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Abstract: Systems Integration (SI) is an important element of systems 
engineering which involves the integration of hardware, software, products, 
services, business processes, and human. The existing standards, models, and 
guidelines of Systems Engineering and Software Engineering address SI issues 
partially and usually view SI from a perspective of integrating physical 
components. They lack a holistic end-to-end approach to SI. Due to the 
emerging Systems Engineering challenges and the increasing importance of SI, 
the need for a holistic approach to SI has become critical. A Systems 
Integration Framework (SIF) was developed that incorporates the relevant 
aspects of integration from a lifecycle perspective and sets a foundation to an 
end-to-end approach to SI. 
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1 Introduction 

Companies, today, desire to build systems faster, better, and cheaper. This desire is  
being driven by competition like never before. Customers are demanding total solution  
to their needs, and products of best quality at low prices. In turn, organisations are  
aiming for improvement in productivity of quality components (Alagumurthi et al., 
2008). In an environment of fast changing technology and interconnectedness of systems, 
organisations are being challenged by designing and developing more and more complex 
systems. Systems Integration (SI) is a universally accepted necessity in the development 
of complex systems (Grady, 1994). A single company usually does not develop all the 
components of a system. Some of the components and the subsystems are built in-house 
and some are supplied by the outside vendors and then all of these subsystems or 
components have to be integrated into a final system. 

Increasingly, systems Engineering practices have started to focus on complex 
systems. An interesting aspect of complex systems is that though they are built of  
well-designed, reliable, and efficient subsystems or components, they may not deliver an 
efficient final system when these components or subsystems are integrated. Complex 
systems represent a challenge for design and integration. On one hand, the solution space 
is huge and complex. On the other hand, these systems are increasingly critical for 
businesses. The cost of their deployment and management amounts to quite a substantial 
part of corporate budgets. 

Software Engineering and computer science communities have attempted to define SI 
(Nilsson et al., 1990; Land and Crnkovic, 2003). Gulledge (2006) has tried to define the 
term SI within the scope of information systems research. He summarises his research of 
academic literature on ‘what is integration’ and notes that the term’s description includes 
a process, a condition, a system, and an end-state. He focuses on the data integration 
aspect and categorises integration as ‘Big I’ and ‘Little i’. Where big I indicates all data 
within an enterprise aligned in a single data-model and stored once, as opposed to  
‘point-to-point’ interfacing of different kinds of technology components for the purposes 
of sharing information. However, from a systems perspective SI deals with more than just 
the data, software or the hardware of a computer system. A systems perspective includes 
all kinds of elements or components that constitute a system. SI is a critical component of 
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systems Engineering that unifies the product and the process components into a  
whole. SI ensures that the hardware, software, and human system components will 
interact to achieve the system purpose and/or satisfy the customer’s need (Grady, 1994; 
Jain, 2007). 

2 Partial view of integration 

Systems Integration (SI) is a broad and ubiquitous concept, the elements of which are 
involved in nearly every aspect of the engineering of large systems and systems 
management (Sage and Lynch, 1998). It is an important element of systems engineering 
which involves the integration of hardware, software, products, services, business 
processes, and human (Grady, 1994; Jain, 2007). From a process perspective, SI process 
creates the links within the systems engineering process from requirements collection to 
Verification and Validation (V&V) and ultimately to implementation of the system.  
SI should be implemented from the beginning and throughout the system development 
rather than being implemented only as a ‘down stream’ event. 

The existing standards, models, and guidelines of systems engineering and software 
engineering address SI issues partially and usually view SI from a perspective of 
integrating physical components. These standards and models lack a holistic end-to-end 
approach to SI. For example, in ISO/IEC-15288 (2008) the definition of SI process 
activities does not include important issues such as interoperability, interface control and 
management, Business Process Integration (BPI), and traceability. Due to the emerging 
systems engineering challenges and the increasing importance of SI, the need for a 
holistic approach to SI has become critical. 

As a part of the ongoing SI research at Stevens Institute of Technology, a Systems 
Integration Framework (SIF) (Figure 2 discussed in Sections 4 and 5) was developed 
based on an assessment of existing state-of-art practice, and research on SI processes and 
models. The SIF incorporates the relevant aspects of integration from a lifecycle 
perspective and sets a foundation to an end-to-end approach to SI. Our end-to-end 
approach focuses on how integration issues can be addressed up-front to minimise 
integration related complexities and challenges later on in the system engineering 
process. 

3 A comprehensive view of Systems Integration 

A comprehensive life-cycle based approach would include all the relevant aspects of 
integration, namely, technology integration, applications and software integration,  
data and data repository integration, communications network integration, integration  
and reengineering of business processes, and, last but not the least, integration of the 
human. 

In practice projects experience problems resulting from the decomposition and  
then integrating system components. As an example, decomposition of functions that  
cut across multiple functional or physical boundaries (end-to-end) or the decomposition 
of system-wide attributes and qualities must be done with integration in mind. In a sense, 
system design and architecture should aim at simplifying integration efforts and  
building ‘integration-friendly’ systems. Some of the reasons for failure and sub-optimal 
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integration of systems are lack of understanding of the scope of SI and its ownership  
of responsibility, lack of planning for SI early in the systems engineering life-cycle, lack 
of ownership of interfaces and as a result failure to define and document them, lack of 
proper CM, and change control process. The counter measure for these problems is to 
start integration early on in the systems engineering life-cycle and attend to the 
integration elements throughout. 

SI can also be viewed from a layered perspective. This means that any system  
will have a physical layer, a semantic layer, a functional layer and so on and so forth. 
Therefore, in order for a system to be fully integrated it will need to address all aspects  
of integration. One such approach can be summarised in the following four states  
of SI (Mische, 1998) namely,  

• interconnectivity is the initial and the fundamental state in the SI 

• interoperability, the key state of SI, means that all interconnected information system 
components and equipment should be able to function and interact with each other 

• semantic consistency refers to the concern of consistency at data level 

• convergent integration involves the amalgamation of components and technology 
with business processes, people, skills, and knowledge. 

When a system is designed, developed, and deployed, SI is needed to put together several 
subsystems and components which will comprise the final system. The activities of SI 
yield a functional system that meets a set of requirements. Any gaps left unattended in the 
entire development process will be revealed during SI. If SI issues are not addressed early 
on in the development process and throughout the lifecycle of the system development,  
it will be too late and too costly. SI is a set of complicated activities which if not done 
right may result in the risk of the final integrated system not performing the intended 
functionalities. The success of SI depends on several factors that have to be addressed 
over the different phases of system development lifecycle. 

