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Abstract. We describe several experiments whose goal is to automati-
cally identify idiomatic expressions in written text. We explore two ap-
proaches for the task: 1) idiom recognition as outlier detection; and 2) su-
pervised classification of sentences. We apply principal component anal-
ysis for outlier detection. Detecting idioms as lexical outliers does not
exploit class label information. So, in the following experiments, we use
linear discriminant analysis to obtain a discriminant subspace and later
use the three nearest neighbor classifier to obtain accuracy. We discuss
pros and cons of each approach. All the approaches are more general than
the previous algorithms for idiom detection – neither do they rely on tar-
get idiom types, lexicons, or large manually annotated corpora, nor do
they limit the search space by a particular type of linguistic construction.

1 Introduction

Idioms are conventionalized expressions that have figurative meanings that can-
not be derived from the literal meaning of the phrase. The prototypical examples
of idioms are expressions like I’ll eat my hat, He put his foot in his mouth, Cut it
out, I’m going to rake him over the coals, a blessing in disguise, a chip on your
shoulder, or kick the bucket. Researchers have not come up with a single agreed-
upon definition of idioms that covers all members of this class (Glucksberg, 1993;
Cacciari, 1993; Nunberg et al., 1994; Sag et al., 2002; Villavicencio et al., 2004;
Fellbaum et al., 2006). The common property ascribed to the idiom is that it is
an expression whose meaning is different from its simple compositional meaning.

Some idioms become frozen in usage, and they resist change in syntactic
structure, while others do allow some variability in expression (Fellbaum, 2007;
Fazly et al., 2009). In addition, Fazly et al. (2009) have argued that in many
situations, a Natural Language Processing (NLP) system will need to distinguish
a usage of a potentially-idiomatic expression as either idiomatic or literal in
order to handle a given sequence of words appropriately. We discuss previous
approaches to automatic idiom detection in section 3.1.

2 Our Approach

Following Degand and Bestgen (2003), we have identified three important prop-
erties of idioms. (1) A sequence with literal meaning has many neighbors, whereas



a figurative one has few. (2) Idiomatic expressions should demonstrate low se-
mantic proximity between the words composing them. (3) Idiomatic expressions
should demonstrate low semantic proximity between the expression and the pre-
ceding and subsequent segments.

Based on the properties of idioms outlined above, we have experimented with
two ideas: (1) The problem of idiom recognition be reduced to the problem of
identifying a semantic outlier. By an outlier we mean an observation which ap-
pears to be inconsistent with the remainder of a set of data. We apply principal
component analysis (PCA) (Jolliffe, 1986; Shyu et al., 2003) for outlier detec-
tion. (2) We view the process of idiom detection as a binary classification of
sentences (idiomatic vs literal sentences). We use linear discriminant analysis
(LDA) (Fukunaga, 1990) to obtain a discriminant subspace and later use the
three nearest neighbor classifier to obtain accuracy. We first provide a few words
on previous work.

3 Related Work

3.1 Automatic idiom detection

Previous approaches to automatic idiom detection can be classified into two
major groups: 1) Type-based extraction, i.e., detecting idioms at the type level;
2) token-based detection, i.e., detecting idioms in context.

Type-based extraction is based on the idea that idiomatic expressions exhibit
certain linguistic properties that can distinguish them from literal expressions.
Sag et al. (2002); Fazly et al. (2009), among many others, discuss various proper-
ties of idioms. Some examples of such properties include 1) lexical fixedness: e.g.,
neither ‘shoot the wind’ nor ‘hit the breeze’ are valid variations of the idiom shoot
the breeze. and 2) syntactic fixedness: e.g., The guy kicked the bucket is idiomatic
whereas The bucket was kicked is not idiomatic anymore; and of course, 3) non-
compositionality. While many idioms do have these properties, many idioms fall
on the continuum from being compositional to being partly unanalyzable to
completely non-compositional (Cook et al., 2008). Fazly et al. (2009); Li and
Sporleder (2010), among others, notice that type-based approaches do not work
on expressions that can be interpreted idiomatically or literally depending on the
context and thus, an approach that considers tokens in context is more appropri-
ate for the task of idiom recognition. A number of token-based approaches has
been discussed in the literature, both supervised (Katz and Giesbrecht, 2006),
weakly supervised (Birke and Sarkar, 2006) and unsupervised (Fazly et al., 2009;
Sporleder and Li, 2009).

