
 1

A Life-Cycle Taxonomy for Assessing Software
Development Risks

Dr. Rashmi Jain, Sujoy Dey

Stevens Institute of Technology
Department of Systems Engineering and Engineering Management

Castle Point on Hudson
Hoboken, NJ 07030

USA
rjain1@stevens.edu, sdey1@stevens.edu

Abstract

Software development has become a
necessary component of majority of the
projects in this new world of Information
Technology (IT). More or less all technology
today has some form of software embedded in
it. Therefore, it is imperative that we develop
a good understanding of the risk involved in
software development (what), their sources
(why), and a process of identifying them
(how).
Considerable research has been done in
identifying risks in software development
activity, factors impacting them, and some
literature exists on how to measure them.
However, existing literature has focused
around creating a taxonomy of risks based on
factors impacting them or sources of these
risks. (Sherer, 1995) defined technical,
organizational, and environmental as the three
dimensions of software risk. (Boehm, 1988),
(Clemens, 1991), and (Sherer, 1993) classified
development, use and maintainability as
components of software risk. (Chittister, 1993)
proposed a framework grounded on a holistic
concept introducing three perspectives or
decompositions namely functional
decomposition, source-based decomposition,
and temporal decomposition.

This paper is based on the review of existing
literature on software development risk
assessment. It provides a more relevant and
useful approach to identifying and assessing
risks by taxonomising software development
risks based on the Systems Engineering (SE)
life-cycle concept. The SE life cycle concept
describes the life-cycle of the software
product as it passes through its phases of
conception to operational implementation.
Although there are numerous ways to define a
system’s life cycle from a SE point of view,
the common stages or phases associated with a
system that this paper will follow are
requirements identification, detailed design,
production and testing, operational
implementation, evaluation and modification
and operational deployment (Sage, 1992).
The authors believe that this approach will be
more effective and result in savings. By
identifying risks and associating them to a
specific stage/phase of SE life-cycle may
enable more efficient planning, management,
and mitigation of risks through stage-
containment.

Key Words: software development, risk
taxonomy, risk assessment

 2

1. Introduction

Software development lists a set of activities
that results in software products. This may
include new development, modification, re-
use, re-engineering, maintenance, or any other
activities that result in software products. The
number of projects taken up each year is huge
and the amount of resources put forth in these
projects is staggering. Due to the importance
of such projects, it is imperative that
development is done on time, within budget,
and with successful implementation.
Although, significant progress has been made
in software development methodologies,
software project failures continue to exist.
The Chaos report from the Standish group
shows 31.1% of projects will be cancelled
before they ever get completed. Further results
indicate 52.7% of projects will cost 189% of
their original estimates. The cost of these
failures and overruns are just the tip of the
proverbial iceberg. One has to also measure
the loss in opportunity costs (The Standish
Group, 1995). In the United States, more than
$250 billion a year was spent on IT
application development of approximately
175,000 projects. Although there has been
little improvement in the project success
compared to what it was in 1994, the number
of failures is still very significant. In 1994,
16% of the projects met the criteria for
success while in 2000 the success rate was
28%, which means the other 76% either failed
or did not meet original goals. Tracking U.S.
project outcomes showed that in 1994, 28,000
projects were successful, while in 2000, the
number rose to 78,000—almost a threefold
increase. Conversely, failed projects amounted
to 54,000 in the 1994 study vs. 65,000 in the
2000 study. This was an 18% increase, while
overall project growth exceeded 60%.
Challenged projects grew at a rate of 62%, to
equal 137,000 over the 1994 number of
93,000 (Johnson et al, 2001).

Thus, it is not difficult to ascertain that there is
still a lot to be done in order to increase the
“successful” project rate.

