Cyber Intrusion Detection by Using Deep Neural Networks with Attack-sharing Loss IEEE DataCom '19

Boxiang Dong¹ Hui (Wendy) Wang² Aparna S. Varde¹ Dawei Li¹ Bharath K. Samanthula¹ Weifeng Sun³ Liang Zhao³

> ¹Montclair State University Montclair, NJ, USA

²Stevens Institute of Technology Hoboken, NJ, USA

³Dalian University of Technology Dalian, China

November 19, 2019

Cyber Attacks

Selected data breaches by number of: Accounts/cards Customers

- The number of reported cyber incidents increased by 1,300% in the past 10 years.
- The amount of disclosed information in these attacks are outrageous.

Intrusion Detection Systems

Our Objective Employ deep learning to discover inherent features and learn complex classification function.

Challenges

Diversity of attacks There are quite a few types of attacks, which exhibit different behavior patterns. Imbalanced class distribution

- A majority of the network connections are benign.
- Different types of intrusion attacks are unevenly distributed in practice.

We build a new intrusion detection and classification framework named *DeepIDEA*, (a <u>Deep</u> Neural Network-based <u>Intrusion Detector with Attack-sharing Loss</u>).

- DeepIDEA takes full advantage of deep learning to extract features and cultivate classification boundary.
- DeepIDEA incorporates a new loss function (named *attack-sharing loss*) to cope with the imbalanced class distribution.
- Experiments on three benchmark datasets demonstrate the superiority of DeepIDEA.

- Introduction
- **2** Related Work
- **③** Preliminaries
- O DeepIDEA
- **6** Experiments
- **6** Conclusion

Intrusion detection based on deep learning

- Self-taught learning [JNSA16]
- Few-shot learning [CHK⁺17]
- Auto-encoder [MDES18]

Anomaly detection based on deep learning

- LSTM [ZXM⁺16, DLZS17]
- CNN [KTP18]

In this paper, we focus on detecting the following five prevailing attacks.

Brute-force Gain illegal access to a site or server.

- **Botnet** Exploit zombie devices to carry out malicious activities.
- **Probing** Scan a victim device to determine the vulnerabilities.
- **Dos/DDoS** Overload a target machine and prevent it from serving legitimate users.
- Infiltration Leverage a software vulnerability and execute backdoor attacks.

Preliminaries - Imbalanced Classification

- The labels in intrusion detection datasets follow a long tail distribution.
- The imbalanced data forces the classification model to be biased toward the majority classes
- It renders poor accuracy on detecting intrusion attacks.

Over-sampling duplicate under-represented classes.

- overfitting
- long training time
- **Under-sampling** eliminates samples in over-sized classes.
 - inferior accuracy
- **Cost-sensitive learning** associate high weight with under-represented classes.
 - non-convergence in training

Our Solution - DeepIDEA

DeepIDEA employs a fully-connected neural network to classify network connections.

- L hidden layers with ReLU units and dropout;
- One output layer with softmax activation function.

A classic loss function for classification models is cross-entropy loss, J_{CE} , s.t.

$$J_{CE}(\boldsymbol{\theta}) = \mathbb{E}_{(\mathbf{x}^{(i)}, y^{(i)}) \sim \hat{p}_{data}} L(f(\mathbf{x}^{(i)}; \boldsymbol{\theta}), y^{(i)})$$

$$= -\mathbb{E}_{(\mathbf{x}^{(i)}, y^{(i)}) \sim \hat{p}_{data}} \log p(y^{(i)} | \mathbf{x}^{(i)}; \boldsymbol{\theta})$$

$$= -\frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{c} I(y^{(i)}, j) \log p_{j}^{(i)},$$

$$I(a, b) = \begin{cases} 1 & \text{if } a = b \\ 0 & \text{otherwise.} \end{cases}$$

Our Solution - DeepIDEA

A classic loss function for classification models is cross-entropy loss, J_{CE} , s.t.

$$\begin{split} J_{CE}(\theta) &= \mathbb{E}_{(\mathbf{x}^{(i)}, y^{(i)}) \sim \hat{p}_{data}} L(f(\mathbf{x}^{(i)}; \theta), y^{(i)}) \\ &= -\mathbb{E}_{(\mathbf{x}^{(i)}, y^{(i)}) \sim \hat{p}_{data}} \log p(y^{(i)} | \mathbf{x}^{(i)}; \theta) \\ &= -\frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{c} I(y^{(i)}, j) \log p_{j}^{(i)}, \end{split}$$

- However, the underlying assumption of J_{CE} is that all instances have the same importance.
- In case of imbalanced class distribution, it lets the classifier concentrate on the majority class.
- As a consequence, the neural network tends to simply classify every instance as benign.

