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• Data curator releases tasks on a crowdsourcing platform.
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Crowdsourcing

Data Curator

Workers

Answers

Answers

Answers

• Data curator releases tasks on a crowdsourcing platform.
• The workers provide their answers to these tasks in
exchange for a reward.
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Privacy Concern

Collecting answers from individual workers may pose potential
privacy risks.
• Crowdsourcing-related applications collect sensitive
personal information from workers.

• By using a sequence of surveys, a data curator (DC)
could potentially determine the identities of workers. 4 / 36



Differential Privacy

Differential privacy (DP) provides rigorous privacy guarantee.
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However, classical DP requires a trusted data curator to
publish privatized statistical information.
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Local Differential Privacy
Local differential privacy (LDP) is the state-of-the-art
approach for privacy-preserving data collection.

Workers

Data Curator

Untrusted

x̂1 = x1 + ξ1

x̂2 = x2 + ξ2

x̂m = xm + ξm

f(x̂1, x̂2, . . . , x̂m)

Before sending the answer to the data curator, each worker
perturbs his/her private data locally.
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Challenges I - Data Sparsity

• Most workers only provide answers to a very small portion
of the tasks.

• We use NULL to represent the answer if a worker does
not provide response for a specific task.

Dataset # of Workers # of Tasks Average Sparsity
Web 1 34 177 0.705882

AdultContent 2 825 11,040 0.993666

• NULL values should also be protected.
• Careless perturbation of NULL values may significantly
alter the original answer distribution.

1http://dbgroup.cs.tsinghua.edu.cn/ligl/crowddata/
2https:

//github.com/ipeirotis/Get-Another-Label/tree/master/data
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Challenges II - Data Utility

• Truth inference estimates the true results from answers
provided by workers of different quality.

• Most truth inference algorithms iterate until convergence.
• We aim to preserve the accuracy of truth inference on the
perturbed worker answers, even a slight amount of initial
noise in the worker answers may be propagated during
iterations.
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Our Contributions

Extension to Existing Approaches
• Laplace perturbation (LP) approach
• Randomized response (RR) approach
• Large expected error in the truth inference

results

Novel Approach
We design a new matrix factorization (MF)
perturbation algorithm to satisfy LDP, and
guarantee small error.
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Related Work
Local differential privacy

• Count, heavy hitters [HILM02, HIM02]

• Graph synthesization [QYY+17]

• Linear regression [NXY+16]

Privacy-preserving crowdsourcing

• Mutual information [KOV14]

• Truth discovery on complete data [LMS+18]

Differentially private recommendation

• Perturbation on categories [Can02, SJ14]

• Iterative factorization [SKSX18]
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Preliminaries - Local Differential Privacy
(LDP)

Definition (ε-Local Differential Privacy)
A randomized privatization mechanismM satisfies ε-local
differential privacy (ε-LDP) iff for any pair of answer vectors ~a
and ~a′ that differ at one cell, we have:

∀~zp ∈ Range(M) :
Pr [M(~a) = ~zp]

Pr [M(~a′) = ~zp]
≤ eε,

where Range(M) denotes the set of all possible outputs of the
algorithmM.
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Preliminaries - Truth Inference
• Associated each worker with a quality.
• For each task, estimate the truth by taking the weighted
average of the worker answers.

• For each worker, estimate the quality by measuring the
difference between his answers and the estimated truth.

q1Quality q2

. . .

qm

tj

a1j a2j amj

Estimated truth µ̂j =

∑
Wi∈Wj

qi×ai,j∑
Wi∈Wj

qi

Estimated quality qi ∝ 1
σi

= 1√
1

|Ti|
∑

tj∈Ti
(ai,j−µ̂j)2 13 / 36



Preliminaries - Truth Inference

Iteratively updating the estimated truth and worker quality
until convergence [LLG+14].

