential privacy risks.

- Crowdsourcing-related applications collect sensitive personal information from workers.
- By using a sequence of surveys, a data curator (DC) could potentially determine the identities of workers.
Differential privacy (DP) provides rigorous privacy guarantee.

However, classical DP requires a trusted data curator to publish privatized statistical information.
Local Differential Privacy

Local differential privacy (LDP) is the state-of-the-art approach for privacy-preserving data collection.

Before sending the answer to the data curator, each worker perturbs his/her private data locally.

\[\hat{x}_1 = x_1 + \xi_1 \]
\[\hat{x}_2 = x_2 + \xi_2 \]
\[\hat{x}_m = x_m + \xi_m \]

\[f(\hat{x}_1, \hat{x}_2, \ldots, \hat{x}_m) \]
Challenges I - Data Sparsity

- Most workers only provide answers to a very small portion of the tasks.
- We use NULL to represent the answer if a worker does not provide response for a specific task.

<table>
<thead>
<tr>
<th>Dataset</th>
<th># of Workers</th>
<th># of Tasks</th>
<th>Average Sparsity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Web (^1)</td>
<td>34</td>
<td>177</td>
<td>0.705882</td>
</tr>
<tr>
<td>AdultContent (^2)</td>
<td>825</td>
<td>11,040</td>
<td>0.993666</td>
</tr>
</tbody>
</table>

- NULL values should also be protected.
- Careless perturbation of NULL values may significantly alter the original answer distribution.

\(^1\) http://dbgroup.cs.tsinghua.edu.cn/ligl/crowddata/
Challenges II - Data Utility

• Truth inference estimates the true results from answers provided by workers of different quality.
• Most truth inference algorithms iterate until convergence.
• We aim to preserve the accuracy of truth inference on the perturbed worker answers, even a slight amount of initial noise in the worker answers may be propagated during iterations.
Our Contributions

Extension to Existing Approaches

- Laplace perturbation (LP) approach
- Randomized response (RR) approach
- Large expected error in the truth inference results

Novel Approach

We design a new matrix factorization (MF) perturbation algorithm to satisfy LDP, and guarantee small error.
Outline

1. Introduction
2. Related Work
3. Preliminaries
4. Perturbation Schemes
 - Laplace Perturbation (LP)
 - Randomized Response (RR)
 - Matrix Factorization (MF)
5. Experiments
6. Conclusion
Related Work

Local differential privacy

- Count, heavy hitters [HILM02, HIM02]
- Graph synthesis [QYY+17]
- Linear regression [NXY+16]

Privacy-preserving crowdsourcing

- Mutual information [KOV14]
- Truth discovery on complete data [LMS+18]

Differentially private recommendation

- Perturbation on categories [Can02, SJ14]
- Iterative factorization [SKSX18]
Preliminaries - Local Differential Privacy (LDP)

Definition (ϵ-Local Differential Privacy)

A randomized privatization mechanism \mathcal{M} satisfies ϵ-local differential privacy (ϵ-LDP) iff for any pair of answer vectors \vec{a} and \vec{a}' that differ at one cell, we have:

$$\forall \vec{z}_p \in \text{Range} (\mathcal{M}): \frac{Pr[\mathcal{M}(\vec{a}) = \vec{z}_p]}{Pr[\mathcal{M}(\vec{a}') = \vec{z}_p]} \leq e^\epsilon,$$

where $\text{Range}(\mathcal{M})$ denotes the set of all possible outputs of the algorithm \mathcal{M}.
Preliminaries - Truth Inference

- Associated each worker with a quality.
- For each task, estimate the truth by taking the weighted average of the worker answers.
- For each worker, estimate the quality by measuring the difference between his answers and the estimated truth.

\[
\hat{\mu}_j = \frac{\sum_{w_i \in W_j} q_i \times a_{i,j}}{\sum_{w_i \in W_j} q_i}
\]

\[
\sigma_i = \sqrt{\frac{1}{|T_i|} \sum_{t_j \in T_i} (a_{i,j} - \hat{\mu}_j)^2}
\]
Iteratively updating the estimated truth and worker quality until convergence [LLG+14].

Algorithm 1 Truth inference

Require: The workers’ answers \(\{a_{i,j}\} \)

Ensure: The estimated true answer (i.e., the truth) of tasks \(\{\hat{\mu}_j\} \) and the quality of workers \(\{q_i\} \)

1: Initialize worker quality \(q_i = 1/m \) for each worker \(W_i \in \mathcal{W} \);
2: while the convergence condition is not met do
3: Estimate \(\{\hat{\mu}_j\} \);
4: Estimate \(\{q_i\} \);
5: end while
6: return \(\{\hat{\mu}_j\} \) and \(\{q_i\} \);
Given $M \in \mathbb{R}^{m \times n}$, find $U \in \mathbb{R}^{m \times d}$ and $V \in \mathbb{R}^{n \times d}$ s.t.
$L(M, U, V) = \sum_{(i,j) \in \Omega} (M_{i,j} - \vec{u}_i^T \vec{v}_j)^2$ is minimized.

