
30 December 2009Vol. 21 No. 4Engineering Management Journal

Rapid System Development (RSD) Methodologies:
Proposing a Selection Framework

Rashmi Jain, Stevens Institute of Technology
Anithashree Chandrasekaran, Stevens Institute of Technology

to address the objectives of a rapid system development team.
Some of the emerging rapid system development approaches have
been based off specific experiences of development teams. As a
result they have come up with methodologies that help achieve
rapidity and have demonstrated project success by applying
these methodologies; however, an application of a development
methodology may sometimes not result in project success or
in achieving the desired outcomes. This may be because of the
differences in the system environment and supporting strategies
that lead to project success. The process of selection and tailoring
of rapid development methodologies depends significantly
on the context and environment of system development. The
selection process requires an understanding of how certain rapid
development attributes are addressed and supported in each
methodology. Our research focuses on providing a framework
that could help in selecting a rapid development methodology
appropriate with the strategy of the system development team
and the management. This article discusses some popular rapid
development methodologies and defines related development
attributes. It further describes a framework for a more refined
process of rapid development methodology comparison
and selection.

The article redefines rapid system development and provides
an overview of the current rapid development methodologies. The
article then proposes a framework that can be used in the selection
process of an appropriate rapid development methodology.
The development attributes of the framework are defined. The
article also provides an overview on some of the current metrics,
tools, and techniques that could be used along with these rapid
development methodologies. The article concludes by identifying
common patterns that exist between these rapid development
methodologies. The article also identifies some areas of future
work required to support further tailored application of these
methodologies.

Rapid System Development
Time to market and window of opportunity for a product have
been shortening exponentially in the present competitive global
scenario. The life cycle of product/system development begins from
market research of a concept and ends in system deployment and
operation. The competition, resources, strategy, and budget create
a need to take crosscuts without endangering the cost, schedule,
and quality attributes of the system and thereby achieving rapidity
in the development of systems. Rapid Systems Development
(RSD) is a structured approach with rigid limits on development
time frames. The motto of RSD is faster, better, and cheaper.
RSD is a way or method that introduces agility and rapidity in
the system development process. Our scope of defining rapid or

Refereed research manuscript. Accepted by Associate Editor Keating.

Abstract: The current global customer trend requires
companies across domains to reduce their product
development lifecycle. As a result the exploration of
methodologies that will support rapid system development
has been gaining importance. The primary focus of this
article is to provide a framework for comparative analysis
of rapid system development methodologies. The purpose
of this framework is to help the project managers and
systems engineers choose and tailor an appropriate rapid
development methodology to suit their development
context and environment. Toward this, the framework
identifies and defines a set of critical rapid development
attributes. The article redefines rapid system development
as adopting methodologies, tools, and techniques that can
introduce rapidity into the system development processes
while optimizing the success factors of development. The
success factors are specific to the system under development
and they depend on the system, product line, organization,
and customers. Some of the common success factors are
return-on-investment (ROI), cost of ownership, other
performance factors, and customer satisfaction. The
article provides a fundamental discussion on the current
rapid system development methodologies, metrics, tools,
and techniques.

Keywords: Product Development, Research and
Development, Systems Development

EMJ Focus Areas: Innovation and New Product
Development

Consumer demand, market window, and return on
investment are the three terms heard every day in today’s
globally competitive market. Every company wants

satisfied customers, but every consumer and user has a set of
specific demands. This has made us realize that one size does not
fit all. This realization has exponentially increased the number of
features provided with the products/systems developed each year.
The traditional approach of system development is no longer
consistent with the objectives of a development team focused
on responding to and managing market expectations. This
inconsistency calls for novel approaches to support quick time-to-
market and tailor development processes appropriately in order

31December 2009Vol. 21 No. 4Engineering Management Journal

shows the road map of rapid development in the last two decades
(Abrahamsson, 2003). Abrahamsson’s work is mainly focused on
software development. The road map includes methodologies,
tools, and techniques that induce rapidity into the development
process. Our work concentrates mainly on the comparative

agile development is limited to product/system development and
does not include enterprise-level or organization-level rapidity
or agility.

