
Computing Linear Discriminants for Idiomatic
Sentence Detection

Jing Peng1, Anna Feldman1,2, and Laura Street2

1 Department of Computer Science
2 Department of Linguistics
Montclair State University
Montclair, NJ 07043, USA

{pengj,feldmana,streetl1}@mail.montclair.edu

Abstract. In this paper, we describe the binary classification of sen-
tences into idiomatic and non-idiomatic. Our idiom detection algorithm
is based on linear discriminant analysis (LDA). To obtain a discriminant
subspace, we train our model on a small number of randomly selected
idiomatic and non-idiomatic sentences. We then project both the train-
ing and the test data on the chosen subspace and use the three nearest
neighbor (3NN) classifier to obtain accuracy. The proposed approach is
more general than the previous algorithms for idiom detection — neither
does it rely on target idiom types, lexicons, or large manually annotated
corpora, nor does it limit the search space by a particular linguistic con-
struction.

1 Introduction

Previous work on automatic idiom classification has typically been of two types:
those which make use of type-based classification methods (Lin, 1999; Baldwin
et al., 2002; Fazly and Stevenson, 2006; Bannard, 2007; Fazly et al., 2009) and
those which make use of token-based classification methods (Birke and Sarkar,
2006; Katz and Giesbrecht, 2006; Fazly et al., 2009; Sporleder and Li, 2009).
Type-based classification methods recognize idiomatic expressions (=types) to
include in a lexicon and typically rely on the notion that many idioms share
unique properties with one another. For instance, several idioms are composed
of verb-noun constructions (e.g., break a leg, get a grip, kick the bucket) that
cannot be altered syntactically or lexically (e.g., break a skinny leg, a grip was
got, kick the pail). These unique properties are used to distinguish idiomatic
expressions from other types of expressions in a text. Token-based classification
methods recognize a particular usage (literal vs. non-literal) of a potentially id-
iomatic expression. Both of these approaches view idioms as multi-word expres-
sions (MWEs) and rely crucially on preexisting lexicons or manually annotated
data. They also tend to limit the search space by a particular type of linguis-
tic construction (e.g., Verb+Noun combinations). The task of automatic idiom
classification is extremely important for a variety of NLP applications; e.g., a
machine translation system must translate held fire differently in The army held
their fire and The worshippers held the fire up to the idol (Fazly et al., 2009).

2 Our Approach

Unlike previous work on idiom detection, we view the solution to this problem
as a two-step process: 1) filtering out sentences containing idioms; 2) extracting
idioms from these filtered out sentences. In our current work we only consider
step 1, and we frame this task as one of classification. We believe that the
result of filtering out idiomatic sentences is already useful for many applications
such as machine translation, information retrieval, or foreign/ second language
instruction, e.g., for effective demonstrations of contexts in which specific idioms
might occur

Our idiom detection algorithm is based on linear discriminant analysis (LDA).
To obtain a discriminant subspace, we train our model on a small number of ran-
domly selected idiomatic and non-idiomatic sentences. We then project both the
training and the test data on the chosen subspace and use the three nearest
neighbor (3NN) classifier to obtain accuracy. The proposed approach is more
general than the previous algorithms for idiom detection — neither does it rely
on target idiom types, lexicons, or large manually annotated corpora, nor does
it limit the search space by a particular type of linguistic construction. The fol-
lowing sections describe the algorithm, the data and the experiments in more
detail.

2.1 Idiom Detection based on Discriminant Analysis

The approach we are taking for idiomatic sentence detection is based on linear
discriminant analysis (LDA) (Fukunaga, 1990). LDA often significantly simplifies
tasks such as regression and classification by computing low-dimensional sub-
spaces having statistically uncorrelated or discriminant variables. In language
analysis, statistically uncorrelated or discriminant variables are extracted and
utilized for description, detection, and classification. Woods et al. (1986), for ex-
ample, use statistically uncorrelated variables for language test scores. A group
of subjects was scored on a battery of language tests, where the subtests mea-
sured different abilities such as vocabulary, grammar or reading comprehension.
Horvath (1985) analyzes speech samples of Sydney speakers to determine the
relative occurrence of five different variants of each of five vowels sounds. Us-
ing this data, the speakers clustered according to such factors as gender, age,
ethnicity and socio-economic class.

LDA is a class of methods used in machine learning to find the linear combi-
nation of features that best separate two classes of events. LDA is closely related
to principal component analysis (PCA), where a linear combination of features
that best explains the data. Discriminant analysis explicitly exploits class infor-
mation in the data, while PCA does not.