Algorithm 1 Truth inference

Require: The workers’ answers {ai,j}
Ensure: The estimated true answer (i.e., the truth) of tasks {µ̂j} and the

quality of workers {qi}
1: Initialize worker quality qi = 1/m for each worker Wi ∈ W;
2: while the convergence condition is not met do
3: Estimate {µ̂j};
4: Estimate {qi};
5: end while
6: return {µ̂j} and {qi};
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Preliminaries - Matrix Factorization

Given M ∈ Rm×n, find U ∈ Rm×d and V ∈ Rn×d s.t.
L(M ,U ,V ) =

∑
(i ,j)∈Ω(Mi ,j − ~uT

i ~vj)
2 is minimized.

≈

Mi ,j , can be approximated by the inner product of ~ui and ~vj ,
i.e., ~uT

i ~vj .
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Problem Statement

Input A set of answers {Wi} and their answer vectors
A = {~ai}, and a privacy parameter ε

Output The perturbed answer vectors
AP = {M(~ai)|∀~ai ∈ A}

Requirement
• Privacy: AP satisfies ε-LDP.
• Utility: Accurate truth inference results
from AP , i.e., minimize

MAE (AP) =

∑
Tj∈T |µj − µ̂j |

n
.
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Laplace Perturbation (LP)

Step 1 Replace NULL values with some value in the
answer domain Γ.

g(ai ,j) =

{
v ai ,j = NULL

ai ,j ai ,j 6= NULL,

Step 2 Add Laplace noise to each answer.

L(~ai) =
(
g(ai ,1)+Lap(

|Γ|
ε

), g(ai ,2)+Lap(
|Γ|
ε

), ..., g(ai ,n)+Lap(
|Γ|
ε

)
)

17 / 36



Laplace Perturbation (LP)

Theorem 1 (Expected MAE of LP)

Given a set of answer vectors A = {~ai}, let AP = {âi} be the
answer vectors after applying LP on A. Then the expected
error E

[
MAE (AP)

]
of the estimated truth on AP must satisfy

that

E
[
MAE (AP)

]
≤ 1

n

n∑

j=1

m∑

i=1

(qi × eLPi ,j ),

where eLPi ,j = (1− si)
(
φj + |Γ|

ε

)
+ si

(
σi

√
2
π

+ |Γ|
ε

)
, µj is the

ground truth of task Tj , σi is the standard error deviation of
worker Wi , si is the fraction of the tasks that Wi returns
non-NULL values, and φj is the deviation between µj and the
expected value E (v) of v .
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Laplace Perturbation (LP)

Simple Setting
• qi = 1

m
, σi = 1, i.e., all workers have the

same quality.
• µj = 1, i.e., all ground truths are 1.
• si = 0.1, i.e., 10% answers are not NULL.
• |Γ| = 10.
• ε = 1.

Expected Error

E
[
MAE (AP)

]
≤ 14.13
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Randomized Response (RR)

• Add NULL to the answer domain Γ.
• For each answer ai ,j , apply randomized response.

∀y ∈ Γ, Pr [M(ai ,j) = y ] =

{
eε

|Γ|+eε
if y = ai ,j

1
|Γ|+eε

if y 6= ai ,j

Each original answer either
• remains unchanged in with probability eε

|Γ|+eε
, or

• is replaced with a different value with probability 1
|Γ|+eε

.
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Randomized Response (RR)

Theorem 2 (Expected MAE of RR)

Given a set of answer vectors A = {~ai}, let AP = {âi} be the
answer vectors after applying RR on A. Then the expected
error E

[
MAE (AP)

]
of the estimated truth on AP must satisfy

that
E
[
MAE (AP)

]
≤ 1

n

n∑

j=1

∑
Wi∈Wj

qi × eRRi ,j∑
Wi∈Wj

qi
,

where

eRRi ,j =(1− si )

∣∣∣∣∣∣
µj −

∑

y∈Γ

y
1

eε + |Γ|

∣∣∣∣∣∣
+
∑

x∈Γ

siN (x ;µj , σi )

∣∣∣∣∣∣
µj −

∑

y∈Γ

yPxy

∣∣∣∣∣∣
,

si is the fraction of tasks that worker Wi returns non-NULL
values, and Pxy is the probability that value x is replaced with
y .
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Randomized Response (RR)

Simple Setting
• qi = 1

m
, σi = 1, i.e., all workers have the

same quality.
• µj = 0, i.e., all ground truths are 1.
• si = 0.1, i.e., 10% answers are not NULL.
• Γ = [0, 9].
• ε = 1.