2. Risk Factors in Software Development

Software development over the last decade
has evolved to become an integral part of any
technology implementation. More or less all
technology today has some form of software
embedded in it. However, software
development is still not a perfect science.
Several authors have written about the
imperfections of software development as an
activity. Majority of the imperfections are the
result of decisions based on sometimes
inadequate and incomplete information. The
consequences of such decision making
exposes software development projects to all
kinds of risks. Identifying and understanding
the source of such risks and their associated
factors have been viewed as the first step to
reduce risk (Boehm, 1991).
(Ropponen and Lyytinen, 2000) investigated
and identified components of software
development risk through a survey of project
managers. These were: scheduling risks,
system functionality risks, sub-contracting
risks, requirements management risks,
resource usage and performance risks, and
personnel management risks.
(Murthi, 2002) discussed the importance of
external risks as the category that most
projects are likely to encounter. He proposes
the following risk factors: requirements,
technology, business, political, resources and
skills, deployment and support, integration,
schedule, maintenance and enhancement,
design, and miscellaneous (the catch-all
category).
(Keil et al, 1998) identified eleven risk factors
as common to their survey panels of software
project managers in different parts of the
world. These were lack of top management
commitment to the project, failure to gain user
commitment, misunderstanding the

 3

requirements, lack of adequate user
involvement, failure to manage end user
expectations, changing scope/objections, lack
of required knowledge/skills in the project
personnel, lack of frozen requirements,
introduction of new technology,
insufficient/inappropriate staffing, and conflict
between user departments.
(Addison and Vallabh, 2002) in an empirical
study on risk factors in software projects
analyzed the ‘importance’ and ‘frequency of
occurrence’ of risks as perceived by project
managers at different levels of experience.
These risk factors were unclear or
misunderstood scope or objectives,
misunderstanding the requirements, failure to
gain user involvement, lack of senior
management commitment, developing the
wrong software functions, unrealistic
schedules and budgets, continuous
requirement changes, inadequate knowledge
or skills, lack of effective project management
methodology, and gold plating, (additional
capabilities make systems more attractive).
The revised 2001 list of Standish Group’s
success factors (“recipe for success”) for
application development projects, known as
the “Chaos Ten” includes the following in
order of importance. These are executive
support, user involvement, experienced
project manager, clear business objectives,
minimized scope, standard software
infrastructure, firm basic requirements, formal
methodology, reliable estimates, and other
criteria. Each factor was weighted according
to its influence on project success.
A review of the risk factors included by the
authors discussed above points out to some
common sources of risks such as
requirements, scheduling, functionality, user
involvement, resources/skills, management
support etc. (Ropponen and Lyytinen, 2000)
mentioned two additional factors of resource
usage and performance risks. Some additional
sources of risk for software development
included by (Murthi, 2002) are deployment

and support, and integration, maintenance and
enhancement.

2.1 Review of Traditional Risk Taxonomies

Table 1 summarizes the existing software
development risk taxonomies. Boehm’s
model begins each cycle of the spiral by
performing the next level functionalities in
elaboration of the prospective system’s
objectives. These iterations build on these
functionalities but may not end with usable
software after each subproject in the iteration
(Murthi, 2002). (Boehm and Bose, 1994)
presented an extension of the spiral model;
called the Next Generation Process Model
(NGPM), which uses the Theory W (win-win)
approach to converge on a system’s next level
objectives, constraints, and alternatives. This
NGPM model addressed the need for
concurrent analysis, risk resolution, definition
and elaboration of both the software product
and the software process in a collaborative
manner.
(Sherer, 1995) identified the three dimensions
of software risk. The first was the technical
dimension resulting from uncertainty in the
task and procedures. The second was the
organizational dimension resulting from poor
communication and organizational structure.
Finally, the third dimension was
environmental, which results from rapidly
changing environments and problems with
external relationships with software
developers and/or users. (Chittiser, 1993)
proposed a framework termed hierarchical
holographic modeling where three
perspectives or decompositions are
introduced. They were 1) functional
decomposition, which encompasses seven
basic attributes associated with software
development- requirement, product, process,
people, management, environment, and
system development; 2) source-based
decomposition, which relates to the four
sources of failure- hardware, software,

 4

organizational, and human; and 3) temporal
decomposition, which relates to the stages in
the software development process.
Rowe’s model provides a four-stage
sequential lifecycle approach to risk
assessment and management. His model is
comprehensive and generic at the same time,
and as a result its application is not restricted
to any specific domain.