Idiom detection based on discriminant analysis has several advantages. First,
it does not make any assumption regarding data distributions. Many statistical
detection methods assume a Gaussian distribution of normal data, which is far
from reality. Second, by using a few discriminants to describe data, discriminant

analysis provides a compact representation of the data, resulting in increased
computational efficiency and real time performance.

2.2 Linear Discriminant Analysis

In LDA, within-class, between-class, and mixture scatter matrices are used to
formulate the criteria of class separability. Consider a J class problem, where
m0 is the mean vector of all data, and mj is the mean vector of jth class data.
A within-class scatter matrix characterizes the scatter of samples around their
respective class mean vector, and it is expressed by

Sw =
J∑

j=1

pj

lj∑
i=1

(xj
i −mj)(xj

i −mj)t, (1)

where lj is the size of the data in the jth class, pj (
∑

j pj = 1) represents the
proportion of the jth class contribution, and t denotes the transpose operator. A
between-class scatter matrix characterizes the scatter of the class means around
the mixture mean m0. It is expressed by

Sb =
J∑

j=1

pj(mj −m0)(mj −m0)T . (2)

The mixture scatter matrix is the covariance matrix of all samples, regardless of
their class assignment, and it is given by

Sm =
l∑

i=1

(xi −m0)(xi −m0)T = Sw + Sb. (3)

The Fisher criterion is used to find a projection matrixW ∈ <q×d that maximizes

J(W) =
|W tSbW |
|W tSwW |

. (4)

In order to determine the matrix W that maximizes J(W), one can solve the
generalized eigenvalue problem: Sbwi = λiSwwi. The eigenvectors corresponding
to the largest eigenvalues form the columns of W . For a two class problem, it
can be written in a simpler form: Sww = m = m1 −m2, where m1 and m2 are
the means of the two classes. In practice, the small sample size problem is often
encountered, when l < q. In this case Sw is singular. Therefore, the maximization
problem can be difficult to solve.

2.3 Margin Criterion for Linear Dimensionality Reduction

For idiomatic sentence detection, we propose an alternative to the Fisher crite-
rion. Here we first focus on two class problems. We note that the goal of LDA is

to find a direction w that simultaneously places two classes afar and minimizes
within class variations. Fisher’s criterion 4 achieves this goal. Alternatively, we
can achieve this goal by maximizing

J(w) = tr(wt(Sb − Sw)w), (5)

where tr denotes the trace operator. Notice that tr(Sb) measures the overall
scatter of class means. Therefore, a large tr(Sb) implies that the class means
spread out in a transformed space. On the other hand, a small tr(Sw) indicates
that in the transformed space the spread of each class is small. Thus, when
maximized, J indicates that data points are close to each other within a class,
while they are far from each other if they come from different classes.

To see that our proposal (Eq. 5) is margin based, notice that maximizing
tr(Sb − Sw) is equivalent to maximizing J = 1

2

∑2
i

∑2
j pipjd(Ci, Cj), where

pi denotes the probability of class Ci. The interclass distance d is defined as
d(Ci, Cj) = d(mi,mj) − tr(Si) − tr(Sj), where mi represents the mean of class
Ci, and Si represents the scatter matrix of class Ci. Here d(Ci, Cj) measures the
average margin between two classes. Therefore, maximizing our objective pro-
duces large margin linear discriminants. Large margin discriminants often result
in better generalization (Vapnik, 1998). In addition, there is no need to calcu-
late the inverse of Sw, thereby avoiding the small sample size problem associated
with the Fisher criterion.

3 Computing Linear Discriminants with Semi-Definite
Programming

Suppose that w optimizes (5). So does cw for any constant c 6= 0. Thus we
require that w have unit length. The optimization problem then becomes

max
w

tr(wt(Sb − Sw)w)

subject to: ‖w‖ = 1.

This is a constraint optimization problem. Since tr(wt(Sb − Sw)w) = tr((Sb −
Sw)wwt) = tr((Sb−Sw)X), where X = wwt, we can rewrite the above constraint
optimization problem as

max
X

tr((Sb − Sw)X)

I •X = 1
X � 0 (6)

where I is the identity matrix and the inner product of symmetric matrices is
A •B =

∑n
i,j aijbij , and X � 0 means that the symmetric matrix X is positive

semi-definite. Indeed, if X is a solution to the above optimization problem, then
X � 0 and I •X = 1 implies ‖w‖ = 1, assuming rank(X) = 1.