Agility can be defined as,
“…dynamic, context-specific, aggressively change–•	
embracing, and growth-oriented. It is not about improving
efficiency, cutting costs, or battening down the business
hatches to ride out fearsome competitive “storms”. It is about
succeeding and about winning, about succeeding in emerging
competitive arenas, and about winning profits, market share,
and customers in the very center of the competitive storms
many companies mow fear” (Goldman et al., 1995)
“…the ability to both create and respond to change in order •	
to profit in a turbulent business environment” (Highsmith,
2002)
“…the ability to thrive in a time of uncertain, unpredictable •	
and continuous change” (Dove, 1999)
“…the total integration of business components” (Kidd, •	
1995).

Agility itself has its own dimensions such as,
“The •	 four principles of agility are delivering value to the
customer, being ready for change, valuing human knowledge
and skills and forming virtual partnerships” (Goldman et al.,
1995)
“There are •	 four core concepts of agility namely, core
competence management, capability for reconfiguration,
virtual enterprise, and knowledge driven enterprise” (Yusuf
et al., 1999).

Rapid System Development can be defined based on
definitions and dimensions similar to agility. One of the key
definitions of RSD includes: “the ability to turn an initial system
concept into a working system that adds value to business
operation in a short period of time” (Howard, 2000).

Rapid Application Development (RAD) is a software domain
equivalent of RSD. RAD is defined as a systems development
framework that offers the possibility of fast, flexible, and “tailored”
business information systems. It is the effective and efficient
creation of application systems within a full-fledged strategy.

We define Rapid System Development as,
…adopting methodologies, tools, and techniques that can •	
introduce rapidity into the system development processes
while optimizing the success factors of development. The
success factors are specific to the system under development
and they depend on the system, product line, organization,
and customers. Some of the common success factors are
return-on-investment (ROI), cost of ownership, other
performance factors, and customer satisfaction. The word
system in here represents product, service, and system.

Rapid system development methodologies have been
around for more than two decades. In the last 5-10 years there
has been tremendous support and popularity for RSD process
by the stakeholders of system development realizing its need
and importance. There has been an increase in the number of
RSD methodologies and models introduced in the last 5 years
addressing today’s market challenges. This trend of rapidity in
system development can be observed in Exhibit 1. This figure

 Exhibit 1. The History of Rapid Development (Abrahamsson, 2003)

32 December 2009Vol. 21 No. 4Engineering Management Journal

analysis of the methodologies of rapid development. This article
discusses the existing RSD methodologies and models, and
provides a comparison chart that could help in the decision
process for selecting and tailoring an RSD methodology for a
system development project.

Rapid Development Methodologies
Rapid development relies on principles such as useful product
delivery, reliability, collaboration, technical excellence, simplicity,
and adaptability, but there is no one way to achieve all this. “Agile
is the way of thinking, not a particular practice” (Highsmith,
2002). The drivers of agility are quality, speed to market, widening
customer choice and expectation, competitive priorities of
responsiveness, new product introduction, delivery, flexibility,
concern for the environment, and international competitiveness
(Goldman et al., 1995). There are several rapid development
methodologies that have developed in response to these drivers.
These methodologies have been built upon some existing rapid
development principles and core concepts. Our use of the
term methodology in this context includes “a body of practices,
procedures, and rules used by those who work in a particular field
or specialty” (McConnell, 1996).

Methodology is a disciplined way of approaching a system.
There are various methodologies for rapid development now
being followed. One methodology cannot fit all types of projects.
Depending on the time, size, cost, and technology, one can decide
which practices and lifecycle models are applicable and most
suited to the system under development. The generic models that
layout a plan for system development are called lifecycle models.
A lifecycle model is a perspective model of what should happen
between the first glimmer and last breath (McConnell, 1996).
The main function of a lifecycle model is to establish the order
in which a project specifies, prototypes, designs, implements,
reviews, tests, and performs its other activities. Each system
development methodology starts with planning for a system
development lifecycle model. The rapidity/agility in system
development is achieved by reducing the time of one or more
phases of system development such as design, development,
manufacturing, and systems integration or compressing and/or
collapsing an entire phase. In other words, how easy and flexible
it is for the development methodology to change its order of
activities in response to market demands or other pressures of
rapidity will determine the agility/rapidity of the methodology.

Our review of the current rapid development methodologies
can be classified under four generic categories based on how the
life cycle is defined in each methodology. The four categories are
Modified Waterfall, Evolutionary Development, Design to Cost,
and Design to Tools.