4 Defining a well-integrated system 

The Systems Integration Framework (SIF) proposed in Section 5 focuses on improving 
the probability of success of SI activities by identifying the critical ones and their role  
in SI. Jain et al. (2008a) discuss the SI process, its constituent sub-processes, and related 
activities in their paper “A Systems Integration Framework for Process Analysis and 
Improvement”. The authors believe that defining the scope, objectives, and role of all  
SI processes within the discussed framework is the beginning of a stable SI process that 
would mature over a period of time (Figure 1). Systems Integration process Maturity 
(SIM) may be defined as a stable well-documented integration process which supports 
architecture and design that is simple and ‘integration friendly’. It is based on open 
architecture, scalability, modularity, commonality, re-usability, and current standards, for 
which clearly defined V&V criteria can be created. SIM is the extent to which repeatable 
SI process and related activities are defined, managed, and continuously improved using 
best practices and principles. 
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Figure 1 Improving Systems Integration readiness (see online version for colours) 

 

SIM indicates the level of stability and sophistication of SI process and related activities. 
It includes the translation of the integration activities into measurable outcomes. A high 
maturity level is an indicator of a well-integrated system and is demonstrated in terms of 
a harmonised, stable, and scalable system. 

SIM is also an indication of lower integration risks, the higher the maturity, the lower 
the risk in integration activities. Lower risk in integration activities means expected and 
required functionality of the integrated systems are ensured. 

The time it would take for a stable and mature SI process to evolve would depend 
upon several factors such as SI organisation structure, level of SI process (and  
sub-process) analysis, evaluation, and feedback, metrics of SI activities used for 
evaluation, adaptability of the SI process to be open to customisation by specific 
individual development projects. 

The SIF lays a foundation for directing SI activities towards the design and 
architecture of systems that are easy to integrate or in other words ‘integration-friendly’ 
or ‘integration-ready’ (ready to be integrated) systems as shown in Figure 1. The focus is 
on pre-empting integration issues upfront in the process. Identifying the best practices 
that will ensure this upfront focus is the challenge that projects need to manage. A mature 
SI process would lead to a clearer upfront emphasis on integration issues thus resulting in 
more integration-ready systems. Designing for an ‘integration-friendly’ system may 
include practices such as: simple designs, having an open architecture that is based on 
good standards which are current, relevant, and scalable, and making sure that the system 
documentation is updated at all times and complete in all aspects. System architecture 
may be considered as open if it is based on established and current standards which  
can evolve with technology evolution, and which can address the future scalability  
of the system. Many forums and working groups have been formed to address and 
provide guidance or best principles for designing open systems. The prerequisite for 
designing open systems is establishing interconnections. A universally accepted 
framework for interconnection is Open System Interconnection (OSI) model. Open 
system interoperability can be achieved through extrapolating or extending the OSI 
model. This thought has been explored by researchers in various domains. Open system 
interoperability architectures or models proposed based on OSI are discussed in OSI 
based interoperability for networks (Sugarbroad, 1990), Information processing system 
OSI (ISO/IEC-7498-1, 1994), Open system architecture for interoperability (Jain et al., 
2008b; Abuelma’atti et al., 2006). 

The SIF describes some of the essential elements of SI activities that may improve  
SI readiness and lead to the development of ‘operationally well-integrated’ systems.  
Over a long run such SI activities may result in a mature SI process. The improvements 
that would result from SIF are shown in Figure 1. In this figure,2 the colours indicate the 
four dimensions of SIF that are discussed in the above SIF description. 

Assuming that the above discussed integration and architecture practices are in place 
they should get reflected in the SI readiness and in the final product – an operationally 
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well-integrated system. In the long run the SI processes and related activities should lead 
to more efficiently integrated and robust systems. Systems that have evolved through  
a well-though through SI process will be more adaptable, easy and cost-effective to 
integrate, operationally optimised, predictable for reliability, maintainability, and 
supportability. So, should it be possible for us to distinguish a ‘well-integrated’ system 
from a ‘not-so-well-integrated’ system? If yes, then what will be the attributes or 
characteristics of such systems? How will these be demonstrated in the operational 
behaviours of such systems? How could such operational behaviours indicate critical 
aspects of SI that one must pay attention to early on from the SIF perspective? Based on 
our research some critical characteristics of operationally well-integrated systems are 
demonstrated in their functional and technical compatibility; harmonisation, stability, and 
scalability; user utility, technology longevity, adaptability, and speed of solution delivery 
through transparency of technology; harmonised and standardised application systems, 
data, access paths to data, and graphical user interfaces; and seamless and boundary-less 
operation. 

5 A comprehensive end-to-end SI approach: the proposed framework 

The SIF illustrates a comprehensive end-to-end SI approach (Figure 2). This approach  
is based on the premise that integration occurs throughout the lifecycle of a system.  
SI is not a one-time activity. Literature on SI falls short of considering the various views 
that integration takes in the development lifecycle of systems (Sage and Lynch, 1998). 
Our effort through the SIF is to identify integration embedded in every systems 
engineering activity. Our current focus of SI processes and activities looks at the 
following four dimensions of SI interactions as illustrated in the SIF.  

• Interoperability is a prerequisite to achieving successful SI. If the sub-systems or 
systems are not interoperable they cannot be integrated. Standards or other forms of 
guidelines – international, national or industry-specific provide an opportunity to 
design systems which can be ‘open’ and simple to integrate. On the other hand,  
these guidelines can also constrain the design by requiring following design elements 
that may lead to more complex SI.  

• The other processes of system development lifecycle such as requirements 
management, interface control and management, testing, V&V, and CM should 
include and address SI issues.  

• Legacy SI and Commercial Off The Shelf (COTS) integration issues are inevitable in 
integration of most systems. Interoperability and interface management issues of 
legacy and COTS systems affect the overall success of SI to a significant extent. 

• A good understanding of the business processes, and their definition and analysis is 
essential to defining the scope of SI. BPI creates the basis for how the system 
functionality flows within a system and interacts with its operational environment. 
Extended Enterprise Application Integration (EEAI) is the integration of a system 
within an enterprise and beyond. It is the extension of integration activities to beyond 
the enterprise domain. 
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Figure 2 Jain’s Systems Integration framework (see online version for colours) 

 

Systems design and architecting involves logical, functional, and physical decomposition 
of system requirements. Decomposition enables system development activities to be 
conducted concurrently, efficiently, and in a manageable manner. The complement of 
decomposition is integration. Every design element that has been decomposed into 
smaller configuration items will have to be integrated again to obtain the desired system 
functionality. 

The SIF identifies the necessary elements of SI and illustrates the dependencies 
among them. It describes each of these elements, their constituent activities, tools, 
techniques, and best practices and factors that may be used for optimising each  
element for achieving successful SI. These ten elements that constitute the authors’ 
comprehensive scope of SI are discussed below. These elements of the framework are: 
LI, COTS integration, requirements management, interface management, interoperability 
and standards, BPI, EEAI, Program Management (PM), testing, V&V, and CM. 

5.1 Legacy Integration 

Legacy Integration is one of the most important aspects of SI. In a way, we could say  
that most SI problems arise out of the need to integrate legacy systems. These systems  
are usually not designed to be ‘integration-friendly’. Over a period of time as a result  
of ‘hacked solutions’ they evolve into ‘spaghetti’ architecture. Such systems are very 
difficult (sometimes even impossible) to be upgraded with enhanced functionality.  
As a result, the cost of maintaining them progressively keeps increasing with time.  
Even though the legacy systems are ridden with all these problems, they are mission 
critical for the organisations and should remain functional at all times (Konstantas, 1996). 
They fully satisfy system functional requirements and support current business 
functionality. These are systems that have been thoroughly tested in the actual 
operational environment. Therefore, it is often difficult to build a business case to retire 
them. As a result integration of such systems always becomes a huge challenge every 
time when the technical infrastructure in which they operate is upgraded or enhanced. 
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The relevant questions that we need to address with regard to legacy SI are:  
what are the kinds of unique LI issues do we have – their cost and risk  
assessment, what kind of middlewares, gateways and other solutions one can use for  
integrating legacy, what are the limitations of LI, and what other kinds of challenges  
exist for LI. 