The above problem is a semi-definite program (SDP), where the objective
is linear with linear matrix inequality and affine equality constraints. Because
linear matrix inequality constraints are convex, SDPs are convex optimization
problems. The significance of SDP is due to several factors. SDP is an elegant
generalization of linear programming, and inherits its duality theory. For a com-
prehensive overview on SDP, see (Vandenberghe and Boyd, 1996).

SDPs arise in many applications, including sparse PCA, learning kernel ma-
trices, Euclidean embedding, and others. In general, generic methods are rarely
used for solving SPDs, because their time grows at the rate of O(n3) and their
memory grows in O(n2), where n is the number of rows (or columns) of a semidef-
inite matrix. When n is greater than a few thousands, SDPs are typically not
used. However, there are algorithms that have a good theoretical foundation to
solve SDPs (Vandenberghe and Boyd, 1996). In addition, semidefinite program-
ming is a very useful technique for solving many problems. For example, SDP
relaxations can be applied to clustering problems such that after solving a SDP,
final clusters can be computed by projecting the data onto the space spanned by
the first few eigenvectors of the SDP solution. For large-scale problems, there is
a tremendous opportunity for exploiting special structures in problems, as those
suggested in (Ben-Tal and Nemirovski, 2004; Nesterov, 2003).

Assume rank(X) = 1. Since X is symmetric, one can show that rank(X) = 1
iff X = wwt for some vector w. Therefore, we can recover w from X as follows.
Select any column (say the ith column) of X such that X(1, i) 6= 0, and let

w = X(:, i)/X(1, i), (7)

where X(:, i) denotes the ith column of the matrix X. Thus, our goal here is to
ensure the solution X to the above constraint optimization problem has rank at
most 1.

One way to guarantee rank(X) = 1 is to use rank(X) = 1 as an additional
constraint in the optimization problem. However, the constraint rank(X) = 1 is
not convex and the resulting problem is difficult to solve. It turns out that the
above formulation (6) is sufficient to ensure that the rank of the optimal solution
X to Eq. (6) is one, i.e., rank(X) = 1.

Theorem 1. Let X be the solution to the semi-definite program (6). Also, let
rank(X) = r. Then r = rank(X) = 1.

The proof of the theorem is in Appendix A. The theorem states that our
procedure for computing w from the matrix X (Eq. 7) is guaranteed to produce
the correct answer. We call our algorithm SDP-LDA. An attractive property
associated with our algorithm is that it does not have any procedural parameters.
Thus, it does not require expensive cross-validation to determine its optimal
performance.

4 Dataset

In our experiments, we used the dataset described by Fazly et al. (2009). This
is a dataset of verb-noun combinations extracted from the British National Cor-

pus (BNC, Burnard (2000)). The VNC tokens are annotated as either literal,
idiomatic, or unknown. The list contains only those VNCs whose frequency in
BNC was greater than 20 and that occurred at least in one of two idiom dictio-
naries (Cowie et al., 1983; Seaton and Macaulay, 2002). The dataset consists of
2,984 VNC tokens3.

Since our task is framed as sentence classification rather than MWE extrac-
tion and filtering, we had to translate this data into our format. Basically, our
dataset has to contain sentences with the following tags: I (=idiomatic sentence),
L (=literal), and Q (=unknown). Translating the VNC data into our format is
not trivial. A sentence that contains a VNC idiomatic construction can be un-
questionably marked as I (=idiomatic); however, a sentence that contains a
non-idiomatic occurrence of VNC cannot be marked as L since these sentences
could have contained other types of idiomatic expressions (e.g., prepositional
phrases) or even other figures of speech. So, by marking automatically all sen-
tences that contain non-idiomatic usages of VNCs, we create an extremely noisy
dataset of literal sentences. The dataset consists of 2,550 sentences, of which
2,013 are idiomatic sentences and the remaining 537 are literal sentences.

5 Experiments

We first apply the bag-of-words model to create a term-by-sentence representa-
tion of the 2,550 sentences in a 6,844 dimensional term space. The Google stop
list is used to remove stop words.