Modified Waterfall
For decades Waterfall model has been the traditional development
lifecycle model. The idea of sequencing the stages of development,
a stage is triggered by the completion of the previous stage,
has always allured the stakeholders of product, system, service
development. But the driving forces of rapid made them rethink
the tradition. As a result iteration, feedback, and concurrency
were introduced in the waterfall model. A lifecycle model
with traditional waterfall lifecycle stages fall under the generic
category of Modified Waterfall. There are various instantiations
of Modified Waterfall based on the system and its environment.
The popular instantiations follow.

Modified waterfall with overlapping phases (Sashimi Waterfall).
Waterfall with overlapping phases has concurrency of the different
development phases. This is ideal for a project that gathers more
insights as we move on further into the development cycle.

Modified waterfall with subprojects (component based development).
In waterfall with subprojects system level, detailed design begins
before completing the architectural design and development, and
testing starts before detailed design is completed. Development
effort is broken down into subprojects. This is analogous to
component-based development.

Modified waterfall with risk reduction. In the waterfall with risk
reduction methodology the risk-reduction spiral is put at the top
of the waterfall to address the requirements risk. The requirements
analysis and architectural design are addressed as part of the risk
reduction phase. The risk-reduction spiral can also be used to
address other risks associated with system development. If there
is a high-risk functionality identified in a system architecture
that is critical to the system, as there may be other functional
components dependent on it, then the risk-reduction cycle will
be applied in completing the development of such a critical
functionality before attending to the remaining functionalities.
Once this risk-reduction spiral is completed, the rest of the
development will follow a waterfall model methodology.

Spiral. The spiral model is a risk-oriented lifecycle model that
breaks the project into modules. Each module addresses one or
more risks until all the major risks are covered. After all the risks
have been addressed, the spiral model terminates as a waterfall
lifecycle model would. To start with, explore the risks on the
small scale in the middle of the spine and make plans to handle it,
and then commit to it and move to the next iteration. Successive
iteration moves the project to a larger scale (McConnell, 1996). It
is complicated but can be used with other life cycle models. This
approach provides good management with check points at the
end of the iteration.

Evolutionary Development
In evolutionary development, life cycle of development is
phased and iterative. In each phase (cycle of development) the
concentration is on building a feature of the total system capability
or functionality. Each phase of development includes build-
test-integrate-validate-control and feedback cycle. Stakeholder
participation and feedback in each evolution or cycle is the key to
success in evolutionary development. An architectural roadmap
of the development is planned early and revised upon stakeholder
feedback in each phase. Some of the common evolutionary
development methodologies follow.

Evolutionary prototyping. In evolutionary prototyping the system
concepts are developed as we move through the project. We
begin with developing the most visible aspects of the system,
demonstrate that to the customer, and then continue to develop
the prototype based on the feedback. The point at which the
customer agrees with designer that the prototype is good enough,
any remaining works are completed on the prototype and are
released as the final product. Evolutionary prototyping is very
useful when the requirements are rapidly changing or there is no
clear understanding of the end product. It is also useful when the
designers are not sure of the architectures or the tools. It produces

33December 2009Vol. 21 No. 4Engineering Management Journal

visible signs of progress when there is a strong demand for speedier
development. The main disadvantage is that the duration of the
project is difficult to calculate at the beginning.

Staged delivery. In the staged-delivery model the system is shown
to the customer in successively refined stages. Unlike prototyping,
what exactly is going to be built is not known before starting to
build. The system is delivered in successive stages through the
project and not in one release like prototyping. It is also called
incremental implementation. The advantage is that it allows
putting useful functionality into the hands of the customers
earlier rather than delivering the complete product at the end
of the project. The main disadvantage is it needs very careful
planning both from the management and technical side.

Evolutionary delivery. Evolutionary delivery is a type of staged
delivery where a product is developed, showed to the customer,
and refined based on the customer’s feedback. It straddles the
ground between the evolutionary prototyping and the staged
delivery. Initial emphasis is given to the core of the system which
consists of lower level system functions that are unlikely to be
changed by customer feedback.

Feature Driven Development. Feature-driven development
(FDD) (Coad et al., 2000; Datar et al., 1997) is a process-oriented
development method for developing business critical systems.
The FDD approach focuses on the design and building phases
like the staged delivery approach. This approach follows an
iterative development and also adopts some of the industry best
practices to handle the challenges posed by each feature that is
being developed. The specific blend of these ingredients makes
the FDD processes unique for each case. It emphasizes quality
aspects throughout the process and includes frequent and tangible
deliveries, along with accurate monitoring of the progress of the
project. FDD’s overall model involves forming the modeling
team, conducting a domain walkthrough, studying documents,
developing sub-team models, developing a team model, logging
alternatives, and inspecting log action items. Plan, track, and
report is the key to FDD (Highsmith, 2002).