Li and Sporleder (2009); Sporleder and Li (2009) propose a graph-based
model for representing the lexical cohesion of a discourse. Nodes correspond
to tokens in the discourse, which are connected by edges whose value is de-
termined by a semantic relatedness function. They experiment with two differ-
ent approaches to semantic relatedness: 1) Dependency vectors, as described in
Pado and Lapata (2007); 2) Normalized Google Distance (NGD) (Cilibrasi and



Vitányi, 2007). Li and Sporleder (2009) show that this method works better for
larger contexts (greater than five paragraphs).

Li and Sporleder (2010) assume that literal and figurative data are generated
by two different Gaussians, literal and non-literal, and the detection is done by
comparing which Gaussian model has a higher probability to generate a specific
instance. The approach assumes that the target expressions are already known
and the goal is to determine whether this expression is literal or figurative in
a particular context. The important insight of this method is that figurative
language in general exhibits fewer semantic cohesive ties with the context than
literal language. Their results are inconclusive, unfortunately, due to the small
size of the test corpus. In addition, it relies heavily on target expressions. One
has to have a list of potential idioms a priori to model semantic relatedness.

4 Idea 1: Idioms as outliers

We first explore the hypothesis that the problem of automatic idiom detection
can be formulated as the problem of identifying an outlier in a dataset. We
investigate principal component analysis (PCA) (Jolliffe, 1986; Shyu et al., 2003)
for outlier detection.

4.1 Idiom Detection Based on Principal Component Analysis

The approach we are taking for idiom detection is based on principal component
analysis (PCA) (Jolliffe, 1986; Shyu et al., 2003). PCA has several advantages
in outlier detection. First, it does not make any assumptions regarding data
distributions. Many statistical detection methods assume a Gaussian distribution
of normal data, which is far from reality. Second, by using a few principal modes
to describe data, PCA provides a compact representation of the data, resulting
in increased computational efficiency and real time performance.

PCA computes a set of mathematical features, called principal components,
to explain the variance in the data. These principal components are linear com-
binations of the original variables describing the data and are orthogonal to each
other. The first principal component corresponds to the direction along which
the data vary the most. The second principal component corresponds to the
direction along which the data vary the second most, and so on. Furthermore,
total variance in all the principal components explains total variance in the data.

Let z = {xi}mi=1 be a set of data points. Each xi = (x1i , · · · , x
q
i )
t, where

t denotes the transpose operator. That is, each data point is described by q
attributes or variables. PCA computes a set of eigenvalue and eigenvector pairs
{(λ1, e1, · · · , (λq, eq)} with λ1 ≥ λ2 ≥ · · · ≥ λq by performing singular value
decomposition of the covariance matrix of the data: Σ =

∑m
i=1(xi− x̄)(xi− x̄)t,

where x̄ = 1/m
∑m
i=1. Then the ith principal component of an observation x is

given by yi = eti(x− x̄).
Note that the major components correspond strongly to the attributes having

relatively large variance and covariance. Consequently, after projecting the data



onto the principal component space, idioms that are outliers with respect to
the major components usually correspond to outliers on one or more of the
original attributes. On the other hand, minor (last few) components represent
a linear combination of the original attributes with minimal variance. Thus,
the minor components are sensitive to observations that are inconsistent with
the variance structure of the data but are not considered to be outliers with
respect to the original attributes (Jobson, 1992). Therefore, a large value along
the minor components strongly indicates a potential outlier that otherwise may
not be detected based solely on large values of the original attributes.

Our technique (we call it “principal minor component analysis”: PMC) com-
putes two functions for a given input x. The first one is computed along major

components: f(x) =
∑p
i=1

y2i
λi

. The second one is computed along minor com-

ponents: g(x) =
∑q
i=q−r+1

y2i
λi

. Here yi are projections along each component. p
represents the number of major components and captures sufficient variance in
the data, while r denotes the number of minor components. Both p and r can
be determined through cross-validation.