We randomly choose 300 literal sentences and 300 idiomatic sentences as
training and randomly choose 100 literals and 100 idioms from the remaining
sentences as testing. Thus the training dataset consists of 600 examples, while
the test dataset consists of 200 examples. We train our model on the training
data and obtain one discriminant subspace. We then project both training and
test data on the chosen subspace. Note that for the two class case (literal vs.
idiom), one dimensional subspace is sufficient. In the reduced subspace, we com-
pare three classifiers: the three nearest neighbor (3NN) classifier, the quadratics
classifier that fits multivariate normal densities with covariance estimates strat-
ified by classes (Krzanowski, 1988), and support vector machines (SVMs) with
the Gaussian kernel (Cristianini and Shawe-Taylor, 2000). The kernel parame-
ter was chosen through 10 fold cross-validation. We repeat the experiment 10
times to obtain the average accuracy rates registered by the three methods. The
following table shows the accuracy rates over the ten runs.

We compare the proposed technique against a random baseline approach.
The baseline approach flips a fair coin. If the outcome is head, it classifies a
given sentence as idiomatic. If the outcome is tail, it classifies a given sentence
as a regular sentence.

Even though we used Fazly et al. (2009)’s dataset for these experiments (see
Section 4), the direct comparison with their methods is impossible here because

3 To read more about this dataset, the reader is referred to Cook et al. (2008)

3NN Quadratic SVMs Baseline

0.8015 0.7690 0.7890 0.50

Table 1. Classification accuracy rates computed by the three competing methods
compared against the baseline.

our tasks are formulated differently. Fazly et al. (2009)’s unsupervised model that
relies on the so-called canonical forms (CForm) gives 72.4% (macro-)accuracy
on the extraction of idiomatic tokens when evaluated on their test data.

6 Analysis

To gain insights into the performance of the proposed technique, we created
a dataset that is manually annotated to avoid noise in the literal dataset. We
asked three human subjects to annotate 200 sentences from the VNC dataset as
idiomatic, non-idiomatic or unknown. 100 of these sentences contained idiomatic
expressions from the VNC data. We then merged the result of the annotation
by the majority vote.

We also measured the inter-annotator agreement (the Cohen kappa k, Cohen
(1960); Carletta (1996)) on the task. Interestingly, the Cohen kappa coefficient
was much higher for the idiomatic data than for the so-called literal data: k
(idioms) = 0.91; k (literal) = 0.66. There are several explanations of this perfor-
mance. First, the idiomatic data is much more homogeneous since we selected
sentences that already contained VNC idiomatic expressions. The rest of the
sentences might have contained metaphors or other figures of speech and thus
the judgments were more difficult to do. Second, humans easily identify idioms,
but the decision whether a sentence is literal or figurative is much more chal-
lenging. The notion of “figurativeness” is not a binary property (as might be
suggested by the labels that were available to the annotators). “Figurativeness”
falls on a continuum from completely transparent (= literal) to entirely opaque
(=figurative)4 Third, the human annotators had to select the label, literal or id-
iomatic, without having access to a larger, extra-sentential context, which might
have affected their judgements. Although the boundary between idiomatic and
literal expressions is not entirely clear (expressions do seem to fall on a contin-
uum in terms of idiomaticity), some expressions are clearly idiomatic and others
clearly literal based on the overall agreement of our annotators. By classifying
sentences as either idiomatic or literal, we believe that this additional sentential
context could be used to further investigate how speakers go about making these
distinctions.

4 A similar observation is made by Cook et al. (2008) with respect to idioms.

7 Discussion

Below we provide output sentences identified by our algorithm as either idiomatic
or literal.

1. True Positives (TP): Idiomatic sentences identified as idiomatic
– We lose our temper, feel cornered and frightened, it can be the work of an

instant.

– Omanis made their mark in history as early as the third century.

2. False Positives (FP): Non-idiomatic sentences identified as idiomatic
– We had words of the sixties, there were words of the seventies, there

were words of the eighties, words of the nineties, and we’re influencing
by those words, actually that’s reasonably in popularity and er increasing usage,
and sometime we, people actually use it and they don’t know what it means.

– Therefore, taking the square root of this measure we get the correlation

coefficient.

3. True Negatives (TN): Non-idiomatic sentences identified as non-idiomatic
– It holds up to three horses and will be driven to and from London by Mrs.

Charley from their home just outside Coventry.

– The referee blew a toy trumpet and Harry Payne gave the golf club a mighty

hit with his bat, breaking the shaft in two.

4. False Negatives (FN): Idiomatic sentences identified as non-idiomatic
– It therefore has a long-term future.
– It has also been agreed that Italy will pay a reciprocal visit to Dublin in

April when they will take part in a Four Nations competition to replace the
Home.

Our error analysis reveals that many cases are fuzzy and clear literal/idiomatic
demarcation is difficult.