Design to schedule. The design to schedule lifecycle model is
similar to the staged delivery model, but the final stage may not
be possible if the deadline is reached. The stage at which the
deadline is met becomes the final stage – hence the stages are
prioritized. The features are prioritized and implemented in the
early stages. The primary disadvantage is the wastage of time
in designing and architecting systems that are not going to be
shipped due to end of the stages when the deadline is reached
(McConnell, 1996).

The 4CC framework. The four cycle of control framework
(Rautiainen, 2002) is a rapid development process model for
software development in small scale industries. The four cycles
of control combines the business and process management.
The four cycles of controls are: 1) strategic release management
that provides the interface between business management and
product development, 2) release project management that handles
the development of individual product versions, 3) iterative
management that deals with the incremental development
of product functionality with in release project, and 4) mini-
milestones that are used for daily and weekly task scheduling
and monitoring to get an idea of the status of system during

development. This framework can be used to assess the current
state of the project as well as serve as a blue print for improving or
reengineering the product development management.

Design-to-Tools
Design to tools is used in time sensitive environments because
tools have become more flexible and powerful. The idea behind
this model is that a capability or functionality is included into the
product only if the development tool supports it. This model can
be combined with other flexible lifecycle models to get the best
results. The disadvantage of this approach is that it is easy to lose
a lot of control over the product. It is not possible to implement
all the features needed in the way it’s needed due to the limitation
of the tools (McConnell, 1996).

Design-to-Cost (Value Engineering)
Design-to-cost is a popular technique for controlling costs.
Design-to-cost is a method of controlling cost by establishing
cost goals at specified levels of a work breakdown structure and
then requiring the project to make trade-offs that will ensure
that the system built will meet those cost goals (Brennan et al.,
1992; Dean, 1990). This approach is very similar to the concept
of Value Engineering. Value engineering (Howard, 2000) aims
to eliminate all work in a project that does not add value to a
product. Value engineering is an iterative process, the aim
being to arrive at the simplest and easiest-to-implement set of
requirements and system designs. It helps in keeping things
simple and easy to maintain.

Review of Current Rapid System Development
Methodologies
Exhibit 2 provides a comparison of the different rapid development
methodologies. It summarizes our findings of this research. It
reviews and compares eight different RSDI methodologies against
ten attributes that are relevant and significant to Rapid System
Development. Each attribute is rated on a three-level scale from
‘Attribute Absent’ to ‘Attribute Present’ against each of the eight
methodologies. These attributes are:

Adaptability – •	 the ability of the methodology to be flexible
with the changing scope of the system functionality in order
to meet the goal of the project
Cost Scoping•	 – the ability of the methodology to define and
address the scope of the project in terms of a given cost
Time Sensitivity•	 – the ability of the methodology to respond
to changes in the schedule of the project
Evolutionary•	 – the ability of the methodology to address the
development process from an evolving perspective in terms
of staged delivery, build frequency, releases etc.
Technology Tradeoffs – •	 the ability of the methodology to
optimize on technology choices to meet the goal of the project
Return-on-Investment (RoI) – •	 the ability of the methodology
to analyze and address the preferred Return of Investment
(ROI) on the system
Testing and Integration•	 – the ability of the methodology
to address the testing and integration of the system in a
comprehensive manner
Requirements – •	 the ability of the methodology to
progressively lock down the requirements
Risk Reduction – •	 the ability of the methodology to address
and contain different kinds of risks
Iterative Development – •	 the ability of the methodology to
involve iterative and concurrent development process.

34 December 2009Vol. 21 No. 4Engineering Management Journal

On comparing the eight RSD methodologies in terms of their
ability to support the ten different development attributes, we
found that the Staged Delivery or Incremental Implementation
stands out as the leading RSD methodology to be pursued for
achieving rapid system development. It emerged with seven of
the ten attributes in the “Present” and remaining three in the
“May be Present” category.

Closely following was the Design to Cost methodology which
was found to be covering five of the attributes with “Attribute
Present” category and three with “May be Present” category.

Much to our expectation, overall the broad category of
Evolutionary Development methodologies emerged as the major
source of rapidity with all popular methodologies included such
as Feature Driven Development, etc.