When do you actually get to know and be able to confirm that legacy has  
come to a stage where you cannot continue to support it any more? What kind  
of criteria would you use to evaluate the retirement readiness of legacy systems?  
How architectural considerations make legacy totally constraining and what can you  
do and when will you know that it’s time to retire a legacy and say that we cannot  
support it any more. The legacy systems provide a set of design constraints which  
have to be identified and defined. Some of these limitations of legacy systems  
are: pollution, embedded knowledge, poor lexicon, coupling, layered architectures, 
frequency of failures and breakdowns, obsolescence and maintenance cost are discussed 
in Bianchi et al. (2003). 

5.2 COTS based SI 

Use of COTS components or products in system development has significant effect on 
integration, V&V. A COTS item is one that is sold, leased, or licensed to the general 
public; offered by a vendor trying to profit from it; supported and evolved by the vendor 
who retains the intellectual property rights; available in multiple, identical copies; and 
used without modification of the internals (OSD, 2002). Adoption of COTS systems are 
driven by the time-to-market constraints and the higher level of technology readiness of 
the COTS products. But the longevity and lack of design flexibility with COTS systems 
constrain the SI. The average COTS software product undergoes a new release every 
eight to nine months, with active vendor support for only its latest three releases  
(Basili and Boehm, 2001). Deciding to go for COTS vs. build it in-house early-on in the 
system development life-cycle can help in identifying the appropriate interface and 
performing the adequate V&V (Jain et al., 2008a). 

Difficulties and lessons learned from COTS integration in practice are reported in 
Abts (2000), Abts et al. (2000), Boehm and Abts (1996) and Bansler and Havn (1994). 
Interfaces with and between COTS products is one of the major challenges of COTS 
integration. There are no widely agreed upon COTS standards (Voas, 2001) mainly due 
to marketing strategies aimed at obtaining vendor lock (Morisio and Torchiano, 2002). 
Selecting the right COTS product from the right supplier has always been a decision  
that the companies have struggled with. The qualitative vs. quantitative nature of  
multi-criteria supplier evaluation process is addressed by Noor-E-Alam et al. (2008). 
They proposed a computing tool which can evaluate the supplier by taking the opinion of 
expert as a linguistic value in a fuzzy form and incorporating the uncertainty measure. 
Thus increasing the reliability of expert judgment and making it more informative for 
decision making. Variability of COTS products and their marketing strategies suggest 
that there will never be a single unified marketplace of standardised COTS products 
(Morisio and Torchiano, 2002). Some of the common advantages and disadvantages of 
COTS integration are listed in Table 1. 
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Table 1 Advantages and disadvantages of COTS integration 

Advantages Disadvantages 

Lower costs for initial procurement 
and logistics support 

COTS results in the vendor control over when, where, and 
how an organisation must reissue hardware or software 

Faster deployment (time-to-market) Vendor may artificially quicken the upgrade and refresh 
rate negatively impacting the operational readiness 

Improved quality and reliability Incompatibility of rate of change between software and 
acquisition of human capabilities – especially examples 
like software to detect man-made noises 

Leverage fast-paced commercial 
technology 

Unpredictability from interaction of the unused functions 
of COTS product with the rest of the system 

Reduced development risk Evolution of COTS products in the wrong direction  
– driven by the vendor 

Support system in place through 
availability of upgrades and other 
enhancements 

Claims and actual performance does not match 

More stable industrial base Interoperability problems – between features and 
performance 

Decreased reliance on sole providers Mandate vs. appropriateness to utilise COTS 
Improved surge capability Failure to understand Total Cost of Ownership 
Facilitates innovation from small 
businesses/academia 

 

Easier to attract new employees  

COTS integration is a high risk activity as COTS components make several assumptions 
about architectural issues. When these assumptions conflict or do not match, the 
simplicity of using COTS quickly is replaced with complexity and integration scaffolding  
(Egyed et al., 2005). However, over the past decade, data and control integration 
mechanisms and standards have matured significantly. Moreover, COTS products have 
become end-user programmable, extensible, and interoperable (Egyed et al., 2005).  
The impact of COTS on the development process depends on the source, customisation, 
bundle, and role (Morisio and Torchiano, 2002; Egyed et al., 2005; Yakimovich et al., 
1999; Abts et al., 2000). Authors Morisio and Torchiano have identified COTS attributes, 
their possible values, and have characterised COTS based on their attributes and impact 
on development process (Morisio and Torchiano, 2002). According to Abts et al. (2000), 
the more granular attributes of COTS that impact SI in particular are correctness, 
availability/robustness, security, product performance, understandability, ease of use, 
version compatibility, inter component compatibility, flexibility, installation or upgrade 
ease, portability, functionality, price, maturity, vendor support, training, and vendor 
concessions (Abts et al., 2000). 

Role of interoperability and interface requirements are very critical for COTS 
integration decisions. Integrating n number of COTS products involves potentially  
n(n – 1)/2 interfaces (Basili and Boehm, 2001). These requirements also result in 
architectural refinement and decisions. The knowledge of these requirements and 
architecture at an early stage of development will help in proactive mitigation of the 
integration, V&V problems. A Simultaneous COTS approach is recommended to 
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addresses COTS integration issues. In this approach convergent decisions are made 
considering the following tradeoffs simultaneously (SEI, 2002). 

• Stakeholder needs and business processes. Requirements (including quality 
attributes such as performance, security, and reliability), end-user business processes, 
business drivers, and operational environment. 

• Marketplace. Available and emerging COTS technology and products,  
Non-Development Items (NDI), and relevant standards. 

• Architecture and design. Essential elements of the system and the relationships 
between them. Elements include structure, behaviour, usage, functionality, 
performance, resilience, reuse, comprehensibility, economic and technologic 
constraints and tradeoffs, and aesthetic issues. 

• Programmatics and risk. The management aspects of the project. These aspects 
consider the cost, schedule, and risk of building, fielding, and supporting the solution 
to include the cost, schedule, and risk for changing the necessary business processes. 

Yakimovich et al. (1999) identifies five types of COTS integration problems: functional, 
non-functional, architectural style, architectural conflicts, and interface (Yakimovich  
et al., 1999). Yakimovich also identifies six integration strategies: tailoring, modification, 
re-implementation, glueware, architectural changes, and architectural style changes. 
Strategies for some of these COTS Integration risk assessment and mitigation at  
an early stage through architecture, performance assessment, and process management 
are discussed in Yang et al. (2005), Donzelli et al. (2005), Putrycz et al. (2005), 
Lemahieu et al. (2005) and Warboys et al. (2005). 