It can be seen from our earlier discussion that f(x) captures extreme obser-
vations with large values along some original attributes. On the other hand, g(x)
measures observations that are outside of the normal variance structure in the
data, as measured by minor components. Thus, the strength of our approach is
that it detects an outlier that is either extremely valued along the major com-
ponents, or does not confirm to the same variance structure along the minor
components in the data.

Our technique then decides an input x as outlier if f(x) ≥ Tf or g(x) ≥ Tg,
where Tf and Tg are outlier thresholds that are associated with the false positive
rate α (Kendall et al., 2009). Suppose that the data follow the normal distribu-

tion. Define αf = Pr{
∑p
i=1

y2i
λi
> Tf |x is normal}, and αg = Pr{

∑q
i=q−r+1

y2i
λi
>

Tg|x is normal}. Then α = αf + αg − αfαg. The false positive rate has the fol-
lowing bound (Kendall et al., 2009) αf + αg −

√
αfαg ≤ α ≤ αf + αg. Different

types of outliers can be detected based on the values of αf and αg. If αf = αg,
α can be determined by solving a simple quadratic equation. For example, if we
want a 2% false positive rate (i.e., α = 0.02), we obtain αf = αg = 0.0101.

Note that the above calculation is based on the assumption that our data
follow the normal distribution. This assumption however is unlikely to be true
in practice. We therefore determine αf and αg values based on the empirical
distributions of

∑p
i=1 y

2
i /λi and

∑q
i=q−r+1 y

2
i /λi in the training data. That is,

for a false positive rate of 2%, Tf and Tg represent the 0.9899 quantile of the
empirical distributions of

∑p
i=1 y

2
i /λi and

∑q
i=q−r+1 y

2
i /λi, respectively.

5 Idea 2: Supervised classification for idiom detection

Another way to look at the problem of idiom detection is one of the supervised
classification.

Our idiom detection algorithm is based on linear discriminant analysis (LDA).
To obtain a discriminant subspace, we train our model on a small number of ran-



domly selected idiomatic and non-idiomatic sentences. We then project both the
training and the test data on the chosen subspace and use the three nearest
neighbor (3NN) classifier to obtain accuracy. The proposed approach is more
general than the previous algorithms for idiom detection — neither does it rely
on target idiom types, lexicons, or large manually annotated corpora, nor does
it limit the search space by a particular type of linguistic construction. The fol-
lowing sections describe the algorithm, the data and the experiments in more
detail.

5.1 Idiom Detection based on Discriminant Analysis

A similar approach has been discussed in Peng et al. (2010). LDA is a class of
methods used in machine learning to find the linear combination of features that
best separate two classes of events. LDA is closely related to principal component
analysis (PCA) that concentrates on finding a linear combination of features that
best explains the data. Discriminant analysis explicitly exploits class information
in the data, while PCA does not.

Idiom detection based on discriminant analysis has several advantages. First,
as previously mentioned, it does not make any assumptions regarding data dis-
tributions. Many statistical detection methods assume a Gaussian distribution
of normal data, which is far from reality. Second, by using a few discriminants
to describe data, discriminant analysis provides a compact representation of the
data, resulting in increased computational efficiency and real time performance.

6 Datasets

6.1 Dataset 1: Outlier Detection

For the outlier detection, it is important that the training corpus is free of any
idiomatic or metaphoric expressions. Otherwise, idiomatic or metaphoric expres-
sions as outliers can distort the variance-covariance structure of the semantics
of the corpus.

Our training set consists of 1,200 sentences (22,028 tokens) randomly ex-
tracted from the British National Corpus (BNC, http://www.natcorp.ox.ac.uk/).
The first half of the data comes from the social science domain 3 and the other is
defined in BNC as “imaginative” 4. Our annotators were asked to identify clauses
containing (any kind of) metaphors and idioms and paraphrase them literally.
We used this paraphrased corpus for training. 5 The training data contains 139
paraphrased sentences.

3 This is an excerpt from Cities and Plans: The Shaping of Urban Britain in the
Nineteenth and Twentieth Centuries by Gordon Emanuel Cherry.

