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Cyber Attacks
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e The number of reported cyber incidents increased by
1,300% in the past 10 years.

e The amount of disclosed information in these attacks are
outrageous.

2/24



Intrusion Detection Systems

( Signatured Need continuous inputs
based from security experts
Intrusion Machine learnin: greph mining
Detection < based 9! svm Fail to capture complex attack patterns
System -
decision tree
Deep learning autoencoder
based Only focus on constructing features
CNN

Our Objective Employ deep learning to discover inherent
features and learn complex classification function.
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Challenges
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Diversity of attacks There are quite a few types of attacks,
which exhibit different behavior patterns.
Imbalanced class distribution
e A majority of the network connections are
benign.
e Different types of intrusion attacks are unevenly

distributed in practice.
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Our Contributions

We build a new intrusion detection and classification
framework named DeepIDEA, (a Deep Neural Network-based
Intrusion Detector with Attack-sharing Loss).

e DeeplDEA takes full advantage of deep learning to extract
features and cultivate classification boundary.

e DeeplDEA incorporates a new loss function (named
attack-sharing loss) to cope with the imbalanced class
distribution.

e Experiments on three benchmark datasets demonstrate the
superiority of DeeplDEA.

5/24



® Introduction

® Related Work
© Preliminaries

O DeepIDEA

© Experiments

0® Conclusion

6/24



Related Work

Intrusion detection based on deep learning
e Self-taught learning [JNSA16]
e Few-shot learning [CHK17]
e Auto-encoder [MDES18]

Anomaly detection based on deep learning
e LSTM [ZXM*16, DLZS17]
e CNN [KTP1]
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Preliminaries - Intrusion Attacks

In this paper, we focus on detecting the following five
prevailing attacks.

Brute-force Gain illegal access to a site or server.

Botnet Exploit zombie devices to carry out malicious
activities.

Probing Scan a victim device to determine the
vulnerabilities.

Dos/DDoS Overload a target machine and prevent it
from serving legitimate users.

Infiltration Leverage a software vulnerability and execute
backdoor attacks.
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Preliminaries - Imbalanced Classification

e The labels in intrusion detection datasets follow a long
tail distribution.

e The imbalanced data forces the classification model to be
biased toward the majority classes

e |t renders poor accuracy on detecting intrusion attacks.

Over-sampling duplicate under-represented classes.
e overfitting
e long training time
Under-sampling eliminates samples in over-sized classes.

e inferior accuracy

Cost-sensitive learning associate high weight with
under-represented classes.

® npon-convergence in training
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Our Solution - DeeplDEA

DeepIDEA employs a fully-connected neural network to classify
network connections.

e [ hidden layers with ReLU units and dropout;

e One output layer with softmax activation function.
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Our Solution - DeeplDEA

A classic loss function for classification models is cross-entropy
loss, JcE, s.t.

JCE(O) = ]E(X(i)7y(i))NﬁdataL(f(x(i); 0)7 y(l))
= B0 9 PLY V1< 0)

=——ZZ j)log p}”,

i=1 j=1

(2.5) — {1 if a=b

0 otherwise.
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Our Solution - DeeplDEA

A classic loss function for classification models is cross-entropy
loss, Jcg, s.t.

Jce(8) = Bty LF (X 6), y1)
- _E(X( y(.))Nﬁdata I gp( (’)‘X(I), 0)

Y0 sl

i=1 j=1

e However, the underlying assumption of Jcg is that all
instances have the same importance.

e |n case of imbalanced class distribution, it lets the
classifier concentrate on the majority class.

e As a consequence, the neural network tends to simply

classify every instance as benign.
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Our Solution - DeeplDEA

Two types of classification error
Intrusion mis-classification An intrusion attack is

mis-classified as benign event;

Attack mis-classification An intrustion attack of
type A (e.g., DoS attack) is
mis-classified as an intrusion attack of
type B (e.g., probing attack).