$M_{i,j}$, can be approximated by the inner product of \vec{u}_i and \vec{v}_j, i.e., $\vec{u}_i^T \vec{v}_j$.
Problem Statement

Input A set of answers \(\{ W_i \} \) and their answer vectors \(A = \{ \vec{a}_i \} \), and a privacy parameter \(\epsilon \)

Output The perturbed answer vectors \(A^P = \{ \mathcal{M}(\vec{a}_i) | \forall \vec{a}_i \in A \} \)

Requirement

- **Privacy:** \(A^P \) satisfies \(\epsilon \)-LDP.
- **Utility:** Accurate truth inference results from \(A^P \), i.e., minimize

\[
MAE(A^P) = \frac{\sum_{T_j \in T} |\mu_j - \hat{\mu}_j|}{n}.
\]
Laplace Perturbation (LP)

Step 1 Replace NULL values with some value in the answer domain Γ.

$$g(a_{i,j}) = \begin{cases} v & a_{i,j} = NULL \\ a_{i,j} & a_{i,j} \neq NULL, \end{cases}$$

Step 2 Add Laplace noise to each answer.

$$\mathcal{L}(\tilde{a}_i) = (g(a_{i,1}) + \text{Lap}(\frac{|\Gamma|}{\epsilon}), g(a_{i,2}) + \text{Lap}(\frac{|\Gamma|}{\epsilon}), \ldots, g(a_{i,n}) + \text{Lap}(\frac{|\Gamma|}{\epsilon}))$$
Laplace Perturbation (LP)

Theorem 1 (Expected MAE of LP)

Given a set of answer vectors $A = \{\vec{a}_i\}$, let $A^P = \{\hat{a}_i\}$ be the answer vectors after applying LP on A. Then the expected error $E\left[\text{MAE}(A^P)\right]$ of the estimated truth on A^P must satisfy that

$$
E\left[\text{MAE}(A^P)\right] \leq \frac{1}{n} \sum_{j=1}^{n} \sum_{i=1}^{m} (q_i \times e_{i,j}^{LP}),
$$

where $e_{i,j}^{LP} = (1 - s_i) \left(\phi_j + \frac{|\Gamma|}{\epsilon} \right) + s_i \left(\sigma_i \sqrt{\frac{2}{\pi}} + \frac{|\Gamma|}{\epsilon} \right)$, μ_j is the ground truth of task T_j, σ_i is the standard error deviation of worker W_i, s_i is the fraction of the tasks that W_i returns non-NULL values, and ϕ_j is the deviation between μ_j and the expected value $E(v)$ of v.
Laplace Perturbation (LP)

Simple Setting

• \(q_i = \frac{1}{m}, \sigma_i = 1 \), i.e., all workers have the same quality.
• \(\mu_j = 1 \), i.e., all ground truths are 1.
• \(s_i = 0.1 \), i.e., 10% answers are not NULL.
• \(|\Gamma| = 10 \).
• \(\epsilon = 1 \).

Expected Error

\[
E \left[MAE(A^P) \right] \leq 14.13
\]
Randomized Response (RR)

• Add NULL to the answer domain \(\Gamma \).
• For each answer \(a_{i,j} \), apply randomized response.

\[
\forall y \in \Gamma, \ Pr[\mathcal{M}(a_{i,j}) = y] = \begin{cases}
\frac{e^\epsilon}{|\Gamma|+e^\epsilon} & \text{if } y = a_{i,j} \\
\frac{1}{|\Gamma|+e^\epsilon} & \text{if } y \neq a_{i,j}
\end{cases}
\]

Each original answer either
• remains unchanged in with probability \(\frac{e^\epsilon}{|\Gamma|+e^\epsilon} \), or
• is replaced with a different value with probability \(\frac{1}{|\Gamma|+e^\epsilon} \).
Randomized Response (RR)

Theorem 2 (Expected MAE of RR)

Given a set of answer vectors \(A = \{ \vec{a}_i \} \), let \(A^P = \{ \hat{a}_i \} \) be the answer vectors after applying RR on \(A \). Then the expected error \(E \left[\text{MAE}(A^P) \right] \) of the estimated truth on \(A^P \) must satisfy that

\[
E \left[\text{MAE}(A^P) \right] \leq \frac{1}{n} \sum_{j=1}^{n} \frac{\sum_{W_i \in W_j} q_i \times e_{i,j}^{RR}}{\sum_{W_i \in W_j} q_i},
\]

where

\[
e_{i,j}^{RR} = (1 - s_i) \left| \mu_j - \sum_{y \in \Gamma} y \frac{1}{\epsilon + |\Gamma|} \right| + \sum_{x \in \Gamma} s_i \mathcal{N}(x; \mu_j, \sigma_i) \left| \mu_j - \sum_{y \in \Gamma} y P_{xy} \right|,
\]

\(s_i \) is the fraction of tasks that worker \(W_i \) returns non-NULL values, and \(P_{xy} \) is the probability that value \(x \) is replaced with \(y \).
Randomized Response (RR)

Simple Setting

- \(q_i = \frac{1}{m} \), \(\sigma_i = 1 \), i.e., all workers have the same quality.
- \(\mu_j = 0 \), i.e., all ground truths are 1.
- \(s_i = 0.1 \), i.e., 10% answers are not NULL.
- \(\Gamma = [0, 9] \).
- \(\epsilon = 1 \).