Critical success attributes of COTS implementation (Grant, 2000) are flexible 
requirements, incentives to contain sustainment cost, up-front awareness of design 
considerations, matching COTS functionality with requirements, changing culture driven 
by volatility of the marketplace and the pace and scope of technology change, and using 
the right tools. COCOTS model calculates the effort of COTS integration in terms of 
maintainability, synchronisation, complexity, number of planned upgrades, experience  
of integration, and the volatility effect (Abts et al., 2000). Kelkar and Gamble (1999), 
Yakimovich (2001), Payton et al. (1999) and Davis et al. (2002) also present processes 
that help evaluate ease of integration and its estimated effort before it is done. 
Proliferating four or more COTS products in a system poses greater integration risks 
(Garlan et al., 1995). COTS components rarely share the same architectural and interface 
assumptions (Garlan et al., 1995). If the assumptions differ too much, the integration 
effort can become too costly, and the project may be cancelled due to budget overrun.  
So, the objective is to make the integration as effortless as possible. This can only be 
achieved by choosing components with converging architectural and interface 
assumptions. Components with converging architectural and interface assumptions are 
compatible (Yakimovich et al., 1999), while those with diverging architectural and 
interface assumptions are called incompatible. 

5.3 Requirements management 

Once a conceptual design for a system is chosen and all operational scenarios  
(use cases) to understand the context are analysed, the broader category of stakeholder 
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requirements are then refined and derived to form system requirements or specifications. 
During the requirements engineering phase of system development it is critical to  
identify requirements that will impact SI. These requirements termed as integration 
requirements address the required level of integration and quality. These integration 
requirements fall under the category of interoperability, interface, qualification  
or test, operational readiness, integration technology, and compliance and standards.  
The integration requirements are then used to develop design (architecture) to address  
the integration issues such as COTS, legacy, interfaces, testability, qualification and 
compliance.  

Integration Requirements Management is one of the most important sub-processes of 
the SI process. Jain et al. (2008a) provides a more detailed discussion on this process and 
the six categories of integration requirements. In order to avoid issues and surprises 
during the implementation it is important to elicit system requirements with SI focus.  
The delays in product development are mainly attributed to errors and rework that result 
due to the errors that were introduced in the initial phases but demonstrated during the 
final phases. The effort and money spent on these errors and fixes are huge (McConnell, 
1996). It is a good practice to identify SI stakeholders and gather requirements from 
them. The integration requirements are reiterated with the stakeholders of SI and signed 
off so that they can be used as a baseline for the SI process. These requirements have to 
be documented well and maintained with good Configuration Management (CM) 
(discussed in detailed in Section 5.9). 

The requirements development process and characteristics of good requirements  
are discussed in IEEE 1233 (1998) and IEEE 830 (1998). The important characteristics  
of requirements that significantly impact SI are the traceability and testability of 
requirements. A requirement is verifiable (IEEE 830, 1998) if there exists some finite 
cost-effective process with which a person or machine can check that the system meets 
the requirement. In general any ambiguous requirement is not verifiable. Non-verifiable 
requirements include statements such as ‘works well’, ‘good human interface’, and  
‘shall usually happen’. These requirements cannot be verified because it is impossible  
to define the terms ‘good’, ‘well’, or ‘usually’. Verifiability of requirements directly 
impacts verifiability and validity of the system and design. It also impacts traceability of 
requirements.  

A requirement is traceable (IEEE 830, 1998) if its origin is clear and if it facilitates its 
referencing in future development or enhancement documentation. The following two 
types of traceability are recommended:  

• Backward traceability (i.e., to previous stages of development): This depends upon 
each requirement explicitly referencing its source in earlier documents. 

• Forward traceability: This depends upon each requirement having a unique name or 
reference number.  

Traceability of requirements can help in timely, correct, and complete integration of 
components and systems. The role of traceability in integration is discussed in Gieszl 
(1992). The notion of traceability requires a capability to relate the specific requirements 
through several levels of abstraction to their final implementation and to specific tests 
that show the satisfaction of those specific requirements. The three important sources  
of requirements origins are stakeholders, (documented) sources, and process-product 
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objects (Jarke, 1998). Environmental, organisational, and technical factors influence the 
implementation of requirements traceability (Ramesh, 1998). 

5.4 Interface management 

Interfaces are a common failure points on systems (Buede, 2000). System interfaces are 
critical to the success of SI. Interface is defined as a plane or place at which independent 
systems or components thereof meet and act or communicate with each other.  
The interface of a system contains both the logical element and a physical element  
(or link) that are responsible for carrying items from one component or system to another 
(Buede, 2000). Interface is the functional and physical characteristics required to exist at 
a common boundary or connection between systems or items (DOD 4120.24-M, 2000). 
Simple interfaces result in good design and operational success. Simple interfaces are 
those interfaces that are simple systems by itself, having manageable contracts, posing 
low integration risk, and manageable throughout the lifecycle. 

The various types of interfaces (Buede, 2000) are: Connectors that facilitate the 
transmission or exchange of electricity, fluid, force, material, information, etc, Isolators 
that inhibit such interactions, and Converters that alter the form of the entity being 
transmitted or exchanged. A more detailed classification of interfaces types is as follows 
(Sanchez, 2000): 

• attachment interfaces: how components attach to each other 

• spatial (volumetric) interfaces – the spatial volume allocated to a component 

• transfer interfaces that are responsible for what comes in and what leaves the 
component 

• control and communication interfaces are comprised of information exchanges that 
communicate component state and/or changes 

• user interfaces are components that receive ‘requests’ from the user 

• environmental interfaces are components that interact with the ambient environment 
or other components in intended or unintended ways. 

Interface requirements are statements about the interface designs, protocols used,  
data formats, entity relationships, and processing rules. They define the interfaces and 
their inputs and outputs. Interface Interactions between elements (Pimmler and Eppinger, 
1994) are 

• Spatial: A spatial-type interaction identifies needs for adjacency or orientation 
between two elements. 

• Energy: An energy-type interaction identifies needs for energy transfer between two 
elements. 

• Information: An information-type interaction identifies needs for information or 
signal exchange between two elements. 

• Material: A material-type interaction identifies needs for materials exchange 
between two elements. 



   

 

   

   
 

   

   

 

   

    A framework for end-to-end approach to Systems Integration 91    
 

    
 
 

   

   
 

   

   

 

   

       
 

Interfaces may also be considered from an internal/external perspective. Internal 
interfaces are those that address elements inside the boundaries established for the system 
of interest. These interfaces are generally identified and controlled by the contractor 
responsible for developing the system. External interfaces, on the other hand, are those 
which involve entity relationships outside the established boundaries of the system 
(DAU, 2001). Interface requirements must address total system performance, the fidelity 
of the interface, and any system requirements meant to constrain interface design (Buede, 
2000). Typical system performance requirements of concern in designing the interfaces 
are system throughput and response time. The fidelity of an interface is determined by the 
integrity of the items, and failure detection and recovery within the interface.  