Table 1: Existing risk models

Model Reference
Barry Boehm’s Model Boehm (1988)
Next Generation
Process Model

Boehm and
Bose (1994)

Software Risk
Evaluation Model

Sista and
Joseph (1994)

Three-dimensional
Software Risk Model

Sherer (1995)

Hierarchical
Holographic
Modeling

Chittister
(1993)

Rowe’s Causative
Events

Rowe (1997)

Sage’s Model of Risk
Management

Sage (1992)

Model of Individual
behavior on
Failure/Success

Walsh and
Schneider
(2002)

Iterative Model Murthi (2002)

(Walsh and Scheider, 2002) proposed that the
behavior of decision makers affected by risk
propensity and motivation is critical to the
outcome of a software project.
Murthi’s model is compared to the spiral
model. The spiral model has iterations built on
functionalities but may not end with usable
software after each subproject in the iteration.
Murthi’s model has a single iteration itself as
a project resulting in software that users will
actually use (Murthi, 2002).
An analysis of the sources of risks included in
the above discussed models reveals four major
categories of risks in some form or shape.
These are human, organizational, technical,

and environmental. These models are based on
a one-time identification of risks as project
risks rather than on an on-going evaluation of
risks over the entire life-cycle of the project.
Therefore, these models lack phase-specific
identification and analysis of risks. An
approach based on phase-specific
identification and assessment of risks would
be better to plan for, manage, and mitigate
risks. This paper proposes such an approach.

3. Systems Engineering Life-Cycle

Concept

All systems have a life-cycle defined as a
series of steps, stages, or phases, beginning
from its early conception to the phasing out or
disposal at the end of its useful life. What is
critical to the applicability of the systems
engineering process is the thorough
understanding of the system life-cycle. These
life-cycle phases as identified and described
below by (Sage, 1992) progress as follows:

3.1 The identification of requirements and

specifications.
This phase identifies stakeholders’ needs,
activities, and objectives for a fully
functional operational system. This phase
should result in the identification and
description of preliminary conceptual
design considerations for the next phase.

3.2 Preliminary conceptual design.
This phase specifies the content and
associated architecture and general
algorithms for the system product in
question. Development of a
conceptualized prototype that is
responsive to stakeholder requirements
should result.

3.3 Logical design and system architecture
specification.
This phase has detailed design and
architectural specifications of the product.

 5

3.4 Detailed design, production, and testing.
User/stakeholder confidence should be
high so that the design results in a useful
product. If this does not happen, phase
three should be redone.

3.5 Operational implementation.
The product is ready for operational
implementation. A general checklist for
this phase is based on the success of the
previous phases. The checklist is coding,
testing, a recommended installation
approach, sufficient documentation, and
training and support readiness.

3.6 Evaluation and modification.
Evaluation of the detailed design and the
resulting product, process, or system is
achieved in this phase. There should be
provisions for objective measures and
critical evaluation measurements.

3.7 Operational deployment.
Final acceptance and operational
deployment of the system occurs in this
phase.

4. Identification and assessment of Risk

The goal for the first phase in the systems life
cycle is a complete, unambiguous, and
understandable documentation of
requirements. The primary risk attributes for
this phase are ambiguity, completeness,
understandability, volatility, and traceability
of requirements (Buttigieg, 2004). These
attributes directly impact the potential success
of the overall development project. For
example, poorly written, incomplete and
constantly changing requirements become a
primary source of risk. Such ambiguous and
inadequate requirements often lead to
confusion, result in risks to the later phases of
development, including “scope creep”.
Buttigieg’s description of risks during the
design phases includes attributes like

