Frequency-hiding Dependency-preserving Encryption for Outsourced Databases ICDE'17

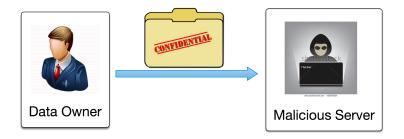
Boxiang Dong ¹ Wendy Wang ²

¹Montclair State University Montclair, NJ

²Stevens Institute of Technology Hoboken, NJ

April 20, 2017

Data-Management-as-a-Service (DMaS)


- Data owner with limited computational resources
- Computationally powerful server (e.g. cloud)
- Outsourcing provides a cost-effective solution for data management.

Definition A FD $X \to Y$ states that for any records r_1 and r_2 , $r_1[X] = r_2[X]$ demands that $r_1[Y] = r_2[Y]$.

Applications

- Data schema improvement via normalization
- Data inconsistency repair

Outsourcing Requirement

Privacy Concern

- Protect the sensitive information from untrusted server.
- Encrypt the dataset before outsourcing.

Utility Concern

- Support FD-based applications.
- The encryption scheme should preserve FDs.

Challenges

Directly applying deterministic encryption (e.g. RSA) is vulnerable against the *frequency-analysis attack (FA attack)* $[N^+15]$.

 $\mathbf{FA-Attack}(\mathcal{P},\mathcal{E})$

- 1. compute $\pi \leftarrow vSort(Hist(\mathcal{P}))$
- 2. compute $\varphi \leftarrow vSort(Hist(\mathcal{E}))$
- 3. for each $e \in \mathcal{E}$

output p if $Rank_{\varphi}(e) = Rank_{\pi}(p)$

ID	А	В	С
r_1	a_1	b_1	<i>c</i> ₁
<i>r</i> ₂	a_1	b_1	<i>c</i> ₂
<i>r</i> ₃	a_1	b_1	С4
<i>r</i> 4	a_1	b_1	C3
<i>r</i> 5	a ₂	b ₂	C3
<i>r</i> 6	a ₂	b2	C4

ID	A	В	С
<i>r</i> ₁	â ₁	\hat{b}_1	\hat{c}_1
<i>r</i> ₂	â1	\hat{b}_1	ĉ ₂
<i>r</i> 3	â ₁	\hat{b}_1	ĉ4
r ₄	â1	\hat{b}_1	ĉ ₃
r ₅	â2	ĥ ₂	ĉ ₃
<i>r</i> 6	â2	ĥ2	Ĉ4

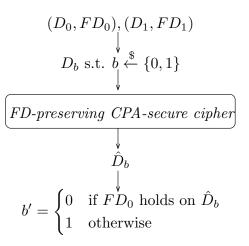
(a) Base table $D (A \rightarrow B A \not\rightarrow C, B \not\rightarrow C)$

(a) Base table $D (A \rightarrow B (b) \hat{D}_1)$: deterministic encryption

Applying probabilistic encryption may *destroy* original FDs or introduce *false positive* FDs.

A	В	С
\hat{a}_1^1	\hat{b}_1^1	\hat{c}_1^1
\hat{a}_{1}^{2}		\hat{c}_{2}^{1}
\hat{a}_{1}^{3}	\hat{b}_{1}^{3}	$ \begin{array}{c} \hat{c}_{1}^{1} \\ \hat{c}_{2}^{2} \\ \hat{c}_{4}^{2} \\ \hat{c}_{3}^{2} \\ \hat{c}_{3}^{2} \\ \hat{c}_{3}^{2} \\ \hat{c}_{3}^{1} \\ \hat{c}_{4}^{1} \end{array} $
\hat{a}_1^4	\hat{b}_1^4	\hat{c}_{3}^{1}
\hat{a}_2^1	\hat{b}_2^1	\hat{c}_{3}^{2}
\hat{a}_2^1	\hat{b}_2^2	\hat{c}_4^1
	A ¹¹ _â ² ₁ ³ ³ _â ⁴ ₁ ³ _â ⁴ ₁ ² ² _â ³ ₁ ⁴ ₁ ² ¹ ₂ ³	$ \begin{array}{c c} \hat{a}_{1}^{1} & \hat{b}_{1}^{1} \\ \hat{a}_{1}^{2} & \hat{b}_{1}^{2} \\ \hat{a}_{1}^{3} & \hat{b}_{1}^{3} \\ \hat{a}_{1}^{4} & \hat{b}_{1}^{4} \\ \hat{a}_{1}^{4} & \hat{b}_{1}^{4} \\ \hat{a}_{2}^{1} & \hat{b}_{2}^{2} \end{array} $