Interface architecture defines the interface specification based on all the system 
internal and external interface requirements with the support of Interface Definition 
Language (IDL). Open System Interconnection Model (OSI) is widely used to define 
interfaces and interconnections at all levels of system abstraction. A baseline interface 
definition must be agreed upon before the beginning of implementation activities, and the 
user interface must be defined and maintained as an integral part of the system 
specification. Interface control and management is an important part of the integration 
architecture that results in the management of communication, coordination and 
responsibility across a common boundary between two organisations, phases, or physical 
entities which are interdependent (Jain, 2007). It ensures that internal and external 
interfaces are properly identified, integrated, stabilised, and controlled early in order  
to prevent expensive and time-consuming fixes later. Interface identification, 
documentation, and assessment are shown in Figure 3. 

Figure 3 Interface control and management (see online version for colours) 

 
Source: Jain (2007) 
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5.5 Interoperability and standards 

Standard is a document that establishes engineering and technical requirements for 
products, processes, procedures, practices, and methods that have been decreed by 
authority or adopted by consensus (EIA-632, 1999). Standards help ensure that  
an interface will enable the connection of two components. Each component is required 
to meet a given standard, and the interface is designed to meet the same standard  
in order to ensure design and integration success (Buede, 2000). An interface standard  
is a standard that specifies the physical, functional, and operational relationships  
between various elements (hardware and software), to permit interchangeability, 
interconnection, compatibility and/or communications. Interface standards specify the 
physical, functional, and operational relationships between the various elements 
(hardware and software), to permit interchangeability, interconnection, compatibility 
and/or communication. The selection of the appropriate standards for system interfaces  
should be based on sound market research of available standards. Evaluation and 
selection of interoperability standards are especially necessary in the application 
development and integration projects, when there is a need to assess the usefulness of 
existing models or to find open solutions. Standards have to be evaluated when 
recommendations are made for a given domain or when their quality is examined.  
The evaluation of the scope and other aspects of interoperability standards is usually 
performed against project-specific requirements (Mykkänen and Tuomainen, 2008). 

Standards have different levels of formality: formal or proprietary, de jure, and de 
facto. Proprietary standard is a standard that is exclusively owned by an individual or 
organisation, the use of which generally would require a license and/or fee. De jure 
standards are mandated by legal or other authorities. De facto standard is a standard that 
is widely accepted and used but that lacks formal approval by a recognised standards 
organisation (FED-STD-1037C, 1996). 

Standards can make SI easier and help prevent problems in integration and change 
(Kuhn, 1990). The benefits attributed to using standards (Buede, 2000) are:  

• Interchangeability: ability to interchange components with different performance 
and cost characteristics 

• Interoperability: the system can now operate with a wider variety of external 
systems, systems that have also adopted the same conventions 

• Portability: systems can be moved and operate on other systems 

• Reduced cost and risk for equivalent performance 

• Increased life cycle is possible when long-lived standards are adopted. 

Standards for open systems promote SI friendliness and concurrently they will increase 
the SIM. 

Interoperability can be defined as the ability of the system to ‘play well with others’, 
both with the systems it was originally designed to work with, and with future systems.  
It may be desirable in and of itself; also enhances versatility, flexibility and evolvability 
of systems of systems (McManus and Hastings, 2005). It is the ability of systems, units, 
or forces to provide data, information, material, and services to and accept the same from 
other systems, units, or forces, and to use the data, information, material, and services so 
exchanged to enable them to operate effectively together (DODD-5000.1, 2003). 
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Interoperability focuses on the exchange of meaningful, context-driven data between 
autonomous systems. Interoperability can be achieved by designing and building systems 
against a defined interoperability requirement, and maintaining that interoperability 
throughout the system changes and upgrades through CM, and testing for interoperability 
against those requirements. Interoperability Requirements address or help address  
an operationally recognisable activity or sequence of activities that has a definable 
starting action, a definable concluding action, and which involves the exchange of data 
(information or material) between two or more systems (sub-systems or platforms).  
Such a data exchange may be interactive and may involve the use of more than one 
transfer medium; however, the information content on all transfer media must be 
definable. These requirements are related to an operational capability. In most cases few 
interoperability requirements are identified and interoperability often becomes an issue 
when system is deployed. 

According to Ouksel and Sheth (1999) the four types of interoperability  
are semantic interoperability, structural interoperability, syntactic interoperability, and 
system interoperability. Semantic understanding results in operational interoperability of 
systems. Semantic integration addresses the semantic content of data in different systems. 
It is more important to be aware of inconsistencies in the semantics rather than to 
eliminate the differences, which may be difficult, especially in systems from different 
vendors. Semantic consistency refers to the concern of consistency at data level. Once the 
information system components and equipment are interconnected and operational, users 
are able to access systems and manipulate data (create, retrieve, modify, and delete) 
across various operational environments. For this reason, the implementation of semantic 
integration is essential to prevent data duplication, redundancy, and instability (Mische, 
1998). 

Interoperability models have been developed to provide guidance on building 
architecture for ease of integration and interoperability. These models define different 
levels of interoperability and attributes of architecture that have to be addressed for each 
level defined. Some models define various domains of interoperability and their 
relationships and interaction between them. Some of these interoperability models used 
today are: Levels of Conceptual Interoperability Model (LCIM), Levels of Information 
System Interoperability (LISI), NATO Reference Model for Interoperability, 
Organisational Interoperability Maturity Model, System of Systems Interoperability 
(SOSI), ECMA/NIST Model, and Defense Information Infrastructure Common Operating 
Environment (DII COE). 

In order to achieve interoperability certain pre-existing conditions are necessary. 
Some of these conditions are interconnection between systems, compliance to interface 
and open standards, and ability of systems to provide the required information flow for 
each operational scenario. (SEI/CMU, 2004) has identified six metrics for interoperability 
namely coupling, heterogeneity, synchronicity, boundedness, ownership, and usage 
patterns. System interoperability can also be measured in terms of interface security, data 
integrity, interface flexibility, interface bandwidth, interface registration and version 
control, interface management, interface performance, interface documentation, data 
processing integrity, data presentation, user help, access, monitoring, trouble shooting, 
upgradeability, reliability, and robustness (Whitt, 2004). 
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5.6 Two dimensions of enterprise integration: Business Process Integration  
and Extended Enterprise Application Integration 

Traditionally in the systems engineering and technology communities, SI has been 
described in the context of design and development of systems such as airplanes, 
factories, command and control systems, communication networks, etc (Rouse, 2005; 
Sage and Lynch, 1998). Due to the significant shift within the systems engineering 
community towards considering ‘enterprises’ as systems (Rouse, 2005; Carlock and 
Fenton, 2001; Kosanke et al., 1999). Enterprise integration has become an important 
aspect of SI. An enterprise is a goal-directed complex system of resources – human, 
information, financial, and physical – and activities, usually of significant operational 
scope, complication, risk, and duration. Enterprises can range from corporations, to 
supply chains, to markets, to governments, to economies (Rouse, 2005). Enterprise 
integration is related to integrating technology, processes, and people to facilitate a 
greater flow of information and effective decision making across the enterprise with the 
goal of improving efficiency and competitive advantage. Enterprise integration  
enables the successful communication between data, applications, processes, people  
and enterprises and helps an organisation to establish a technology infrastructure  
that seamlessly links its complex business applications in to a homogenous system  
so that the processes and the data can be shared across the enterprise, business partners, 
and customers (Venkatachalam, 2006; Smith et al., 2002; Kosanke et al., 1999; Brosey  
et al., 2001). The drivers for enterprise integration is to provide timely and accurate  
exchange of consistent information between business functions to support strategic and 
tactical business goals in a manner that appears to be seamless (Smith et al., 2002; 
Venkatachalam, 2006). 