Expected Error

E
[
MAE (AP)

]
≤ 3.551
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Matrix Factorization (MF)

• DC randomly generates the task profile matrix V ∈ Rn×d ,
and sends both V and the tasks T to the workers.

Workers

Data Curator
V , T

V , T
V , T
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Matrix Factorization (MF)

• DC randomly generates the task profile matrix V ∈ Rnd ,
and sends both V and the tasks T to the workers.

• Every worker gets the answers ~ai , and returns the
differentially private answer profile vector ~ui .

Workers

Data Curator
!u1

!u2

!um

{!ai = !uiV }
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Matrix Factorization (MF)

Instead of directly adding noise to ~ui , we design a novel
approach based on objective perturbation to reduce the
distortion.

~ui = arg min
~ui

LDP(~ai , ~ui ,V ).

LDP(~ai , ~ui ,V ) =
∑

Tj∈Ti

(ai ,j − ~uT
i ~vj)

2 + 2~uT
i ~ηi ,

where ~ηi = {Lap( |Γ|
ε

), . . . , Lap( |Γ|
ε

)} is a d-dimensional vector.
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Matrix Factorization (MF)

Theorem 3 (LDP of MF)
The MF mechanism guarantees ε-LDP.
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Matrix Factorization (MF)

Theorem 4 (Expected MAE of MF)

Given a set of answer vectors A = {~ai}, let AP = {âi} be the
answer vectors after applying MF on A. The expected error
E
[
MAE (AP)

]
of estimated truth based on the answer vectors

perturbed by the MF mechanism satisfies that:

E
[
MAE (AP)

]
≤ q̃m

(√
2
π

+
d |Γ|
nε

)
,

where q̃ = maxi{qi} and d is the factorization parameter.

Property The error bound is insensitive to answer sparsity.
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Matrix Factorization (MF)

Simple Setting
• qi = 1

m
, σi = 1, i.e., all workers have the

same quality.
• Γ = [0, 9].
• ε = 1.
• n = 1, 000, i.e., 1, 000 tasks.
• d = 100.

Expected Error

E
[
MAE (AP)

]
≤ 1.8
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Experiments

Real-word Datasets
• Web dataset

• 34 workers
• 177 tasks
• 0.7059 sparsity

• AdultContent dataset
• 825 workers
• 11,040 tasks
• 0.9937 sparsity

Synthetic Dataset
Baseline 2-Layer approach [LMS+18]
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Experiments

Error v.s. Privacy Budget
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(a) sparsity= 0.9 (b) sparsity= 0.5

Synthetic dataset (2, 000 workers, 200 tasks)

• MF always provides the smallest MAE.
• The accuracy provided by MF is not sensitive to the
privacy budget.
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Experiments

Error v.s. Answer Sparsity
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(a) ε = 0.1 (b) ε = 1.0

Synthetic dataset (2, 000 workers, 200 tasks)

• MF always provides the smallest MAE.
• The accuracy provided by MF is not sensitive to the data
sparsity.
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Experiments

Error v.s. Privacy Budget
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(a) Web dataset (b) AdultContent dataset

Real-world datasets

• MF provides the lowest MAE for most cases.
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Conclusion

We aim at protecting worker privacy with LDP guarantee while
providing highly accurate truth inference results.
• Propose LP and RR to address sparsity in worker answers.
• Design MF that adds perturbation on objective functions.
• MF provides better data utility.

In the future, we aim at protecting task privacy.
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Q & A

Thank you!

Questions?