(c) D_2 : probabilistic encryption on A, B, C individually Original FD $A \rightarrow B$ destroyed


ID	А	В	С
<i>r</i> ₁	\hat{a}_1^1	\hat{b}_1^1	\hat{c}_{1}^{1}
<i>r</i> ₂	\hat{a}_{1}^{2}	\hat{b}_{1}^{2}	$ \hat{C}_{1}^{1} \hat{C}_{2}^{2} \hat{C}_{4}^{3} \hat{C}_{3}^{4} \hat{C}_{3}^{5} \hat{C}_{5}^{3} \hat{C}_{5}^{6} $
r ₃	\hat{a}_{1}^{3}	\hat{b}_{1}^{3}	\hat{c}_4^3
<i>r</i> 4	$\hat{a}_1^{\bar{4}}$	\hat{b}_1^4	\hat{c}_3^4
<i>r</i> 5	\hat{a}_{2}^{5}	\hat{b}_2^5 \hat{b}_2^6	\hat{c}_{3}^{5}
<i>r</i> 6	\hat{a}_2^6	\hat{b}_2^6	ĉ46

(d) \hat{D}_3 : probabilistic encryption on (A, B, C)

False positive FD $A \rightarrow C$ introduced

Challenges

The FD-preserving property introduces new inference attack [PR12].

Security Definition

- $\alpha security$ against FA-attack
- Indistinguishability against FD-preserving chosen plaintext attack (IND-FCPA)

Encryption Scheme

We design F^2 , a frequency-hiding, <u>FD</u>-preserving encryption scheme based on probabilistic encryption.

Outline

- Introduction
- **2** Related Work
- **③** Security Model
- **4** Encryption Scheme
 - Step 1: Identifying Maximum Attribute Sets
 - Step 2: Splitting-and-Scaling Encryption
 - Step 3: Conflict Resolution
 - Step 4. Eliminating False Positive FDs
- **6** Experiments
- 6 Conclusion

Related Work

Privacy-preserving outsourced computing

- Data encoding [H⁺02a, H⁺02b]
- Data encryption [S⁺00, P⁺12]
- Property-preserving encryption [Ker15, B^+11 , G^+06 , B^+09]

Inference attack

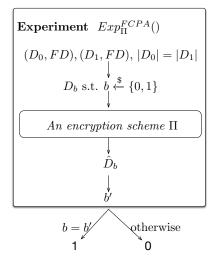
- FA attack [N⁺15]
- Query-recovery attack [I+12]

FD applications

- Data cleaning [T⁺11]
- Schema design [BFFR05, B⁺07]

Security Model

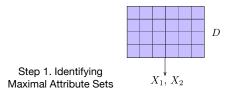
Experiment $Exp_{\Pi}^{FA}()$ $p' \leftarrow A^{freq_{\mathcal{E}}(e), freq(\mathcal{P})}$ Return 1 if p' = Decrypt(k, e)Return 0 otherwise

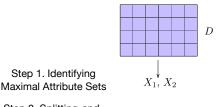

 $Adv_{\Pi}^{FA}(A) = Prob(Exp_{\Pi}^{FA}(A) = 1)$ measures the success rate of FA attack.

Definition (α -security against FA Attack)

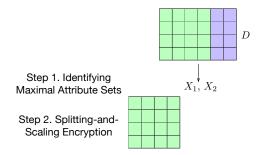
An encryption scheme Π is α -secure against FA if for every adversary A it holds that $Adv_{\Pi}^{FA}(A) \leq \alpha$, where $\alpha \in (0, 1]$ is user specified.

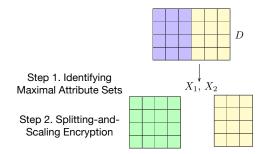
Security Model

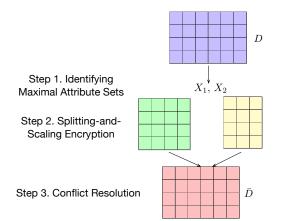

The server may exploit the FDs to break the cipher.