Despite its benefits, enterprise integration is a challenge for most of the organisations 
(Smith et al., 2002). Enterprise integration efforts fail due to a number of technical, 
organisational and management, and migration planning reasons. The technical issues 
include: unplanned and stovepipe development of legacy systems, data being specific  
to the applications and not being designed for sharing, difficulty of adaptation of  
legacy systems towards new quality-attribute requirements and being affected by  
needs for interoperability, performance, security, and usability; inadequately defined 
scope of integration effort, decisions made without performing adequate analyses.  
The organisational and management issues include the need to obtain and maintain 
sponsorship and financial commitment at all levels of the organisation for the duration of 
a potentially lengthy project; the need to break a project up into subprojects so that 
consistent, intermittent milestones can be measured; and the need to communicate 
effectively (Smith et al., 2002). 

Enterprise integration is defined at different levels of integration including process 
integration, application integration and data integration (Stohr and Nickerson, 2003; 
Huang et al., 2003; Lam, 2005). These different levels of integration happen internal or 
external to the enterprise. In the next two sections BPI and EEAI – we will provide 
details on these different levels of enterprise integration and their relevance within in SIF. 
BPI will focus on process level integration while the application and data level 
integration will be covered in the EEAI.  
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5.6.1 Business Process Integration 

SI does not only concern hardware, software and products but also involves  
business processes, services and human (Grady, 1994; Jain, 2007). Integration of 
business systems, or for that matter any system, requires a good understanding  
of business processes and business process analysis. Systems are designed, developed 
and engineered to support the business processes within an enterprise (Jain et al., 2008a) 
and alignment of processes and systems is crucial to better meet the needs of stakeholders 
for whom the systems are built. This approach sets our foundation of the end-to-end  
(life cycle) approach to SI. Therefore BPI is an important element of our SIF.  
An understanding of the concept of a business process and the need to conduct integrated 
business process analysis is a prerequisite for SI.  

BPI refers to integration of processes across multiple systems and environments 
within or across enterprises (Themistocleous and Corbitt, 2006; Zhu et al., 2004).  
A business process is a collection of activities that creates an output that is of value to 
some customer (Hammer and Champy, 1993). Integration of business processes, at 
enterprise or cross-enterprise levels, helps organisations to increase the quality of services 
and products by achieving significant improvements (Davenport, 1993). BPI requires 
integration of data, applications, standards and alignment of processes with IT. The goal 
of BPI is to create frictionless knowledge and application sharing within the enterprise. 

BPI can also be described in four layers of compatibility (Huang et al., 2003), 
namely, technical, operational, strategic, and political and legal environment 
compatibility. At the technical compatibility layer BPI requires companies to adopt 
compatible technology, including data formats, communication protocols, network 
infrastructures, security policies, applications, and computing platforms. For the purposes 
of operational compatibility, business units need to adopt compatible workflow and 
business processes to facilitate operational integration. Business units need to develop  
a common set of goals, cultures, and objectives for achieving strategic compatibility. 
Finally, at the political and legal environment compatibility layer, business units/partners 
are required to manage and share cross-border information flow even though they  
face different legal environments, due to different local laws and industry-specific 
regulations.  

There are three main types of process integration: integration-within-process,  
cross-functional process-to-process integration, and external process integration. 
Integration-within-process is achieved by the coordination between individual human  
and software actors as they perform the work of the organisation, cross-functional 
process-to-process integration is achieved by the coordination between the efforts  
of organisational units such as departments and divisions that have different roles  
to play in the execution of shared processes, and external process integration is  
achieved by connecting an organisation with its suppliers and customers (Stohr and 
Nickerson, 2003). 

Successful BPI initiatives require modelling and verifying business processes with all 
stakeholders, automating and eliminating redundant processes, monitoring, measuring 
and continuously improving the processes (Gold-Bernstein and Ruh, 2004).  
Business process model helps integrate business processes more effectively and  
easily and it provides a complete definition, including process scope, process  
workflow and logic, work breakdown, entities and transformations, business rules, 
resources and activity times. Process models also help detect improvement opportunities 
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by finding overlapping or redundant activities, non-value added activities, resource  
gaps and inefficient processes. Gold-Bernstein and Ruh also suggest that standards  
play an important role for the success of BPI by providing long-term viability,  
reuse, and management of business processes. In addition, (Mendoza et al., 2006)  
suggest a different set of success factors for BPI, including good understanding of 
organisational structure and determination of its support for the integration of the process, 
technological infrastructure, effective project leadership, relevant user involvement,  
high-expertise project team, effective change management strategy and project 
management. Aubert et al. (2003) suggest four different information quality attributes  
to evaluate and measure the success of process integration (Aubert et al., 2003). These 
measures as shown in Table 2 are accessibility, transparency, timeliness, and granularity 
based on the premise that effective process integration utilises and leverages the 
information quality. 

Table 2 Measures for process integration 

Measure Attributes of data 

Accessibility  Availability of the data, easy and convenient access to data within the process, 
and clarity of the data which is easy to manipulate 

Transparency Understandability of data which is passed from one task to another within a 
process, consistency and completeness of this data, standardisation of data 
which allows common understanding within the user throughout the process 

Timeliness Currency of the data which is passed from one task to another within a process 
Granularity Level of detail, information passed from one task to another in a process must 

balance conciseness and completeness, in a completely integrated process, 
there is enough detail of information for people to perform each activity 
without overwhelming them with excessive detail 

Source: Aubert et al. (2003) 

5.6.2 Extended Enterprise Application Integration (EEAI) 

In the previous section, we discussed the BPI within the concept of enterprise  
integration. While BPI mainly concerns the integration of processes, Enterprise 
Application Integration (EAI) is focused on information and data integration  
at application level (Raut and Basavaraja, 2003; Hasselbring, 2000; Themistocleous  
and Corbitt, 2006). EAI was driven by the need to integrate COTS applications that 
became available and widely used in mid 1990s to support specific business functions. 
The installation of these products required integration with related legacy systems.  
EAI originated as the practice of aligning COTS and legacy systems (Cummins, 2002) 
but it has become one of the most important approaches to solving SI problems  
within enterprises (Irani et al., 2003). Through solving the integration problem within 
enterprises, EAI offers some benefits to the enterprises. These benefits are listed by Yang 
and Lu (2005), Banerjee et al. (2005), Gold-Bernstein and Ruh (2004), Cummins (2002) 
and Gable (2002). 

