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Cyber Attacks

• The number of reported cyber incidents increased by
1,300% in the past 10 years.

• The amount of disclosed information in these attacks are
outrageous.
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Intrusion Detection Systems
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Our Objective Employ deep learning to discover inherent
features and learn complex classification function.
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Challenges
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Diversity of attacks There are quite a few types of attacks,
which exhibit different behavior patterns.

Imbalanced class distribution
• A majority of the network connections are

benign.
• Different types of intrusion attacks are unevenly

distributed in practice.
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Our Contributions

We build a new intrusion detection and classification
framework named DeepIDEA, (a Deep Neural Network-based
Intrusion Detector with Attack-sharing Loss).

• DeepIDEA takes full advantage of deep learning to extract
features and cultivate classification boundary.

• DeepIDEA incorporates a new loss function (named
attack-sharing loss) to cope with the imbalanced class
distribution.

• Experiments on three benchmark datasets demonstrate the
superiority of DeepIDEA.
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Related Work

Intrusion detection based on deep learning

• Self-taught learning [JNSA16]

• Few-shot learning [CHK+17]

• Auto-encoder [MDES18]

Anomaly detection based on deep learning

• LSTM [ZXM+16, DLZS17]

• CNN [KTP18]
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Preliminaries - Intrusion Attacks

In this paper, we focus on detecting the following five
prevailing attacks.

Brute-force Gain illegal access to a site or server.
Botnet Exploit zombie devices to carry out malicious

activities.
Probing Scan a victim device to determine the

vulnerabilities.
Dos/DDoS Overload a target machine and prevent it

from serving legitimate users.
Infiltration Leverage a software vulnerability and execute

backdoor attacks.

8 / 24



Preliminaries - Imbalanced Classification

• The labels in intrusion detection datasets follow a long
tail distribution.

• The imbalanced data forces the classification model to be
biased toward the majority classes

• It renders poor accuracy on detecting intrusion attacks.

Over-sampling duplicate under-represented classes.
• overfitting
• long training time

Under-sampling eliminates samples in over-sized classes.
• inferior accuracy

Cost-sensitive learning associate high weight with
under-represented classes.
• non-convergence in training
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Our Solution - DeepIDEA

DeepIDEA employs a fully-connected neural network to classify
network connections.
• L hidden layers with ReLU units and dropout;
• One output layer with softmax activation function.
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Our Solution - DeepIDEA

A classic loss function for classification models is cross-entropy
loss, JCE , s.t.

JCE (θ) = E(x (i),y (i))∼p̂data
L(f (x (i);θ), y (i))

= −E(x (i),y (i))∼p̂data
log p(y (i)|x (i);θ)

= − 1
N

N∑

i=1

c∑

j=1

I(y (i), j) log p
(i)
j ,

I(a, b) =

{
1 if a=b
0 otherwise.
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Our Solution - DeepIDEA
A classic loss function for classification models is cross-entropy
loss, JCE , s.t.

JCE (θ) = E(x (i),y (i))∼p̂data
L(f (x (i);θ), y (i))

= −E(x (i),y (i))∼p̂data
log p(y (i)|x (i);θ)

= − 1
N

N∑

i=1

c∑

j=1

I(y (i), j) log p
(i)
j ,

• However, the underlying assumption of JCE is that all
instances have the same importance.

• In case of imbalanced class distribution, it lets the
classifier concentrate on the majority class.

• As a consequence, the neural network tends to simply
classify every instance as benign.
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Our Solution - DeepIDEA

Two types of classification error
Intrusion mis-classification An intrusion attack is

mis-classified as benign event;
Attack mis-classification An intrustion attack of

type A (e.g., DoS attack) is
mis-classified as an intrusion attack of
type B (e.g., probing attack).

Our intuition Intrusion mis-classification should be penalized
more than the attack mis-classification, as it
enables the cyber incidents to by-pass the security
check and cause potentially critical damage.
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Our Solution - DeepIDEA

We design attack-sharing loss, JAS .
For any instance (x (i), y (i)), let y (i) be 1 if it is benign; let
y (i) ∈ {2, . . . , c} otherwise.