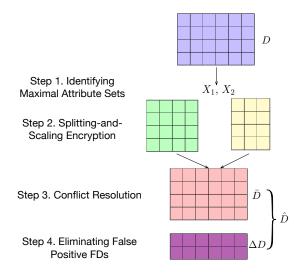

 $Adv_{\Pi}^{FCPA}(A) = Prob(Exp_{\Pi}^{FCPA}(A) = 1) - 1/2$ measures the advantage of the *FCPA*-attack over a random guess.

Definition (Indistinguishability against FDpreserving Chosen Plaintext Attack (IND-FCPA))


An encryption scheme Π is IND-FCPA if for any polynomial-time adversary A, it holds that the advantage is negligible in λ , i.e., $Adv_{\Pi}^{FCPA}(A) = negl(\lambda)$, where λ is a pre-defined security parameter.




 F^2 , a frequency-hiding FD-preserving encryption scheme, consists of four steps.



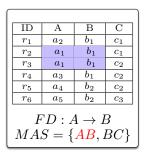
Step 2. Splitting-and-Scaling Encryption

Theorem

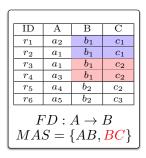
Given a dataset D and a FD $X \to Y$, if we apply *probabilistic* encryption scheme on attribute set A and get \hat{D} , then \hat{D} preserves $X \to Y$ if $(X \cup Y) \subseteq A$.

Definition (Maximum Attribute Set (MAS))

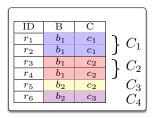
Given a dataset D, an attribute set A is a MAS if: (1) there exists at least an instance of A whose number of occurrences is larger than 1; and (2) no superset of A satisfies this requirement.

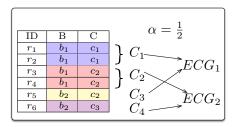

Lemma

Given a dataset D and a FD $X \rightarrow Y$, there must exist at least a MAS M such that $(X \cup Y) \subseteq M$.


- To preserve *FD*s, we need to find the *MAS*s from the dataset.
- We adapt an efficient solution named *Ducc* [H+13].
- The complexity is much lower than FD discovery.

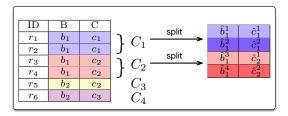
$\left[\right]$				
	ID	Α	В	С
	r_1	a_2	b_1	c_1
	r_2	a_1	b_1	c_1
	r_3	a_1	b_1	c_2
	r_4	a_3	b_1	c_2
	r_5	a_4	b_2	c_2
	r_6	a_5	b_2	c_3
	$FD: A \to B$			


- To preserve *FD*s, we need to find the *MAS*s from the dataset.
- We adapt an efficient solution named *Ducc* [H⁺13].
- The complexity is much lower than FD discovery.


- To preserve *FD*s, we need to find the *MAS*s from the dataset.
- We adapt an efficient solution named *Ducc* [H⁺13].
- The complexity is much lower than FD discovery.

for all *MAS* do Construct *equivalence classes (ECs)* end for

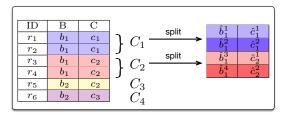
for all MAS do Construct equivalence classes (ECs) Organize ECs into collision-free groups of size at least $\frac{1}{\alpha}$ end for


for all MAS do

Construct *equivalence classes (ECs)*

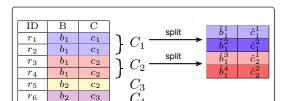
Organize *EC*s into collision-free groups of size at least $\frac{1}{\alpha}$ Apply splitting and scaling to reach the same frequency end for

Splitting Split a *EC* into ω copies with the same frequency.


Scaling Duplicate a EC to reach frequency homogenization.

for all MAS do

Construct *equivalence classes (ECs)* Organize *ECs* into collision-free groups Apply splitting and scaling to reach the same frequency **end for**

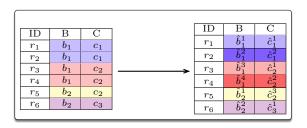

We design an algorithm to decide the splitting and scaling strategy to minimize the amount of duplications.

for all MAS do

Construct *equivalence classes (ECs)* Organize *EC*s into collision-free groups Apply splitting and scaling to reach the same frequency Encrypt each *EC* **end for**

For each unique plaintext value p, it is encrypted as $e = \langle r, F_k(r) \oplus p \rangle$, where r is a random value, and F_k is a pseudorandom function.