ambiguity, completeness, structure or
architecture, and coupling. Design is critical to
the future stages of development. Complex
design needs highly experienced programmers
and more attention to detail. Lack of standard
design formats and metrics in this phase of the
life cycle are often ignored or omitted from
risk evaluation (Buttigieg, 2004). This can
lead to a ripple effect of such risks throughout
the later phases.
Evaluation, testing, and modification phases
should have well defined guidelines to
maintain quality and integrity of the product.
Measurability is an important aspect which is
often ignored in most evaluations. Any
attribute that cannot be measured also cannot
be evaluated.
Operational implementation and deployment
phases have in them a major problem in
change management and training. Changing
existing work practices to fit the new
developed system is a major difficulty.
Similarly, it is tough to draw the line between
changing and/or retaining the business
processes to suit the system. There are a few
organizations that maintain in-house
experience to implement and maintain a large-
scale integrated solution.
The approach stressed in our paper is the one
of risk identification and assessment within
each phase or stage of software development.
This approach hypothesizes that risk factors
are specific to a certain phase of the software
development process. It hypothesizes that the
same risk factors are not relevant for all the
different phases and that even if they do their
importance and impact on the success of the
project differs in the different phases. For
example, human factors such as skills of the
team members may be a more important factor
in the detailed design phase than in the
operational deployment. Therefore, if we can
identify the risk factors unique to each phase it
will be easier to mitigate and manage these
risks with minimal costs and disruption.

 6

 We base our approach on the concept and
process of ‘stage containment’ as illustrated in
Figure 1. Stage containment is the practice of
striving to catch and resolve (stage specific)
errors found in each stage of the development
life-cycle of a product. This prevents problems

being passed on to the next stage. This stage
containment concept helps improve testing
methodologies as well as build quality within
each phase of the system development
process.

Figure 1: Stage Specific Risk Containment Model

The phases in the Systems Life Cycle process
(Figure 1) as described by Sage are shown in
the blocks as we travel from the left to the
right (denoted by the arrow at the bottom).
Complete verification and validation
procedures are outlined within each life cycle
phase. Each phase or stage has its own risk
that directly or indirectly affects the life cycle.
These risks get identified during (and as a
result of) the continuous verification and
validation procedures outlined for that
particular phase. In this process of stage
containment, each risk should be analyzed and
resolved to the satisfaction of the stakeholders
within that phase before continuing on to the
next phase.
At this stage it is important to illustrate with
simple and generic examples of errors,
defects, and faults; the benefits of stage
containing risks. We also discuss how these

errors, faults, and defects impact the
development effort and its success. For
example, if we make a design error and it is
found and corrected in the same design stage,
then we have contained the error.
However, if we find the problem while in
coding or testing stage, then the problem has
become a defect. If the problem is not found
until production, it becomes a fault. Errors,
defects, and faults cause additional rework,
additional cost, and additional time to
complete a project. Stage containment helps
reduce the likelihood that defects and faults
will occur by catching and fixing them when
they are just “errors” which can be fixed at
very minimal impact to the project.
In order to implement “stage containment” for
identifying and mitigating risks we need to
identify clearly defined standards/criteria for
each stage. These predefined standards must

Phase 1 Phase 2

Phase 3

Phase 4

Phase 5

Phase 6

Phase 7

Verification &
Validation

Verification &
Validation

Verification &
Validation

Verification &
Validation

Verification &
Validation

Verification &
Validation

Conceptual
Design

Requirements Logical
Design

Detailed
Design

Operational
Implementation

Evaluation &
Modification

Operational
Deployment

Risk Risk Risk Risk Risk Risk Risk

Verification &
Validation

SYSTEMS LIFE CYCLE PROCESS

 7

be met before exiting one stage and entering
another. These standards are therefore the
entry and exit criteria. These may include
criteria covering skill set of the team
members, traceability, documentation, testing
methodology, quality, and functional,
technical, and procedural requirements. Stage
containment of software development risks
will be deemed to have been achieved only
when the exit criteria of the current stage and
entry criteria of the next stage are fulfilled.

5. Expected benefits of this approach

The proposed life cycle taxonomy for
assessing software development risks as
illustrated in Figure 1 is expected to result in
several benefits. As mentioned earlier,
tremendous savings can be achieved in terms
of time, effort, cost, with better quality, as a
result of identifying and mitigating the risk
factors in the stage/phase where they happen.
Risk factors remaining unidentified in the
phase where they occur may impact the later
phases in terms of additional rework,
additional cost, additional time to complete a
project, and in some cases even untimely
termination of projects. Whereas, observing
and implementing stage containment process
would help reduce the likelihood of carrying
over risk factors and their impacts into phases
subsequent to where they occur.
Moreover, by associating certain risks with a
specific phase of software development will
help in better planning and more efficient
management of software development efforts.
Development teams will understand and
expect the exposure they have to different
kinds of risks at every stage of development.
This will help them mitigate these risks and
also plan resources and time to manage such
risks.