4 This is an excerpt taken from Heathen, a thriller novel written by Shaun Hutson.
5 We understand that this task is highly subjective, but the inter-annotator agreement

was relatively high for this task (Cohen’s kappa: 75%)



Our test data are 99 sentences extracted from the BNC social science (non-
fiction) section, annotated as either literal or figurative and additionally labeled
with the information about the figures of speech they contain (idioms (I), dead
metaphors (DM), and living metaphors (LM)). The annotator has identified 12
idioms, 22 dead metaphors, and 2 living metaphors in that text.

6.2 Dataset 2: LDA

In the LDA experiments, we used the dataset described by Fazly et al. (2009).
This is a dataset of verb-noun combinations extracted from the British National
Corpus (BNC, Burnard (2000)). The VNC tokens are annotated as either literal,
idiomatic, or unknown. The list contains only those VNCs whose frequency in
BNC was greater than 20, and that occurred at least in one of two idiom dictio-
naries (Cowie et al., 1983; Seaton and Macaulay, 2002). The dataset consists of
2,984 VNC tokens6.

Since our task is framed as sentence classification rather than MWE extrac-
tion and filtering, we had to translate this data into our format. Basically, our
dataset has to contain sentences with the following tags: I (=idiomatic sentence),
L (=literal), and Q (=unknown). Translating the VNC data into our format is
not trivial. A sentence that contains a VNC idiomatic construction can be un-
questionably marked as I (=idiomatic); however, a sentence that contains a
non-idiomatic occurrence of VNC cannot be marked as L since these sentences
could have contained other types of idiomatic expressions (e.g., prepositional
phrases) or even other figures of speech. So, by automatically marking all sen-
tences that contain non-idiomatic usages of VNCs, we create an extremely noisy
dataset of literal sentences. The dataset consists of 2,550 sentences, of which
2,013 are idiomatic sentences and the remaining 537 are literal sentences.

7 Experiments

7.1 Detecting Outliers

We compare the proposed technique (PMC) against a random baseline approach.
The baseline approach flips a fair coin. If the outcome is head, it classifies a given
sentence as outlier (idiom, dead metaphor or living metaphor). If the outcome
is tail, it classifies a given sentence as a regular sentence. The outlier thresholds
Tf and Tg at a given false positive rate are determined from the training data
by setting αf = αg.

In this experiment, we treat each sentence as a document. We created a
bag-of-word model for the data set, i.e., we use TF-IDF to represent the data.
Single value decomposition is then applied to the bag of words and the number
of principal modes for representing the latent semantics space is calculated that
capture 100% variance in the data.

6 To read more about this dataset, the reader is referred to Cook et al. (2008)



Experimental Results: PCA The following table shows the detection rates
of the two competing methods at a given false positive rate. The results reported
here were based on 10% of major components (p in fuction f) and 0.1% minor
components (r in function g). It turns out that the technique is not sensitive to
p values, while r represents a trade-off between detection and precision.

False Positive Rate PMC Baseline

1% 47% 44% 45% 43% 100% 50%

2% 53% 44% 55% 52% 100% 50%

4% 63% 56% 63% 62% 100% 50%

6% 70% 67% 73% 71% 100% 50%

8% 73% 77% 73% 71% 100% 50%

10% 87% 89% 86% 86% 100% 50%
Table 1. The detection rates of the two competing methods at a given false posi-
tive rate: Second column: idioms and metaphors; Third column: idioms only; Fourth
column: metaphors (dead and living); Fifth column: dead metaphors only; and Sixth
column: living metaphors only.

7.2 LDA and supervised classification

We first apply the bag-of-words model to create a term-by-sentence representa-
tion of the 2,550 sentences in a 6,844 dimensional term space. The Google stop
list is used to remove stop words.

We randomly choose 300 literal sentences and 300 idiomatic sentences as
training and randomly choose 100 literals and 100 idioms from the remaining
sentences as testing. Thus the training dataset consists of 600 examples, while
the test dataset consists of 200 examples. We train our model on the training
data and obtain one discriminant subspace. We then project both training and
test data on the chosen subspace. Note that for the two-class case (literal vs.
idiom), one dimensional subspace is sufficient. In the reduced subspace, we com-
pare three classifiers: the three nearest neighbor (3NN) classifier, the quadratics
classifier that fits multivariate normal densities with covariance estimates strat-
ified by classes (Krzanowski, 2000), and support vector machines (SVMs) with
the Gaussian kernel (Cristianini and Shawe-Taylor, 2000). The kernel parameter
was chosen through 10-fold cross-validation. We repeat the experiment 20 times
to obtain the average accuracy rates registered by the three methods. We also
include the performance by a random baseline approach. The baseline approach
(BL) flips a fair coin. If the outcome is head, it classifies a given sentence as id-
iomatic. If the outcome is tail, it classifies a given sentence as a regular sentence.
The results are the following–3NN: 0.802, Quadratic: 0.769, SVMs: 0.789, and
BL: 0.50.