JAS =− 1

N

N∑

i=1

c∑

j=1

I(y(i), j) log p
(i)
j

− λ
( 1

N

N∑

i=1

(
I(y(i), 1) log p

(i)
1 +

c∑

j=2

I(y(i), j) log(1− p
(i)
1 )

))
,

cross-entropy loss

additional penalty for class mis-classification

where λ > 0 is a hyper-parameter that controls the degree of
additional penalty.
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Our Solution - DeepIDEA

Advantage of attack-sharing loss
• Eliminates the bias towards the
majority/benign class by moving the decision
boundary towards the attack classes; and

• Respects the penalty discrepancy of different
types of mis-classification.
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Experiments - Dataset

Three Benchmark Datasets
• KDD99 dataset
• CICIDS17 dataset 1

• CICIDS18 dataset 2

Class Imbalance Measure Ωimb

Ωimb =

∑c
i=1 nmax − ni

n

Dataset # of Training Size Testing Size # of Ωimb

Features Classes
KDD99 41 4,898,431 311,029 5 2.96
CICIDS17 81 2,343,634 482,926 5 3.08
CICIDS18 77 5,080,071 1,063,342 4 2.31

1https://www.unb.ca/cic/datasets/ids-2017.html
2https://www.unb.ca/cic/datasets/ids-2018.html
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Experiments - Dataset

Table: Class distribution in CICIDS17 dataset

Label Training Testing
Number Fraction Number Fraction

Benign 1,911,674 81.57% 361,399 74.84%
DoS 170,508 7.27% 82,151 17.01%
DDoS 101,024 4.31% 27,003 5.59%

Brute-Force 10,494 0.45% 3,341 0.69%
Infiltration 149,934 6.40% 9,032 1.87%

Total 2,343,634 100% 482,926 100%
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Experiments - Baselines

SVM
KNN k = 5, minkowski distance
DT 10 layers at most

MLP+CE deep feedforward network with cross-entropy
loss function

MLP+OS [JS02]
MLP+US [KM+97]

Cost-Sensitive cost-sensitive loss function [KHB+18]
CNN [KHB+18] 2 convolution layers, 2 maxpooling

layers and 6 fully-connected layers
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Experiments - Setup and Metrics

Setup
• Implemented by using Tensorflow
• 10 hidden layers, 100 units per layer
• 0.8 keep probability in dropout layers
• Batch size: 128
• Training on a NVIDIA RTX 2080 Ti GPU within

3 hours
Evaluation Metrics

• Measure precision and recall for each class
• Evaluate the average class-wise recall as the

overall class-balanced accuracy (CBA) [DGZ18].
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Experiments

Detection Accuracy on CICIDS17 Dataset

Classifier Benign DoS DDoS Brute-Force Infiltration CBAPre Rec Pre Rec Pre Rec Pre Rec Pre Rec
SVM 86.42 76.38 96.58 53.74 92.62 16.03 0 0 7.27 86.18 46.47
KNN 91.92 85.05 75.88 48.22 72.56 86.23 0 0 10.92 84.75 60.85
DT 66.51 100 0 0 0 0 0 0 0 0 20

MLP+CE 87.04 90.76 74.12 63.69 74.73 79.53 7.37 4.8 28.03 61.54 60.06
MLP+OS [JS02] 86.03 95.05 80.14 52.5 56.68 76.06 3.65 1.63 28.18 53.62 55.45

MLP+US [KM+97] 86.88 54.9 50.91 59.31 26.13 11.32 7.17 27.39 13.8 58.03 42.19
Cost- 61.58 61.17 17.69 28.09 0 0 0 0 0 0 17.85

Sensitive [KHB+18]
CNN [CHK+17] 0 0 23.42 96.04 0 0 8.07 11.07 0 0 21.42

DeepIDEA 88.5 94.06 88.77 62.97 76.31 83.19 8.29 4.1 26.46 64.53 61.77

• DeepIDEA produces similar and satisfying precision and
recall on every class, except for Brute-Force.

• DeepIDEA yields the highest CBA, meaning that it
reaches the best balance among all classes.
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Conclusion

In this paper, we design DeepIDEA to detect network intrusion
attacks, which
• takes full advantage of deep learning for both feature
extraction and attack recognition; and

• copes with the imbalanced class distribution by using
attack-sharing loss function.

In the future, we aim at extending our work by
• utilizing a more advanced model such as RNN; and
• improving the performance on the extremely
under-represented classes.
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Q & A

Thank you!

Questions?

dongb@montclair.edu