In examining our false positives (i.e., non-idiomatic expressions that were
marked as idiomatic by the model), it becomes apparent that the classifica-
tion of cases is not clear-cut. The expression words of the sixties/seventies/
eighties/nineties is not idiomatic; however, it is not entirely literal either. It
is metonymic – these decades could not literally produce words. Another false
positive contains the expression take the square root. While seemingly similar to
the idiom take root in plans for the new park began to take root, the expression
take the square root is not idiomatic. It does not mean ”to take hold like roots in
soil.” Like the previous false positive, we believe take the square root is figurative
to some extent. A person cannot literally take the square root of a number like
he can literally take milk out of the fridge.

When it comes to classifying expressions as idiomatic or literal, our false
negatives (i.e., idiomatic expressions that were marked as non-idiomatic by the
model) reveal that human judgments can be misleading. For example, It therefore
has a long-term future was marked as idiomatic in the test corpus. While our
human annotators may have thought that an object could not literally have (or
hold) a long-term future, this expression does not appear to be truly idiomatic.
We do not consider it to be as figurative as a true positive like lose our temper.

Another false negative contains a case of metonymy Italy will pay a reciprocal
visit and the verbal phrase take part. In this case, our model correctly predicted
that the expression is non-idiomatic. Properties of metonymy are different from
those of idioms, and the verbal phrase take part has a meaning separate from
that of the idiomatic expression take someone’s part.

Another interesting feature that we discovered in analyzing our false nega-
tives is that some idiomatic expressions still retain their original meanings even
when other words intervene and the idioms’ component words are separated and
reordered. For example, in the sentence I was little better than a criminal on
whom they must keep tabs, the prepositional phrase on whom is removed from
the end of the idiom keep tabs on whom and placed in an earlier position in
the sentence. Despite this permutation, the idiom still maintains its idiomatic
meaning.

All of these observations support Gibbs (1984)’s claim (based on experimental
evidence) that the distinctions between literal and figurative meanings have little
psychological validity. He views literal and figurative expressions as end points of
a single continuum. This makes the task of idiom detection even more challenging
because often, perhaps, there is no objective clear boundary between idioms and
literal expressions.

8 Conclusion

In this study we did not want to restrict ourselves to idioms of a particular
syntactic form. We applied this method to English and used the VNC (Fazly
et al., 2009) corpus for our experiments. However, in principle, the technique is
language- and structure-independent.

Our binary classification approach has multiple practical applications. It is
useful for indexing purposes in information retrieval (IR) as well as for increasing
the precision of IR systems. Knowledge of which sentences should be interpreted
literally and which figuratively can also improve text summarization and machine
translation systems. Applications such as style evaluation or textual steganog-
raphy detection can directly benefit from the method proposed in this paper as
well. Classified sentences are useful for language instruction as well, e.g., for ef-
fective demonstrations of contexts in which specific idioms might occur. We also
feel that identifying idioms at the sentence level may provide new insights into
the kinds of contexts that idioms are situated in. These findings could further
highlight properties that are unique to specific idioms if not idioms in general.

Our current work is concerned with improving the detection rates of our
model. At present, our model does not use text coherence as a feature, and we
think we could significantly improve our performance if we considered a larger
context. Once the detection rates of our model have been improved, we will
extract idioms from the sentences our model has classified as idiomatic. We have
yet to see which method will work the best for this task.

A Proof of Theorem 1

Proof. We rewrite Sb − Sw = 2Sb − Sm, where Sm = Sb + Sw. Let null(A)
denote the null space of matrix A. Since null(Sm) ⊆ null(Sb), there exists a
matrix P ∈ <q×s that simultaneously diagonalizes Sb and Sm Fukunaga (1990),
where s ≤ min{l − 1, q} is the rank of Sm.

The matrix P is given by

P = QΛ−1/2
m U,

where Λm and Q are the eigenvalue and eigenvector matrices of Sm, and U is
the eigenvector matrix of Λ−1/2

m QtSbQΛ
−1/2
m . Thus, the columns of P are the

eigenvectors of 2λSb − Sm and the corresponding eigenvalues are 2Λb − I. We
then have

P tSbP = Λb, P tSmP = I. (8)

where Λb = diag{σ1, · · · , σs}.
Consider the range of P over Y ∈ <s×q with rank(Y) = s. The range W =

PY includes all q × q matrices with rank = s. Then

max
W

tr(W t(2Sb − Sm)W) = max
Y

tr((PY)t(2Sb − Sm)PY)

= max
Y

tr(Y t(2Λb − I)Y).