In our SIF, the term ‘extended enterprise’ represents the concept of viewing the 
enterprise together with its business partners, suppliers, and customers. Extended 
enterprise applications integration includes a web of relationships between a company 
and its employees, managers, partners, customers, suppliers, and markets. EEAI is 
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concerned with intra and inter enterprise operations and with improving their efficiency 
and effectiveness (Kosanke et al., 1999). Integration of extended enterprise application is 
driven by market globalisation, increase in mergers and acquisitions activities, need to 
comply to regulations, competitive environment which requires increased efficiency and 
reduced cycle times, cost and effort, and increased customer satisfaction (Gold-Bernstein 
and Ruh, 2004; Smith et al., 2002; Pinkston, 2001).  

Lam (2005) identifies four main categories within extended enterprise integration 
initiatives: EAI – the integration of IT systems within an enterprise, typically to improve 
business efficiency and to meet needs for real-time information processing;  
Web Integration – the integration of legacy systems with web-based applications, driven 
by a need to provide customers with a web channel for accessing products, services,  
or Information; Business-to-Customer (B2C) integration – the integration of back-end 
transactional IT systems, which may be legacy in nature, with web-based front-end 
applications such as storefronts and personalisation engines to provide B2C solutions; 
and Business-to-Business (B2B) integration – the integration of IT systems between 
different organisations to support B2B activities such as integrated supply chain 
management. (Huang and Irawani, 2005) analysed the role of information sharing in 
optimising supply-chains. They emphasised that choosing the right partner for  
selective-information sharing can significantly reduce the manufacturer’s cost. Their 
research focused on how factors such as the manufacturer’s capacity and  
shortfall-holding cost ratio or retailers’ market shares and order sizes can affect this 
partner-selection decision. Each EEAI solution may have different characteristics and 
utilise different architectures. Within these four categories EAI and B2B are commonly 
used in enterprise integration solutions. Although they share fundamental architectural 
principles, each has unique characteristics (Pinkston, 2001). 

Despite many benefits of EEAI, many factors affect the success of its 
implementation. Venkatachalam (2006) groups these factors as people, process, and 
technology related challenges. People related challenges include change management, 
proper training, resource allocation, and the ability of the staff to meet what’s  
needed. Process related challenges include systems migration, reengineering, and 
management. Technology related challenges include the functionality of hardware  
and software, management of systems and applications, and the integrity and usefulness 
of data.  

A list of critical success factors for the effective implementation of extended 
enterprise integration can be grouped as business, organisation, technology, and project 
related (Themistocleous and Irani, 2001; Lam, 2005; Pinkston, 2001; Mendoza et al., 
2006). Table 3 lists these factors for the success of EEAI. A similar study by Klein et al. 
(2007) investigated the benefits of sharing of information between B2B logistics partners, 
which must be enabled by the integration of disparate information systems across them. 
Based on data from 91 such dyadic relationships using inter-organisational IT, they found 
that performance gains accrue when parties share strategic information and customise IT; 
mutual trust enables IT customisation and strategic-information flows and equitable 
relationship-specific investments positively impact IT customisation, mutual trust, and 
performance. 
 
 
 



   

 

   

   
 

   

   

 

   

   98 R. Jain et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

Table 3 Critical success factors for EEAI 

Business related factors • Overall integration strategy 
• Strong business case for EAI 
• Process interoperability with business partners 

Organisation related factors • Top management support 
• Business process change and overcoming resistance to change 
• Good organisational and cultural fit. Handling legacy systems 

Technology related factors • Handling legacy systems 
• Planning technology 
• Common data standards 
• Use of right EAI tools 
• Use of mature technology 

Project related factors • Realistic project plans and schedule, client involvement 

• Communication, consultation and training 

• Required skills and expertise onboard 

• Vendor competence 

• Monitoring and feedback 

• Proper migration approach 

• Adequate testing plans 

5.7 Program Management 

SI initiatives involving large-scale projects and/or multi-development teams usually 
require an integrated PM approach. PM is the discipline which helps to manage complex 
SI programs and coordinate business processes, strategies, several systems, contractors, 
equipment/product suppliers and in-house staff (Hoffmann, 1992). PM and SI activities 
should not be considered as separate initiatives; rather PM should be structured such as to 
be leverage for integration activities. The two functions have important stakes in the 
success of the system. Therefore, it is important that these two functions do not have 
competing differences, contradictions, or inconsistencies in defining and realising a 
successful system. 

A PM function structured to support SI aims:  

• to provide the foundation for such an appropriate PM structure by defining the roles 
and responsibilities for the PM team 

• to address communication within and across the development teams involved  
in integrating the system 

• to provide a facility for cross-team discussion, and responsibility for overall program 
(SI) success 

• to define the metrics and serve as a guideline for measuring and monitoring effective 
communication in all teams, at all levels 

• to define quality criteria of the program and provide support for assessing quality and 
suggest improvements. 
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The Systems Integration Master Plan (SIMP) will be created in consultation with the PM 
as the resource allocation will be responsibility of the latter. An SIMP would include: 
system introduction in terms of system description, risk assessment, measures of 
effectiveness, critical technical parameters (KPP’s, TPM’s, etc.); an integrated test 
program summary in terms of a schedule and its management; a description of the 
development test and evaluation including the subsystem acceptance criteria;  
a description of the operational test and evaluation including an acceptance criteria 
against the operational requirements; and a resource summary for entire test and 
evaluation including equipment, sites, support equipment, and manpower and personnel. 
Identification and assessment of uncertainties and risks is a critical component of SI 
planning. Simulation models have been used for this purpose for their cost saving 
benefits but with their limitations. Wong et al. (2008) successfully developed a tool to 
measure supply chain performance in the real environment using Data Envelopment 
Analysis (DEA) supply chain model enhanced with Monte Carlo (random sampling) 
methodology. This method proves to be a cost saving and efficient way to handle 
uncertainties and could be used in other relevant fields other than supply chain, to 
measure efficiency. 

Measurement and assessment of SI success is as much important a function as 
planning and coordinating for PM. Well-defined metrics are required to assess the 
success of SI initiatives. PM, planning and measurement lead to improved SI Maturity.  