Two types of classification error

Intrusion mis-classification An intrusion attack is mis-classified as benign event; Attack mis-classification An intrustion attack of type A (e.g., DoS attack) is mis-classified as an intrusion attack of type B (e.g., probing attack).

Our intuition Intrusion mis-classification should be penalized more than the attack mis-classification, as it enables the cyber incidents to by-pass the security check and cause potentially critical damage.

Our Solution - DeepIDEA

We design attack-sharing loss, J_{AS} . For any instance $(x^{(i)}, y^{(i)})$, let $y^{(i)}$ be 1 if it is benign; let $y^{(i)} \in \{2, ..., c\}$ otherwise.

$$J_{AS} = \boxed{-\frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{c} \mathbf{I}(y^{(i)}, j) \log p_j^{(i)}}}_{-\lambda \left(\frac{1}{N} \sum_{i=1}^{N} \left(\mathbf{I}(y^{(i)}, 1) \log p_1^{(i)} + \sum_{j=2}^{c} \mathbf{I}(y^{(i)}, j) \log(1 - p_1^{(i)})\right)\right)},$$

additional penalty for class mis-classification

where $\lambda > 0$ is a hyper-parameter that controls the degree of additional penalty.

Advantage of attack-sharing loss

- Eliminates the bias towards the majority/benign class by moving the decision boundary towards the attack classes; and
- Respects the penalty discrepancy of different types of mis-classification.

Experiments - Dataset

Three Benchmark Datasets

- *KDD99* dataset
- CICIDS17 dataset ¹
- CICIDS18 dataset ²

Class Imbalance Measure Ω_{imb}

$$\Omega_{imb} = \frac{\sum_{i=1}^{c} n_{max} - n_i}{n}$$

Dataset	# of	Training Size	Testing Size	# of	Ω_{imb}	
	Features			Classes		
KDD99	41	4,898,431	311,029	5	2.96	
CICIDS17	81	2,343,634	482,926	5	3.08	
CICIDS18	77	5,080,071	1,063,342	4	2.31	

¹https://www.unb.ca/cic/datasets/ids-2017.html ²https://www.unb.ca/cic/datasets/ids-2018.html

Table: Class distribution in CICIDS17 dataset

Label	Trair	ning	Testing			
Laber	Number	Fraction	Number	Fraction		
Benign	1,911,674	81.57%	361,399	74.84%		
DoS	170,508	7.27%	82,151	17.01%		
DDoS	101,024	4.31%	27,003	5.59%		
Brute-Force	10,494	0.45%	3,341	0.69%		
Infiltration	149,934	6.40%	9,032	1.87%		
Total	2,343,634	100%	482,926	100%		

SVM **KNN** k = 5, minkowski distance **DT** 10 layers at most MLP+CE deep feedforward network with cross-entropy loss function MLP+OS [JS02] MLP+US [KM⁺97] **Cost-Sensitive** cost-sensitive loss function [KHB⁺18] CNN [KHB⁺18] 2 convolution layers, 2 maxpooling layers and 6 fully-connected layers

Experiments - Setup and Metrics

Setup

- Implemented by using Tensorflow
- 10 hidden layers, 100 units per layer
- 0.8 keep probability in dropout layers
- Batch size: 128
- Training on a NVIDIA RTX 2080 Ti GPU within 3 hours

Evaluation Metrics

- Measure precision and recall for each class
- Evaluate the average class-wise recall as the overall class-balanced accuracy (CBA) [DGZ18].