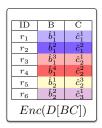
30 / 47


for all MAS do

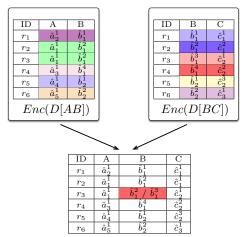
Construct *equivalence classes (ECs)*

Organize *EC*s into collision-free groups

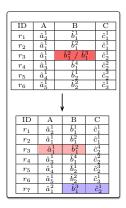
Apply splitting and scaling to reach the same frequency Encrypt each $E\!C$


end for

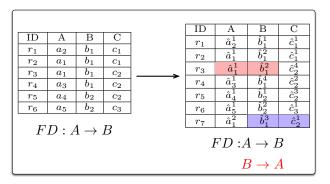
Step 3 - Conflict Resolution


• In Step 2, we apply encryption to each *MAS* independently.

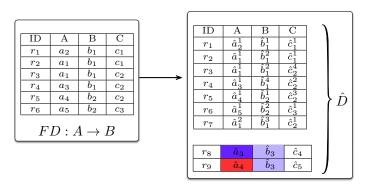
ID	Α	В
r_1	$\hat{a}_2^1 \\ \hat{a}_1^1$	\hat{b}_{1}^{1}
r_2	\hat{a}_{1}^{1}	\hat{b}_{1}^{2}
r_3	\hat{a}_{1}^{1}	\hat{b}_{1}^{2}
r_4	\hat{a}_{3}^{1}	\hat{b}_1^4
r_5	\hat{a}_{4}^{1}	\hat{b}_2^1 \hat{b}_2^2
r_6	\hat{a}_{5}^{1}	\hat{b}_{2}^{2}
En	c(D[A	(AB])


Step 3 - Conflict Resolution

- In Step 2, we apply encryption to each *MAS* independently.
- However, there may exist **conflicts** between different *MAS*s.


Step 3 - Conflict Resolution

- In Step 2, we apply encryption to each *MAS* independently.
- However, there may exist conflicts between different *MAS*s.
- We design an efficient algorithm to resolve the conflicts.


Step 4 - Eliminating False Positive FDs

• Step 1 - 3 may introduce *false positive* FDs.

Step 4 - Eliminating False Positive FDs

- Step 1 3 may introduce false positive (FP) FDs.
- We search for the FP FDs by following the attribute set lattice.
- To break a FP FD $X \rightarrow Y$, we insert two artificial tuples
 - $r_1[X] = r_2[X]$ • $r_1[Y] \neq r_2[Y]$

Theorem (FD-preserving Property)

Given any dataset D, let \hat{D} be the encrypted dataset using Step 1 - 4, it must be true that the FDs on D and \hat{D} are exactly the same.

Theorem (α -Security against FA Attack)

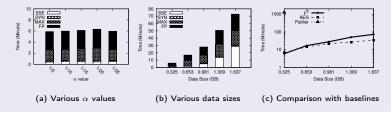
 F^2 provides α -security against the FA attack, i.e., $Adv_{F^2}^{FA}(A) \leq \alpha$.

Theorem (Security against FCPA Attack)

The advantage of FCPA attack against F^2 is $Adv_{F^2}^{FCPA}(A) = \frac{1}{g}$, where g is the minimum number of equivalence classes in a MAS that have the same value on X, Y, and $X \to Y$ is a valid FD.

In practice, $Adv_{F^2}^{FCPA}(A)$ is very small. (g = 5,000,000 for a dataset with 15 million tuples).

Testbed 2.5GHz CPU, 60GB RAM, Linux


Datasets • *Customer* dataset from TPC-C benchmark

- 906K tuples
- 21 attributes
- Orders dataset from TPC-H benchmark
 - 1.5 million tuples
 - 9 attributes

Baseline Deterministic AES Probabilistic Paillier Property-preserving FHOP [Ker15] (frequency-hiding order-preserving)

Time Performance

Time Performance (Orders Dataset)

- Time performance keeps stable with various α values.
- Time performance is subquadratic to the data size.
- F^2 is as efficient as AES, a deterministic encryption scheme.

