Is flooding getting worse? Historical analysis of flood flow frequencies in the Passaic Basin and New Jersey Josh Galster **Kirk Barrett** Eric Slaff & Faith Justus **Passaic River Institute** Earth and Environmental Studies Dept. **Montclair State University**

MONTCLAIR STATE

JIVERSITY

Road map for today's talk

- Flood hazards
- HEC FFA
- Results

Flood hazards

http://nj.usgs.gov/special/flood0407/

Perception of increased flooding

Flooding April 2007

🗹 Topo 🔽 Pcpn Amount 📕 Counties 📕 Rivers 🗳 States 📕 Highway/City 📕 RFC Boundary 🛛 Last Update; 4/19/2007 1426 UTC

http://nj.usgs.gov/special/flood0407/

Perception of increased flooding

- Large floods on the Delaware River in September 2004, April 2005, June 2006
- "We used to hear about a 100-year flood plain. Well, there's clearly no 100-year flood plain anymore." Pennsylvania Governor Ed Rendell, 7/9/2006

Is flooding getting worse?

- Use HEC FFA program to analyze USGS gage data
- Analyzed 30 year blocks of data to determine changes
- Used multiple USGS gages

What is a 2 year flood?

Recurrence interval, years (aka a "…year flood")	Probability of occurrence in any given year	% chance of occurrence in any given year
100	1 in 100	1%
50	1 in 50	2%
20	1 in 20	5%
10	1 in 10	10%
5	1 in 5	20%
2	1 in 2	50%

Methods: HEC FFA

C:\WINDOWS\system32\cmd.exe				
	 Hydraulic Engineering 			
Hydrologic Engineering Center	Center Flood			
Corps of Engineers Davis, California 95616-4687 (916) 756-1104 May 1992	Frequency			
Flood Frequency Package Press any key to continue	Analysis			
C:\WINDOWS\system32\cmd.exe	X			
	FFA Package Menu 1. Define input/output files 2. Create/edit input file 3. Run FFA 4. Display output to console 5. Exit to DOS			
Input: TEST1.DAT	Output: TEST1.OUT DSS: TEST1.DSS			
Press number or <enter></enter>	• to select highlighted option ¦ ↑↓ moves cursor ———————————————————————————————————			

Input data: USGS gage selection

- More than 50 years of peak annual flow data
- 2. Within New Jersey

53 gages

Input files

- Used 30 years blocks of data, moving in 5 year increments
- Peak annual flows recorded at each gage

	Start Year	End year
	1927	1956
 HEC FFA then calculates a 	1932	1961
flood magnitude equal to a	1937	1966
noou magnitude equal to a	1942	1971
2-, 5-, 10-, 20-, 50-, 100-	1947	1976
year flow for those 30 years	1952	1981
year now for those so years	1957	1986
	1962	1991
	1967	1996
	1972	2001
	1976	2005

Passaic River near Millington, NJ

year

Passaic River near Millington, NJ

year

Passaic River near Millington, NJ

• Normalized for the entire record: 1 = no change

Rockaway River above reservoir at Boonton

Ramapo River near Mahwah

Rate of change (%) per year for statistically significant flows for Passaic-Hackensack

	Drainage Area	Start	End	100vr					
Site Name	(Sq. Mi.)	Year	Year	Flow	50yr Flow 20yr	Flow 10yr	Flow 5yr	Flow	2yr Flow
HACKENSACK R AT NEW MILFORD NJ	113	1922	2005	2.9%	2.7%	2.3%	1.9%	1.5%	0.6%
HACKENSACK R AT RVALE NJ	58	1942	2005	1.9%	1.9%	1.9%	1.9%	1.8%	1.3%
HOHOKUS BROOK AT HO-HO-KUS NJ	16.4	1954	2006		1.0%	1.1%	1.2%	1.2%	1.2%
PASCACK BROOK AT WESTWOOD NJ	29.6	1935	2005	1.6%	1.5%	1.3%	1.1%	1.0%	1.0%
PASSAIC R NEAR CHATHAM NJ	100	1904	2005						0.5%
PASSAIC R AT LITTLE FALLS NJ	762	1882	2005						
PASSAIC R NEAR MILLINGTON NJ	55.4	1904	2005	0.4%	0.4%	0.5%	0.5%	0.5%	0.6%
PEQUANNOCK R AT MACOPIN DAM	63.7	1904	2005						1.5%
POMPTON R AT POMPTON PLAINS NJ	335	1904	2005			0.6%	0.7%	0.9%	1.3%
RAMAPO R NEAR MAHWAH NJ	120	1904	2005	0.7%	0.8%	0.8%	0.8%	0.8%	0.8%
RAMAPO R AT POMPTON LAKES NJ	160	1882	2005			0.3%	0.3%	0.4%	0.4%
ROCKAWAY R ABOVE RES. AT BOONTON	116	1938	2005	1.0%	1.0%	1.0%	1.1%	1.1%	1.2%
ROCKAWAY R BELOW RES. AT BOONTON	119	1904	2005	0.7%	0.8%	1.0%	1.1%	1.2%	1.4%
SADDLE R AT LODI NJ	54.6	1924	2005	0.7%	0.8%	1.0%	1.2%	1.4%	1.9%
SADDLE R AT RIDGEWOOD NJ	21.6	1945	2005						
WANAQUE R AT AWOSTING NJ	27.1	1919	2006						
WANAQUE R AT WANAQUE NJ	90.4	1913	2005			0.9%	0.8%	0.6%	
WHIPPANY R AT MORRISTOWN NJ	29.4	1922	2005		0.3%	0.4%	0.5%	0.6%	0.9%

Rate of change for all 53 gages: statistically significant changes

		2	5	10	20	50		100
TOTAL		44	39	34	35	29		26
Positive #		38	32	30	30	23		20
Negative #		6	7	4	5	6		6
% Positive		72	60	57	57	43		38
% Negative		11	13	8	9	11		11
% Not significant		17	26	36	34	45		51
Maximum	1.	89%	1.76%	1.93%	2.29%	2.67%	2.9	92%
Median	0.	66%	0.72%	0.73%	0.71%	0.81%	0.	74%
Average	0.	70%	0.68%	0.77%	0.72%	0.69%	0.0	64%
Minimum	-0.	82%	-0.98%	-1.07%	-1.11%	-1.19%	-1.3	32%

Causes?

- Impervious surfaces Volume of the surfaces of the surface of the s
- Climate change?

Summary

- 1. Significant changes in flood magnitudes for all flow magnitudes:
 - Many more positive than negative (4-6x)
- 2. More small flows (2 year) affected than larger flows (100 year)
 - Analysis method?
- Broad implications for flood hazards, floodplain delineation, emergency managers, flood insurance...