Rapid Development Metrics
Measurement is a practice that has both short term motivational
benefits as well as long term cost, quality, and schedule benefits.
It overcomes the problem arising due to poor estimates, poor
scheduling, and poor progress visibility. Measurement activity
should be managed by a separate objective group but with a high
level of commitment.

The demonstration of rapidity or agility of development is
ridden with the challenges of coming up with credible categories
of metrics. The ten different development attributes used for
comparing the RSD methodologies in Figure 2 have not been
researched enough to define their units of measurement (metrics);
however, it will be of tremendous value to define these attributes
in terms of how to measure them. This will enable the project
managers’ to keep track of the level of rapidity in their development
process as well as know what aspects are weak in supporting
rapidity. The current literature on the measurement of rapid
development processes has focused on measurement techniques
based on time and volume statistics and on development
flexibility. In this section we are summarizing some measurement
techniques that may be relevant to rapid development without
going into the details of their application. These are:

Flexibility Index (Thomke and Reinertsen, 1998)•	
Probabilistic Model (Messica and Mehrez, 2002)•	
Hazard Function Model (Datar et al., 1997)•	
Correlation Model (Callahan and Brian Moretton, 2001)•	
Effectiveness and Efficiency Measure (Goldense, 1997)•	

Rapid Development Tools and Techniques
We have discussed the need and importance of RSD, what aspect
of development need to be addressed to achieve RSD, and to
what extent these need to be emphasized to meet the targeted
levels of rapidity. The next question that arises is, “How can it
be achieved?” There are tools and techniques that help to reduce
the duration of the development phases, thereby increasing the
rapidity of the development cycle. A prototype can be built using
automated tools like CAD. These tools help in easy capture and
traceability of requirements. In software development there
are rapid development languages that help in quick and fast
development. Object-oriented languages is an important example
of rapid development software language

The tools and techniques of RSD act like catalysts to produce
the desired agility in a given environment with the right order
and proportion of improved system development process and
organizational process. Most of the rapid development tools and
techniques tend to focus on either specific stages of development
or on specific aspects of the development environment. In the
latter category the focus is commonly around teaming, leadership,
management skills, and feedback-review sessions. Some of the
popular agile or rapid techniques that are currently being applied in
software development along with the existing RSD methodologies
are: timebox development, joint application development (JAD),
adaptive software development, agile modeling, crystal family,
dynamic systems development method (DSDM), extreme
programming (XP), internet-speed development, and scrum.

Conclusions
An analysis of the above discussed rapid development
methodologies reveals certain important common patterns.
These patterns form the basis for achieving rapidity in the system
development process. They are:

RSD&I methodologies are based on life-cycle models•	
they focus on looking at “rapidity” from an organizational •	
perspective
these methodologies progressively lock down requirements •	
they focus on rapidity through prioritizing based on “value”•	
they use overlapping/concurrent development phases•	
Iteration is emphasized•	
	 “scoping” drives development with stakeholders’ •	

involvement

Exhibit 2. RSD Methodologies Review Matrix

35December 2009Vol. 21 No. 4Engineering Management Journal

Most of the literature on RSD from a development perspective
has recently evolved from the information technology (IT)
field. Though there are a few rapid development methods and
techniques in other fields, they are either specific to a company
or to a particular product line, thus limiting their application as
a case study example. Generic frameworks have to be developed
for rapid system development in non-IT sectors. Also there is
very limited work on metrics of “rapid” and “agile”. More focus is
needed to develop metrics to measure rapidity, and on metrics to
confirm that as a result of reduced development effort the system
functionality is not compromised and that the system meets its
intended use and remains within its bounds.

References
Pekka Abrahamsson, Juhani Warsta, Mikko T. Siponen,

Jussi Ronkainen, “New Directions on Agile Methods: A
Comparative Analysis,” Proceedings of the 25th International
Conference on Software Engineering (May 2003),
pp. 244-254.

James R. Brennan, Jerrell T. Stracener, “Designing to Cost
Effectiveness: Enhancing Quality,” Proceedings of the
Reliability and Maintainability Symposium (January 1992),
pp. 44-52.

John Callahan, Brian Moretton, “Reducing Software Product
Development Time,” International Journal of Project
Management, 19:1 (January 2001), pp. 59-70.