Table 7.2 shows the precision, recall and accuracy for the nearest neigh-
bor performance as a function of false positive rates. For the nearest neighbor



method, the false positive rates are achieved by varying the number of nearest
neighbors in predicting idioms. By varying the number of nearest neighbors from
1 to 39, the false positive rates from 15% to 20% are obtained.

False Positive Rate recall precision accuracy

15% 76% 83% 81%

16% 77% 83% 81%

17% 77% 82% 80%

20% 76% 79% 78%
Table 2. LDA performance in more detail

Even though we used Fazly et al. (2009)’s dataset for these experiments,
the direct comparison with their methods is impossible here because our tasks
are formulated differently. Fazly et al. (2009)’s unsupervised model that relies
on the so-called canonical forms (CForm) gives 72.4% (macro-)accuracy on the
extraction of idiomatic tokens when evaluated on their test data.

8 Comparison of the two methods

Unfortunately, the direct comparison of the two methods discussed above is not
possible because they are not using the same datasets. To make the comparison
fair, we decided to run the PMC outlier detection algorithm on the data used for
LDA. In section 6.2 we already described how the data was created. Unlike the
dataset used for the PCA outlier detection algorithm, where human annotators
were given the task to make the training data as literal as possible and elimi-
nate any possible figurative expressions, the data used by the LDA alogorithm
was noisy. It was crudely translated by labeling all sentences that contained a
VNC idiom from Cook et al. (2008) as idiomatic; the rest were labeled as literal.
Unfortunately, this approach creates an extremely noisy dataset of literal sen-
tences that can potentially contain other types of figurative expressions, other
types of idioms etc. Another observation that our human annotators made when
preparing the dataset of paraphrases used by PMC is that it was really difficult
to avoid figurative language when paraphrasing and that it was also difficult to
notice figurative expressions because some of them had become conventional.

So, having taken the issues discussed above into consideration, we decided to
reverse our PMC approach and hypothesize that most sentences contain some
figurative language and true outliers are in fact the literal sentences. So, we
train the PMC algorithm on 1,800 sentences containing idioms (used by the
LDA approach) rather than on literals. We test PMC on randomly selected 150
idiomatic and 150 literal sentences. We repeat the experiment 20 times to obtain
the average accuracy rates. The numbers are reported in Table 8.

The performance of the LDA approach is better than that of PMC. However,
the LDA method is supervised and requires training data, i.e., sentences marked



False Positive Rate PMC recall PMC precision PMC accuracy

1% 93.3% 51.3% 52.3%

2% 91.9% 51.5% 52.6%

4% 91.0% 51.8% 53.2%

6% 89.5% 52.1% 53.6%

8% 88.1% 52.1% 53.6%

10% 81.2% 52.8% 54.3%
Table 3. Performance of the PMC algorithm on the LDA dataset

as idiomatic or literal, while PMC does not use class label information. However,
PMC’s detection rates (recall) are higher than the detection rates of the LDA
algorithm. Depending on an application, the higher recall might be preferred.
For example, if a researcher looks for sentences containing figurative speech for
the purpose of linguistic analysis, after some postediting, s/he might wind up
with more interesting examples.

9 Qualitative analysis of the results

Our error analysis of the two methods reveals that many cases are fuzzy and
clear literal/idiomatic demarcation is difficult.

In examining our false positives (i.e., non-idiomatic expressions that were
marked as idiomatic by the model), it becomes apparent that the classifica-
tion of cases is not clear-cut. The expression words of the sixties/seventies/
eighties/nineties is not idiomatic; however, it is not entirely literal either. It
is metonymic – these decades could not literally produce words. Another false
positive contains the expression take the square root. While seemingly similar to
the idiom take root in plans for the new park began to take root, the expression
take the square root is not idiomatic. It does not mean “to take hold like roots in
soil.” Like the previous false positive, we believe take the square root is figurative
to some extent. A person cannot literally take the square root of a number like
s/he can literally take milk out of the fridge.