Security Against FA Attack

Security against FA Attack

Approach	Attack Accuracy
$F^{2}(\alpha = 0.02)$	0.01417
$F^{2}(\alpha = 0.05)$	0.03192
$F^{2}(\alpha = 0.1)$	0.0719
$F^2(\alpha = 0.25)$	0.1056
FHOP	0.1214
Paillier	0.1002
AES	0.3395

- Attack accuracy is the fraction of ciphertext that are successfully recovered.
- F^2 provides strong security even for a weak security guarantee ($\alpha = 0.25$).

We design an efficient frequency-hiding FD-preserving encryption scheme, F^2 , that:

- Preserves the FDs without requiring the awareness of them.
- Guarantees α -security against FA attack.
- Provides strong security against the FCPA attack.

In the future, we aim at supporting efficient data update.

References I

[B ⁺ 07]	Philip Bohannon et al. Conditional functional dependencies for data cleaning. In IEEE International Conference on Data Engineering, pages 746–755, 2007.
[B ⁺ 09]	Mihir Bellare et al. Format-preserving encryption. In International Workshop on Selected Areas in Cryptography, pages 295–312, 2009.
[B ⁺ 11]	Alexandra Boldyreva et al. Order-preserving encryption revisited: Improved security analysis and alternative solutions. In Annual Cryptology Conference, pages 578–595, 2011.
[BFFR05]	Philip Bohannon, Wenfei Fan, Michael Flaster, and Rajeev Rastogi. A cost-based model and effective heuristic for repairing constraints by value modification. In <i>Proceedings of the International Conference on Management of Data</i> , pages 143–154, 2005.
[G ⁺ 06]	Vipul Goyal et al. Attribute-based encryption for fine-grained access control of encrypted data. In <i>Conference on Computer and Communications Security</i> , pages 89–98, 2006.
[H ⁺ 02a]	Hakan Hacigumus et al. Executing sql over encrypted data in the database-service-provider model. In ACM International Conference on Management of Data, pages 216–227, 2002.
[H ⁺ 02b]	Hakan Hacigumus et al. Providing database as a service. In IEEE International Conference on Data Engineering, pages 29–38, 2002.

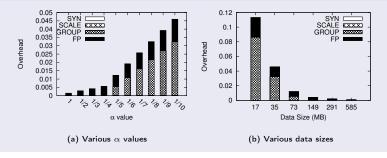
References II

[H ⁺ 13]	Arvid Heise et al. Scalable discovery of unique column combinations. Proceedings of Very Large Database Endowment, pages 301–312, 2013.
[l ⁺ 12]	Mohammad Saiful Islam et al. Access pattern disclosure on searchable encryption: Ramification, attack and mitigation. In Network and Distributed System Security Symposium, pages 12–23, 2012.
[Ker15]	Florian Kerschbaum. Frequency-hiding order-preserving encryption. In ACM Conference on Computer and Communications Security, pages 656–667, 2015.
[N ⁺ 15]	Muhammad Naveed et al. Inference attacks on property-preserving encrypted databases. In ACM Conference on Computer and Communications Security, pages 644–655, 2015.
[P ⁺ 12]	Raluca Ada Popa et al. Cryptdb: Processing queries on an encrypted database. Communications of the ACM, pages 103–111, 2012.
[PR12]	Omkant Pandey and Yannis Rouselakis. Property preserving symmetric encryption. In International Conference on the Theory and Applications of Cryptographic Techniques, pages 375–391, 2012.
[S ⁺ 00]	Dawn Xiaoding Song et al. Practical techniques for searches on encrypted data. In IEEE Symposium on Security and Privacy, pages 44–55, 2000.

References III

[T⁺11] Nilothpal Talukder et al.

Detecting inconsistencies in private data with secure function evaluation. Technical report, Purdue University, 2011.


Thank you!

Questions?

dongb@montclair.edu Hui.Wang@stevens.edu

Storage Overhead

Storage Overhead (Orders Dataset)

- overhead = $\frac{|\hat{D}| |D|}{|D|}$ measures the fraction of artificial tuples inserted.
- Strong security requirement (small α value) demands more overhead.
- The overhead is small, especially for large datasets.