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Idea Collection

• Companies collect ideas from a large number of people to
improve existing offerings [AT12, WN17].
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Idea Novelty Assessment

• Manually selecting the most innovative ideas from a large
pool is not effective.
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Idea Novelty Assessment

• Manually selecting the most innovative ideas from a large
pool is not effective.

• It would be very helpful to automate the evaluation of
creative ideas.
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Idea Novelty Assessment

Idea Similarity Comparison

Latent Semantic Analysis (LSA)

Latent Dirichlet Allocation (LDA)

Proposal Novelty Evaluation Term Frequency-Inverse 
Document Frequency (TF-IDF)

However, none of these approaches have been validated
through the comparison with human judgment.
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Our Contribution

• Three computational idea novelty evaluation approaches
• LSA
• LDA
• TF-IDF

• Three sets of ideas
• Comparison with human expert evaluation
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Outline

1 Introduction
2 Background
3 Methods
4 Results
5 Conclusion
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Background - LSA [CS15, TN16]

Input Idea by word matrix
Output Idea by topic matrix

Key Idea Apply Singular Value Decomposition (SVD) on
the input matrix.
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Background - LDA [WNS13, Has17]

Input Idea by word matrix
Output Idea by topic matrix

Key Idea • Each idea is represented as a mixture of
latent topics.

• Each topic is characterized as a distribution
over words.
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Background - TF-IDF [WB13]

Input Idea by word matrix
Output Idea by word tf-idfs

Key Idea Determine how important a word is to an idea.

tf -idf(wi, dj) = tf(wi, dj)× log(
n

df(wi)
)

tf(wi, dj): # of times that wi appears in dj

df(wi): # of ideas that include wi

n: # of ideas
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Methods - Data Collection

We use Amazon Mechanical Turk (www.mturk.com) to
employ crowd workers to collect three set of ideas.

Alarm Ideas about a mobile app of an alarm clock.
Fitness Ideas to improve physical fitness.

Advertising Ideas to promote TV advertising.
Dataset # of Ideas Avg. # of Characters
Alarm 200 555
Fitness 240 586

Advertising 300 307
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Methods - Human Expert Evaluation

We hire a group of human experts to evaluate the collected
ideas.

• Each idea is evaluated by at least two human experts.
• Novelty is defined by using a Likert scale of 1 to 7 (1
being not novel at all, 7 being highly novel).

• Human experts demonstrate reasonable level of
agreement in the ratings (Intraclass correlation coefficient
is higher than 0.7).

• We take the average of human ratings as the ground
truth of idea novelty.
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Methods - Computational Novelty
Evaluation

LSA Cosine distance to average
LDA • Use Gibbs sampling with 2,000 iterations

• Cosine distance to average
TF-IDF Sum of all tf-idfs in an idea
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Experiments

We compare the following methods with the ground truth.
LSA
LDA

TF-IDF
Crowd We hire 20 crowd workers to manually evaluate

the idea novelty, and take their average.
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Experiments

• LSA correlates well with the ground truth on the Fitness
and TV Advertising datasets.

• LDA and TF-IDF performs well on all three datasets.
• Crowd evaluation correlates with expert evaluation better
than all the three computational methods.
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Experiments

• Crowd evaluation identifies more top-10 novel ideas than
all computational approaches.

• Crowd evaluation resulted in significant point-biserial
correlation for all three ideation tasks
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Conclusion

We experimentally compare three computational novelty
evaluation approaches with ground truth.

• TF-IDF outperforms LSA and LDA in matching expert
evaluation.

• All three computational approaches fall far behind crowd
evaluation.

• Much more research is needed to automate the evaluation
of creative ideas.
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Q & A

Thank you!

Questions?