When it comes to classifying expressions as idiomatic or literal, our false
negatives (i.e., idiomatic expressions that were marked as non-idiomatic by the
model) reveal that human judgments can be misleading. For example, It therefore
has a long-term future was marked as idiomatic in the test corpus. While our
human annotators may have thought that an object could not literally have (or
hold) a long-term future, this expression does not appear to be truly idiomatic.
We do not consider it to be as figurative as a true positive like lose our temper.
Another false negative contains a case of metonymy Italy will pay a reciprocal
visit and the verbal phrase take part. In this case, our model correctly predicted
that the expression is non-idiomatic. Properties of metonymy are different from
those of idioms, and the verbal phrase take part has a meaning separate from
that of the idiomatic expression take someone’s part.



9.1 Inter-annotator agreement

To gain insights into the performance of the second approach, we created a
dataset that is manually annotated to avoid noise in the literal dataset. We
asked three human subjects to annotate 200 sentences from the VNC dataset as
idiomatic, non-idiomatic or unknown. 100 of these sentences contained idiomatic
expressions from the VNC data. We then merged the result of the annotation
by the majority vote.

We also measured the inter-annotator agreement (the Cohen kappa k, Cohen
(1960); Carletta (1996)) on the task. Interestingly, the Cohen kappa was much
higher for the idiomatic data than for the so-called literal data: k (idioms) =
0.91; k (literal) = 0.66. There are several explanations of this performance. First,
the idiomatic data is much more homogeneous since we selected sentences that
already contained VNC idiomatic expressions. The rest of the sentences might
have contained metaphors or other figures of speech and thus it was more difficult
to make the judgments. Second, humans easily identify idioms, but the decision
whether a sentence is literal or figurative is much more challenging. The notion
of “figurativeness” is not a binary property (as might be suggested by the labels
that were available to the annotators). “Figurativeness” falls on a continuum
from completely transparent (= literal) to entirely opaque (=figurative)7 Third,
the human annotators had to select the label, literal or idiomatic, without hav-
ing access to a larger, extra-sentential context, which might have affected their
judgements. Although the boundary between idiomatic and literal expressions
is not entirely clear (expressions do seem to fall on a continuum in terms of
idiomaticity), some expressions are clearly idiomatic and others clearly literal
based on the overall agreement of our annotators. By classifying sentences as ei-
ther idiomatic or literal, we believe that this additional sentential context could
be used to further investigate how speakers go about making these distinctions.

10 Conclusion

The binary classification approach, offered in this paper, has multiple practical
applications. We also feel that identifying idioms at the sentence level may pro-
vide new insights into the kinds of contexts that idioms are situated in. These
findings could further highlight properties that are unique to specific idioms if
not idioms in general. Our current work is concerned with improving the detec-
tion rates, by incorporating textual cohesion and compositionality measures into
our models.

Acknowledgements

This material is based in part upon work supported by the National Science
Foundation under Grant Numbers 0916280, 1033275, and 1048406. The findings
and opinions expressed in this material are those of the authors and do not
reflect the views of the NSF.
7 A similar observation is made by Cook et al. (2008) with respect to idioms.



Bibliography

Birke, J. and A. Sarkar (2006). A clustering approach to the nearly unsuper-
vised recognition of nonliteral language. In Proceedings of the 11th Confer-
ence of the European Chapter of the Association for Computational Linguistics
(EACL’06), Trento, Italy, pp. 329–226.

Burnard, L. (2000). The British National Corpus Users Reference Guide. Oxford
University Computing Services.

Cacciari, C. (1993). The Place of Idioms in a Literal and Metaphorical World.
In C. Cacciari and P. Tabossi (Eds.), Idioms: Processing, Structure, and In-
terpretation, pp. 27–53. Lawrence Erlbaum Associates.

Carletta, J. (1996). Assessing Agreement on Classification Tasks: The Kappa
Statistic. Computational Linguistics 22 (2), 249–254.
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