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Mobile Game Industry

• By 2021, the gaming market is projected to reach $180
billion.

• Mobile games take a large fraction.
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User Acquisition

The intense competition in the industry exhorts the importance
of user acquisition (UA) in mobile gaming operations.
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User Acquisition
A new app download must fall into one of the two categories:

Paid Install obtained by advertising

Organic Install cannot be attributed to any advertisement source.
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Objective

Organic installs are of crucial value for a mobile game’s
ecosystem.

• no upfront UA cost

• more loyal and active

Objective Understand the driving forces of organic installs
Application Intelligent UA budget allocation
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Challenges

Challenge I many potential causal factors
• game quality
• app visibility
• in-game social referrals

Challenge II temporal lags
• delay between game improvement and the

growth of organic installs
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Limitations of Existing Work

Statistic Inference [XHD+20, CF18]

• rigid assumption on data (e.g., no confounder,
additive causal impacts)

• no temporal lag

Model Explanation [PJS13, RSG16, LL17, SGK17]
Attention Mechanism [SMK19, GLAF19]
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Limitations of Existing Work
Statistic Inference [XHD+20, CF18]

• rigid assumption on data (e.g., no confounder,
additive causal impacts)

• no temporal lag
Model Explanation [PJS13, RSG16, LL17, SGK17]

• no temporal pattern
• low fidelity

Attention Mechanism [SMK19, GLAF19]

• The importance of different features at different
temporal lags are not comparable.
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Contributions

We are the first to quantitatively evaluate the causal impact of
different factors with temporal lags on organic installs in the
mobile game industry.
• a deep recurrent neural network to learn the dynamics of
each feature;

• an innovative attention mechanism to learn the
importance of each feature at various temporal lags; and

• experimental validation of the effectiveness.
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Preliminaries: Organic Installs

• Organic installs refer to the scenario where users install
the app without directly responding to any advertising
campaign.

• Three widely recognized driving factors:
• App store optimization.

• Encouraging social exposure.
• Game quality improvement.
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Preliminaries: Causal Inference

Counterfactual Inference
• Compare outcomes in two almost-identifical

worlds.
• Controlled experiments are expensive, unethical,

and even impossible.
Observational Inference

• Infer the causal structure of the data generation
system from observational data.
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Problem Formulation
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Solution in a Nutshell

Deep RNN
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Deep RNN Capture temporal patterns
2D-ATT Reveal information flow in the generative process

FCN Predict target value
16 / 28



2D-ATT
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• Attention score αi ,j ,t =
ui,j,tqᵀ∑

1≤j≤m,1≤t≤T exp(ui,j,tqᵀ)

• Query vector q represents the fixed question “what are the
important hidden states with regard to the prediction of the
target variable” and is to be optimized

• Attended representation si =
∑

1≤j≤m,1≤t≤T αi ,j ,thi ,j ,t
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2D-ATT

• The attention mechanism resembles the information flow in
the generative process of the target variable.

• The attention scores represent the contribution of each feature
at every time step to the target.

• By steering the prediction model to the most important input
fragments, it can improve the prediction accuracy in return.
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Experiments: Synthetic Datasets

Synthetic 1 Linear, Uniform with instantaneous effects
Synthetic 2 Linear, Gaussian with instantaneous effects
Synthetic 3 Nonlinear, non-Gaussian without instantaneous

effects

Xt = 0.8 ∗ Xt−1 + 0.3 ∗ NX ,t

Yt = 0.4 ∗ Yt−1 + (Xt−1 − 1)2 + 0.3 ∗ NY ,t

Zt = 0.4 ∗ Zt−1 + 0.5 ∗ cos(Yt−1) + sin(Yt−1) + 0.3 ∗ NZ ,t ,

where N·,t ∼ U
(
[−0.5, 0.5]

)
. Z is regarded as the target variable.

Therefore, Yt−1 → Zt is the ground truth causal effect.

Synthetic 4 Non-additive interaction
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Experiments: Synthetic Datasets

Observations:
• 2D-ATT is capable of identifying complex causal effects at

various levels of temporal delays.

• SHAP heavily depends on the accuracy of the prediction
model.

• AME cannot deal with temporal lags.

• T- and G-Causality are vulnerable to observational noise.
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Experiments: Real-world Dataset

• Provided by Jam City
• 9 mobile games across two platforms (iOS and Android)
• From December 2013 to June 2020
• Numerical features

paid_install the number of paid users obtained;
ua_cost the user acquisition cost;

DAU daily active users;
DAP daily active payers, i.e., users who make within-app purchases;

• Binary features
featuring indicates whether there is an app store featuring event, i.e., if

the app store displays the game in the main page;
store_publishing indicates whether the game’s information is updated in the

app store;
test_publishing indicates whether there is any testing for new game content

in the app store;

• Target variable
organic_install the number of organic installs.
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Experiments: Real-world Dataset
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Experiments: Real-world Dataset

Observations:

• Paid installs and DAU are the most important causal factors,
with closer statistics playing a more important role.

• We are the first to discover that paid installs are the most
significant causal factor of organic installs.

• This demonstrates that the transformation from quantitative
change (i.e., more paid users) to qualitative change (i.e., more
organic users) also holds in the mobile game industry.
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Conclusion

We present a novel attention mechanism to discover causal
relationships with temporal lags from multivariate time series
data.
In the future, we plan to
• design an intelligent UA budget allocation algorithm
based on the discovered causal effects; and

• design a user attribution model for all the advertising
channels.
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Q & A

Thank you!

Questions?