Detection Accuracy on CICIDS17 Dataset

Classifier	Benign		DoS		DD _o S		Brute-Force		Infiltration		CDA
	Pre	Rec	Pre	Rec	Pre	Rec	Pre	Rec	Pre	Rec	CDA
SVM	86.42	76.38	96.58	53.74	92.62	16.03	0	0	7.27	86.18	46.47
KNN	91.92	85.05	75.88	48.22	72.56	86.23	0	0	10.92	84.75	60.85
DT	66.51	100	0	0	0	0	0	0	0	0	20
MLP+CE	87.04	90.76	74.12	63.69	74.73	79.53	7.37	4.8	28.03	61.54	60.06
MLP+OS [JS02]	86.03	95.05	80.14	52.5	56.68	76.06	3.65	1.63	28.18	53.62	55.45
MLP+US [KM ⁺ 97]	86.88	54.9	50.91	59.31	26.13	11.32	7.17	27.39	13.8	58.03	42.19
Cost-	61.58	61 17	17.60	28.00	0	0	0	0	0	0	17.95
Sensitive [KHB ⁺ 18]		8] 01.50	01.17	17.09	20.09	Ŭ	Ŭ	Ŭ	0	Ŭ	°
CNN [CHK ⁺ 17]	0	0	23.42	96.04	0	0	8.07	11.07	0	0	21.42
DeepIDEA	88.5	94.06	88.77	62.97	76.31	83.19	8.29	4.1	26.46	64.53	61.77

- DeepIDEA produces similar and satisfying precision and recall on every class, except for Brute-Force.
- DeepIDEA yields the highest CBA, meaning that it reaches the best balance among all classes.

In this paper, we design DeepIDEA to detect network intrusion attacks, which

- takes full advantage of deep learning for both feature extraction and attack recognition; and
- copes with the imbalanced class distribution by using attack-sharing loss function.

In the future, we aim at extending our work by

- utilizing a more advanced model such as RNN; and
- improving the performance on the extremely under-represented classes.

References I

[CHK⁺17] Md Moin Uddin Chowdhury, Frederick Hammond, Glenn Konowicz, Chunsheng Xin, Hongyi Wu, and Jiang Li. A few-shot deep learning approach for improved intrusion detection. In IEEE Ubiquitous Computing, Electronics and Mobile Communication Conference (UEMCON), pages 456-462, 2017. [DGZ18] Qi Dong, Shaogang Gong, and Xiatian Zhu. Imbalanced deep learning by minority class incremental rectification. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018. [DLZS17] Min Du, Feifei Li, Guineng Zheng, and Vivek Srikumar. Deeplog: Anomaly detection and diagnosis from system logs through deep learning. In Proceedings of the ACM SIGSAC Conference on Computer and Communications Security, pages 1285-1298, 2017. Ahmad Javaid, Quamar Niyaz, Weiging Sun, and Mansoor Alam. [JNSA16] A deep learning approach for network intrusion detection system.

In Proceedings of the EAI International Conference on Bio-inspired Information and Communications Technologies (formerly BIONETICS), pages 21–26, 2016.

- [JS02] Nathalie Japkowicz and Shaju Stephen. The class imbalance problem: A systematic study. Intelligent Data Analysis, 6(5):429–449, 2002.
- [KHB⁺18] Salman H Khan, Munawar Hayat, Mohammed Bennamoun, Ferdous A Sohel, and Roberto Togneri.
 Cost-sensitive learning of deep feature representations from imbalanced data.
 IEEE transactions on neural networks and learning systems, 29(8):3573–3587, 2018.

[KM⁺97] Miroslav Kubat, Stan Matwin, et al. Addressing the curse of imbalanced training sets: one-sided selection. In Icml, volume 97, pages 179–186. Nashville, USA, 1997.

[KTP18] B Ravi Kiran, Dilip Mathew Thomas, and Ranjith Parakkal. An overview of deep learning based methods for unsupervised and semi-supervised anomaly detection in videos. *Journal of Imaging*, 4(2):36, 2018.

[MDES18] Yisroel Mirsky, Tomer Doitshman, Yuval Elovici, and Asaf Shabtai. Kitsune: an ensemble of autoencoders for online network intrusion detection. arXiv preprint arXiv:1802.09089, 2018.

 [ZXM⁺16] Ke Zhang, Jianwu Xu, Martin Renqiang Min, Guofei Jiang, Konstantinos Pelechrinis, and Hui Zhang.
Automated it system failure prediction: A deep learning approach.
In IEEE International Conference on Big Data, pages 1291–1300, 2016.

Thank you!

Questions?

dongb@montclair.edu