It is straightforward to show that the maximum is attained by Y = [e1e2 · · · er; 0],
where ei is a vector whose ith component is one and the rest is 0. From this it
is clear that W = PY consists of the first r columns of P , i.e., the eigenvectors
corresponding to 2λσi − 1 > 0.

Now, since X = WW t, we have X =
∑r

i=1 wiw
t
i . Thus,

tr(X) =
r∑

i=1

wt
iwi = r.

However, the constraint I ·X = 1 states that tr(X) = 1. It follows that r = 1.
That is, rank(X) = 1.

Bibliography

Baldwin, T., C. Bannard, T. Tanaka, and D. Widdows (2002). An empirical
model of multiword expression decomposability. In Proceedings of the ACL 03
Workshop on Multiword expressions: analysis, acquisition and treatment, pp.
89–96.

Bannard, C. (2007). A measure of syntactic flexibility for automatically identify-
ing multiword expressions in corpora. In Proceedings of the ACL 07 Workshop
on A Broader Perspective on Multiword Expressions, pp. 1–8.

Ben-Tal, A. and A. Nemirovski (2004). Non-euclidean restricted memory level
method for large-scale convex optimization.

Birke, J. and A. Sarkar (2006). A clustering approach to the nearly unsuper-
vised recognition of nonliteral language. In Proceedings of the 11th Confer-
ence of the European Chapter of the Association for Computational Linguistics
(EACL’06), Trento, Italy, pp. 329–226.

Burnard, L. (2000). The British National Corpus Users Reference Guide. Oxford
University Computing Services.

Carletta, J. (1996). Assessing Agreement on Classification Tasks: The Kappa
Statistic. Computational Linguistics 22 (2), 249–254.

Cohen, J. (1960). A Coefficient of Agreement for Nominal Scales. Education
and Psychological Measurement (20), 37–46.

Cook, P., A. Fazly, and S. Stevenson (2008, June). The VNC-Tokens Dataset.
In Proceedings of the LREC Workshop: Towards a Shared Task for Multiword
Expressions (MWE 2008), Marrakech, Morocco.

Cowie, A. P., R. Mackin, and I. R. McCaig (1983). Oxford Dictionary of Current
Idiomatic English, Volume 2. Oxford University Press.

Cristianini, N. and J. Shawe-Taylor (2000). An Introduction to Support Vector
Machines and other kernel-based learning methods. Cambridge, UK: Cam-
bridge University Press.

Fazly, A., P. Cook, and S. Stevenson (2009). Unsupervised Type and Token
Identification of Idiomatic Expressions. Computational Linguistics 35 (1), 61–
103.

Fazly, A. and S. Stevenson (2006). Automatically Constructing a Lexicon of Verb
Phrase Idiomatic Combinations. In Proceedings of the 11th Conference of the
European Chapter of the Association for Computational Linguistics (EACL-
2006), Trento, Italy, pp. 337–344.

Fukunaga, K. (1990). Introduction to statistical pattern recognition. Academic
Press.

Gibbs, R. W. (1984). Literal Meaning and Psychological Theory. Cognitive
Science 8, 275–304.

Horvath, B. M. (1985). Variation in Australian English. Cambridge: Cambridge
University PRess.

Katz, G. and E. Giesbrecht (2006). Automatic identification of non-
compositional multi-word expressions using latent semantic analysis. In Pro-

ceedings of the ACL’06 Workshop on Multiword Expressions: Identifying and
Exploiting Underlying Properties, Sydney, Australia, pp. 12–19.

Krzanowski, W. (1988). Principles of Multivariate Analysis. UK: Oxford Uni-
versity Press.

Lin, D. (1999). Automatic Identification of Non-compositional Phrases. In Pro-
ceedings of ACL, College Park, Maryland, pp. 317–324.

Nesterov, I. (2003). Smooth minimization of non-smooth functions.
Seaton, M. and A. Macaulay (Eds.) (2002). Collins COBUILD Idioms Dictionary

(second ed.). HarperCollins Publishers.
Sporleder, C. and L. Li (2009). Lexical Encoding of MWEs. In Proceedings of

EACL 2009.
Vandenberghe, L. and S. Boyd (1996). Semidefinite programming. SIAM Re-

view 38 (1), 49–95.
Vapnik, V. (1998). Statistical Learning Theory. New York: Wiley.
Woods, A., P. Fletcher, and A. Hughes (1986). Statistics in Language Studies.

Cambridge: Cambridge University Press.