Expected Error

\[
E \left[\text{MAE}(A^P) \right] \leq 3.551
\]
Matrix Factorization (MF)

- DC randomly generates the task profile matrix $V \in \mathbb{R}^{n \times d}$, and sends both V and the tasks \mathcal{T} to the workers.
Matrix Factorization (MF)

- DC randomly generates the task profile matrix $V \in \mathbb{R}^{n \times d}$, and sends both V and the tasks T to the workers.
- Every worker gets the answers \vec{a}_i, and returns the differentially private answer profile vector \vec{u}_i.

\[
\{ \vec{a}_i = \vec{u}_i V \}
\]
Instead of directly adding noise to \vec{u}_i, we design a novel approach based on objective perturbation to reduce the distortion.

$$\vec{u}_i = \arg \min_{\vec{u}_i} L_{DP}(\vec{a}_i, \vec{u}_i, V).$$

$$L_{DP}(\vec{a}_i, \vec{u}_i, V) = \sum_{T_j \in T_i} (a_{i,j} - \vec{u}_i^T \vec{v}_j)^2 + 2\vec{u}_i^T \vec{\eta}_i,$$

where $\vec{\eta}_i = \{Lap(\frac{\Gamma}{\epsilon}), \ldots, Lap(\frac{\Gamma}{\epsilon})\}$ is a d-dimensional vector.
Matrix Factorization (MF)

Theorem 3 (LDP of MF)
The MF mechanism guarantees ϵ-LDP.
Matrix Factorization (MF)

Theorem 4 (Expected MAE of MF)

Given a set of answer vectors \(A = \{ \vec{a}_i \} \), let \(A^P = \{ \hat{a}_i \} \) be the answer vectors after applying MF on \(A \). The expected error \(E[\text{MAE}(A^P)] \) of estimated truth based on the answer vectors perturbed by the MF mechanism satisfies that:

\[
E[\text{MAE}(A^P)] \leq \tilde{q} m \left(\sqrt{\frac{2}{\pi}} + \frac{d|\Gamma|}{n\epsilon} \right),
\]

where \(\tilde{q} = \max_i \{ q_i \} \) and \(d \) is the factorization parameter.

Property The error bound is insensitive to answer sparsity.
Matrix Factorization (MF)

Simple Setting
- \(q_i = \frac{1}{m}, \sigma_i = 1 \), i.e., all workers have the same quality.
- \(\Gamma = [0, 9] \).
- \(\epsilon = 1 \).
- \(n = 1,000 \), i.e., 1,000 tasks.
- \(d = 100 \).

Expected Error

\[
E \left[\text{MAE}(A^P) \right] \leq 1.8
\]
Experiments

Real-word Datasets

- Web dataset
 - 34 workers
 - 177 tasks
 - 0.7059 sparsity
- AdultContent dataset
 - 825 workers
 - 11,040 tasks
 - 0.9937 sparsity

Synthetic Dataset

Baseline 2-Layer approach [LMS+18]
Experiments

Error v.s. Privacy Budget

(a) sparsity = 0.9
(b) sparsity = 0.5

Synthetic dataset (2,000 workers, 200 tasks)

- MF always provides the smallest MAE.
- The accuracy provided by MF is not sensitive to the privacy budget.
Experiments

Error v.s. Answer Sparsity

(a) $\epsilon = 0.1$
(b) $\epsilon = 1.0$

Synthetic dataset (2,000 workers, 200 tasks)

- MF always provides the smallest MAE.
- The accuracy provided by MF is not sensitive to the data sparsity.
Experiments

Error v.s. Privacy Budget

(a) Web dataset (b) AdultContent dataset

Real-world datasets

- MF provides the lowest MAE for most cases.
We aim at protecting worker privacy with LDP guarantee while providing highly accurate truth inference results.

- Propose LP and RR to address sparsity in worker answers.
- Design MF that adds perturbation on objective functions.
- MF provides better data utility.

In the future, we aim at protecting task privacy.
References

[LLG+14] Qi Li, Yaliang Li, Jing Gao, Lu Su, Bo Zhao, Murat Demirbas, Wei Fan, and Jiawei Han. A confidence-aware approach for truth discovery on long-tail data. *Proceedings of the VLDB Endowment*, 8(4):425–436, 2014.

Thank you!

Questions?