Our intuition Intrusion mis-classification should be penalized
more than the attack mis-classification, as it
enables the cyber incidents to by-pass the security
check and cause potentially critical damage.
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Our Solution - DeeplDEA

We design attack- sharing loss, Jas.
For any instance (x(), y()), let y() be 1 if it is benign; let
y@D e {2,... c} otherwise.

cross-entropy loss

Jas —‘—ZZI logp

=1 4=1
N c
— /\(N Z (I(y", 1)logp” + ZI(?J( ), ) log(1 _Pg ))))7
i=1 j=2

additional penalty for class mis-classification

where A > 0 is a hyper-parameter that controls the degree of
additional penalty.
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Our Solution - DeeplDEA

Advantage of attack-sharing loss

e Eliminates the bias towards the
majority/benign class by moving the decision
boundary towards the attack classes; and

e Respects the penalty discrepancy of different
types of mis-classification.
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Experiments - Dataset

Three Benchmark Datasets
e KDD99 dataset
e CICIDS17 dataset !
e CICIDS18 dataset ?

Class Imbalance Measure Q;,,

c
D izt Mmax — N
—1 Nmax i

fzhnb - ’

n
Dataset # of | Training Size | Testing Size | # of | Qimp
Features Classes
KDD99 41 4,898,431 311,029 5 2.96
CICIDS17 81 2,343,634 482,926 5 3.08
CICIDS18 7 5,080,071 1,063,342 4 231

https://www.unb.ca/cic/datasets/ids-2017.html

’https://www.unb.ca/cic/datasets/ids-2018.html
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Table: Class distribution in CICIDS17 dataset

Label Training Testing
Number | Fraction | Number | Fraction
Benign 1,911,674 | 81.57% | 361,399 | 74.84%
DoS 170,508 7.27% | 82,151 | 17.01%
DDoS 101,024 431% | 27,003 | 5.59%
Brute-Force 10,494 0.45% 3,341 0.69%
Infiltration | 149,934 6.40% 9,032 1.87%
Total 2,343,634 | 100% | 482,926 | 100%

Experiments - Dataset
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Experiments - Baselines

SVM
KNN k =5, minkowski distance
DT 10 layers at most

MLP+CE deep feedforward network with cross-entropy
loss function

MLP-0S [JS02]
MLP+US [KM+97]
Cost-Sensitive cost-sensitive loss function [KHB*18]

CNN [KHB*18] 2 convolution layers, 2 maxpooling
layers and 6 fully-connected layers
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Experiments - Setup and Metrics

Setup

Implemented by using Tensorflow

10 hidden layers, 100 units per layer

0.8 keep probability in dropout layers

Batch size: 128

Training on a NVIDIA RTX 2080 Ti GPU within
3 hours

Evaluation Metrics

e Measure precision and recall for each class
e Evaluate the average class-wise recall as the
overall class-balanced accuracy (CBA) [DGZ18].
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Experiments

Detection Accuracy on CICIDS17 Dataset

Benign DoS DDoS Brute-Force Infiltration

Cllzesifiter Pre Rec Pre Rec Pre Rec| Pre Rec Pre Rec C=R
SVM 86.42| 76.38 96.58 53.74 92.62] 16.03| 0 0 7.27| 86.18 46.47|
KNN 91.92] 85.05| 75.88 48.22] 72.56 86.23] O 0 10.92] 84.75 60.85|

DT 66.51 100 0 0 0 0 0 0 0 0 20
MLP+CE 87.04| 90.76| 74.12| 63.69 74.73 79.53| 7.37| 4.8 28.03| 61.54) 60.06|
MLP+OS [JS02] 86.03] 95.05 80.14 52.5| 56.68 76.06 3.65 1.63 28.18| 53.62| 55.45|
MLP+US [KM+97] 86.88 54.9( 50.91] 59.31] 26.13 11.32] 7.17| 27.39 13.8| 58.03 42.19
Sensitiv:o[iz_HBJr 18] 61.58 61.17| 17.69| 28.09 0 0 0 0 0 0 17.85
CNN [CHK+17] 0 0 23.42 96.04| 0 0 8.07| 11.07 0 0 21.42‘
DeeplDEA 88.5| 94.06] 88.77| 62.97] 76.31] 83.19] 8.29 4.1 26.46] 64.53] 61.77

e DeeplDEA produces similar and satisfying precision and
recall on every class, except for Brute-Force.

e DeeplDEA vyields the highest CBA, meaning that it
reaches the best balance among all classes.
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Conclusion

In this paper, we design DeepIDEA to detect network intrusion
attacks, which

e takes full advantage of deep learning for both feature
extraction and attack recognition; and

e copes with the imbalanced class distribution by using
attack-sharing loss function.

In the future, we aim at extending our work by
e utilizing a more advanced model such as RNN; and

e improving the performance on the extremely
under-represented classes.
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dongb@montclair.edu