Peter Coad, Eric LeFebvre, Jeff De Luca, Java Modeling In Color
With UML: Enterprise Components and Process, Prentice Hall
(2000).

Srikant Datar, Clark Jordan, Sunder Kekre, Surendra Rajiv,
Kannan Srinivasan, “New Product Development Structures
and Time-to-Market,” Management Science, 43:4 (April,
1997), pp. 452-464.

Edwin B. Dean, The Design-To-Cost Manifold, NASA Langley
Research Center (1990).

Rick Dove, “Knowledge Management: Response Ability and the
Agile Enterprise,” Journal of Knowledge Management, 3:1
(January, 1999), pp. 18-35.

Bradford L. Goldense, “Motivators and Metrics for Product
Development,” Professional Program Proceedings of Electronics
Industries Forum of New England (May 1997), pp. 67-83.

Steven L. Goldman, Roger N. Nagel, Kenneth Preiss, Agile
Competitors and Virtual Organizations – Strategies for
Enriching the Customer Needs, Van Nostrand Reinhold
(1995).

Jim Highsmith, Agile Software Development Ecosystems, Addison
Wesley (2002).

Alan Howard, “Rapid Application Development: Rough and
Dirty or Value for Money Engineering,” Communications of
the ACM, 45:10 (October 2000), pp. 27-29.

Paul T. Kidd, Agile Manufacturing, Forging New Frontiers,
Addison-Wesley (1995).

Steve McConnell, Rapid development - Taming Wild Software
Schedules, Microsoft (1996).

Avi Messica, Abraham Mehrez, Time-to-Market, Window of
Opportunity, and Salvageability of a New Product Development,
Wiley InterScience (2002).

Stephen R. Palmer, John M. Felsing, A Practical Guide to Feature-
Driven Development, Prentice Hall (2002).

Kristian Rautiainen, Casper Lassenius, Reijo Sulonen, “4CC: A
Framework for Managing Software Product Development,”
Engineering Management Journal, 14:2 (June 2002),
pp. 27-32.

Stefan Thomke, Donald Reinertsen, “Agile Product Development:
Managing Development Flexibility in Uncertain
Environments,” California Management Review, 41:1 (Fall
1998), pp. 8-30.

Yahaya Y. Yusuf, Mansoor Sarhadi, Angappa Gunasekaren,
“Agile Manufacturing, the Driver, Concepts, and Attributes,”
International Journal of Production Economics, 62:1-2 (May
1999), pp. 33-43.

About the Authors
Rashmi Jain is Associate Professor of Systems Engineering
at Stevens Institute of Technology. Dr. Jain has over 15 years
of experience of working on Information Technology (IT)
systems. Prior to joining Stevens she was with Accenture
(formerly known as Andersen Consulting). Over the course of
her career she has been involved in leading the implementation
of large and complex systems engineering and integration
projects. She has done invited lectures internationally at
Keio University, and Shibaura Institute of Technology, Japan,
Overseas Chinese Institute of Technology (OCIT), Taiwan,
Indian Institute of Technology – Delhi, etc. She is a visiting
associate professor for System Architecture and Integration at
Keio University. Her teaching and research interests include
systems integration, systems architecture and design, business
process reengineering, and rapid systems engineering. Dr. Jain
has authored several papers on these topics. She holds Ph.D.
and MS degrees in Technology Management from Stevens
Institute of Technology.

Anithashree Chandrasekaran is a doctoral candidate in
the School of Systems and Enterprise at Stevens Institute of
Technology. She is also a Technology Risk Analyst at SIG.
Her research interests include rapid systems development
and its processes, development process reengineering, risk
management and modeling, SI, and system design and
architecture. She is currently working on developing a dynamic
risk assessment model for rapid system development process.
She obtained her BE in Electrical and Electronics Engineering
from P.S.G. College of Technology, India. She obtained
her MS in Systems Engineering from Stevens Institute of
Technology. She is the founding president of Stevens INCOSE
student chapter.

Contact: Rashmi Jain, PhD, Associate Professor of Systems
Engineering, Stevens Institute of Technology, Castle Point on
Hudson, Hoboken, NJ 07030; phone: 201-216-8047; rashmi.
jain@stevens.edu

Copyright of Engineering Management Journal is the property of American Society for Engineering

Management and its content may not be copied or emailed to multiple sites or posted to a listserv without the

copyright holder's express written permission. However, users may print, download, or email articles for

individual use.