6. Recommendation and Conclusions

This paper is based on a review of existing
literature and not on empirical research. The
proposed taxonomy has not been
implemented, researched, or validated.
Informally, some software development
projects may already be using this approach in
some form or the other. However, no research
has been conducted on the effectiveness and
impact of the approach on the success of a
software development projects. Further
research can be done to ascertain if risk
factors are unique to a specific phase of
software development project or if some of
them overlap over one or more phases.
Certain measurable criteria will need to be
defined or existing definitions of risk factors
may be used. Surveys of software
development projects will need to be done to
validate the approach and ascertain if such an
approach of assessing software development
risk results in cost savings and other benefits.

 8

References:

1. Addison, Tom, Vallabh, Seema,

Controlling Software Project Risks –
An Empirical Study of Methods used
by Experienced Project Managers,
Proceedings of SAICSIT, 2002.

2. Boehm Barry, Bose Prasanta, A
Collaborative Spiral Software Process
Model Based on Theory W; IEEE,
1994.

3. Boehm, B.W., Software risk
management: principles and practices,
IEEE Software, 1991, 8(1), 32-41.

4. Buttigieg, D. Anton, Risk Management
in a Software Development Cycle,
2004.

5. CHAOS, The Standish Group Report,
1995.

6. Chittister, Clyde, Risk Associated with
Software Development: A Holistic
Framework for Assessment and
Management; IEEE Transactions on
Systems, Man, and Cybernetics, 23(3),
May/June 1993.

7. Johnson, Jim, Boucher, D. Karen,
Connors, Kyle, Robinson, James,
Collaborating on Project Success,
February-March 2001.

8. Keil, Mark, Cule, E. Paul, Lyytinen,
Kalle, Schmidt, C. Roy, A framework
for identifying software project risks,
Communications of the ACM, v.41
n.11, p.76-83, Nov. 1998.

9. Murthi, Sanjay; Preventive Risk
Management for Software Projects,
IEEE, 2002.

10. Ropponen, Janne, Lyytinen, Kalle,
Components of Software Development
Risk: How to Address Them? A Project
Manager Survey, IEEE Transactions
on Software Engineering, 26(2),
February 2000.

11. Sage, P. Andrew, Systems
Engineering, 1992, John Wiley &
Sons, Inc.

12. Sherer, A. Susan, The Three
Dimensions of Software Risk:
Technical, Organizational, and
Environmental, Proceedings of the 28th
Annual Hawaii International
Conference on System Sciences, 1995.

13. Walsh, R. Kenneth, Scheider, Helmut,
The role of motivation and risk
behavior in software development
success, Information Research, 2002,
7(3).

 9

Biography

Dr. Rashmi Jain is an Associate Professor of
Systems Engineering at Stevens Institute of
Technology in New Jersey, USA. Dr. Jain has
over 15 years of experience of working on
socio-economic and information technology
(IT) systems. Over the course of her career
she has been involved in leading the
implementation of large and complex systems
engineering and integration projects.
Dr. Jain’s research interests include network-
centric systems, systems integration, and agile
systems engineering. Dr. Jain is a Co-Chair of
the INCOSE ABET Working Group and a
member of the American Society for
Engineering Management and Agile Alliance.
She holds Ph.D. and MS degrees from Stevens
Institute of Technology.

Sujoy Dey is a Research Assistant in the
Systems Engineering and Engineering
Management Department at Stevens Institute
of Technology. Mr. Dey teaches courses in
systems engineering and engineering
management, namely, simulation and
modeling, production and operations
management, and engineering economic
design.
Mr. Dey’s research interests include systems
modeling and simulation, and decision
analysis under risk and uncertainty. He is a
student member of the International Council
of Systems Engineering (INCOSE), and the
Project Management Institute. Mr. Dey holds
an MS degree in Technology Management
and is currently working on completing his
PhD this summer in Systems Engineering.