5.8 Testing, Verification and Validation 

Testing, and Verification and Validation (V&V) are important aspects of SI which 
qualify the system for the ready use of the user. V&V is a collection of analysis and 
testing activities across the full life cycle and complements the efforts of other  
quality-engineering functions (Wallace and Fujii, 1989). Verification establishes the truth 
of correspondence between a product/system and its specification. The associated 
activities verify if we are building the right product/system, and that we are testing what 
we were supposed to test. The purpose of verification is to confirm that the specified 
design requirements are fulfilled by the system (ISO/IEC-15288, 2008). The results of 
Verification provide the information required to effect the remedial actions that correct 
non-conformances in the realised system or the processes that act on it. Validation  
is the act of establishing the fitness of a product/system for its deployment capability.  
An example is the comparison of the actual system response of an online transaction to 
what was originally expected, requested, and finally approved. Validation establishes  
the fitness of a product/system for its operational mission based on operational or  
field testing. The purpose of the validation is to provide objective evidence that  
the services provided by a system when in use comply with stakeholders’ requirements 
(ISO/IEC-15288, 2008). This process performs a comparative assessment and confirms 
that the stakeholders’ requirements are correctly defined. Where variances are identified, 
these are recorded and guide the corrective actions. Both V&V activities should be traced 
back to the system requirements. Thus both V&V are back end processes that aid  
and ensure effective SI. The terms qualification and testing are often used synonymously 
with V&V. 
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The quality of V&V directly impacts the overall outcome of SI. This has been 
strongly felt in the development of embedded software systems. In industrial applications 
using advanced embedded technologies, real-time software quality has a continuously 
increasing impact on system quality. A systematic approach using different testing 
methods to predict the defects and performance is proposed by Amuthakkannan et al. 
(2008) to improve the quality of real-time software by identifying the defects in software 
product and improving the development processes. The minimum and optional set of 
tasks required for V&V and their issues are discussed in Wallace and Fujii (1989) and 
IEEE-1012 (2004). In the SIPM (Jain et al., 2008a) the prerequisites of the integration 
V&V phase are addressed in the upstream activities of SI process. These upstream 
activities provide the required artifacts and requirements for an upfront and effective 
planning of the V&V phase. Ten such supporting activities of V&V from other phases of 
SIPM were identified. These are:  

• Integration Requirements Phase: (Derive Qualification Requirements, Derive Test 
Cases). 

• Integration Architecture Phase: (Develop Semantics for Integration, Develop 
Semantic Specification, Develop Qualification Architecture, Develop Test Sequence, 
Develop Test Environments Specifications, Test Architecture). 

• Integration Planning Phase: (Develop System Prototype, Test System Prototype). 
These ten activities along with the V&V activities aid in achieving better quality of 
integration V&V. 

Qualification requirements address the needs to qualify the system as being  
designed right, the right system, and an acceptable system (Buede, 2000). Qualification  
is the process of verifying and validating the system design and then obtaining the 
stakeholder’s acceptance of the design. Qualification is associated with testing, 
acceptance, V&V. The four elements of the qualification requirements (Buede, 2000) are 

• Observance: How the estimates (qualification data) for each input/output and 
system-wide requirements will be obtained, that is, test analysis and simulation, 
inspection, or demonstration. 

• Verification plan: How the qualification data will be used to determine that the real 
systems conforms to the design that is developed. 

• Validation plan: How the qualification data will be used to determine that the real 
system complies with the originating requirements. 

• Acceptance plan: How the qualification data will be used to determine that the real 
system is acceptable to the stakeholders. 

Qualification architecture involves defining and managing the test activities as shown in 
Figure 4. Test approaches are developed to provide the objectives, schedule, environment 
requirements, and entry and exit criteria for the test stages. Based on these approaches 
tests are planned and prepared to identify test conditions, and test cycles, and to define 
the input data and expected results. It is important to establish the appropriate test 
environments and to ensure that they are tested prior to the execution. Test cases and 
sequence for test executions are derived based on the system requirements and the test 
approaches. 
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During Verification And Validation (V&V) the test scripts are verified and validated, 
test environment is developed and the tests are executed in its sequence. These activities 
are based on the developed qualification plan. There are two types of testing, 
Functional/Life Cycle Approach and Structural. Figure 5 shows some of these tests, their 
order in the lifecycle, their dependencies, and how the front end activities are traced to 
these tests. In functional testing test the functionality of the system and ensure that the 
user functional requirements and specifications are met. Test conditions are generated to 
evaluate the correctness of the application. In structural testing we test the structural and 
physical capability of the system and ensure that the system is structurally and  
technically sound, can perform the intended tasks, and that the components integration 
works cohesively. These include backup and recovery testing, contingency testing, job 
stream testing, operational testing, performance testing, security testing, and 
stress/volume/scalability testing. The test results are logged and documented. The errors 
are fixed through rework and change control management. IEEE-1012 (2004) provides 
detail guidelines on how to perform V&V and what to report at each phase of 
development for attaining all the benefits of V&V. 

Figure 4 Test lifecycle 

 

Figure 5 System Verification and Validation 
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5.9 Configuration Management 

Systems need to adapt to the rapid change driven by the global dynamic marketplace, 
technological evolution, and variety of environments (Fricke and Schulz, 2005).  
Large and complex systems often face this kind of rapid change and they need new 
configuration or have to be ported and adopted to different environments (Feiler, 1990).  
A systematic approach is required in order to keep track of this continuous evolution of a 
system and its environment. Traceability of changes is critical in controlling and 
managing their impact on the SI lifecycle. Since change is inevitable for a system,  
ability to trace and control those changes becomes more important in increasing the 
effectiveness of SI. CM plays a key role in achieving SI effectiveness and is part of every 
sub-process of integration (Jain et al., 2008a).  

CM is the process of controlling the evolution of families of systems and provides 
techniques, methods, and procedures to maintain a product history, to uniquely  
identify and locate each version of a system, and to initiate, evaluate, and control change 
to the product during development and after release (Feiler, 1990; Stevens et al., 1998; 
Hass, 2003). In many systems development and system’s quality related literature  
and international standards CM is reported as a key activity in increasing the quality  
of systems, products and processes. IEEE (IEEE-729-1998) defines the term CM as the 
process of identifying and defining components in a system, controlling the release and 
change throughout the life cycle, recording and reporting the status of components and 
change requests, and verifying the completeness and correctness of system components. 
The four key elements of CM, as reflected in this definition, are identification, control, 
accounting, and audit. They are essential to maintaining product and process integrity, 
providing change management, and providing visibility. 

CM is also required for the success of other components of SIF including 
Requirements Management, Legacy and COTS SI, Interface Management, and Testing, 
V&V. CM supports the functional and physical configuration of the SI. The primary 
objective of CM is to ensure effective management of the evolving configuration of a 
system, both hardware and software, during its lifecycle. Fundamental to this objective is 
the establishment, control, and maintenance of software and hardware functional, 
allocated, development, test, and product baselines. Baselines are reference points for 
maintaining development and control. These baselines, or reference points, are 
established by review and acceptance of requirements, design, and product specification 
documents. They may reflect the end of one phase or segment of a phase as well as the 
beginning of a new phase. The baseline may reflect the standard project milestone event, 
and the event reviews. As each segment of a phase is approved the software and/or 
hardware baseline is placed under configuration control (INCOSE, 2006).  

Effectiveness of CM activities depends on several factors. One approach measures the 
CM effectiveness in terms of consistency, stability, and traceability (Stevens et al., 1998). 
This approach emphasises the importance of consistent and stable information for CM 
effectiveness in order to increase the traceability of the change requirements throughout 
the system. 

Besides its benefits, CM is a challenging task for systems development.  
Dart classifies the CM related challenges into five categories as technological,  
process-oriented, managerial, political, and standardisation issues and suggests  
a framework for successful CM adoption (Dart, 1991) as shown in Table 4. 
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Table 4 Framework for successful CM adoption 

Phase 1 Determine CM status 
and needs 

This phase requires assessment and documentation of the 
current status and requirements for the Configuration 
Management. Gathering management support, determining 
necessary processes, prioritising the CM needs, designating the 
CM adoption team, and getting involvement of the potential 
role players in the CM solution are also supportive activities 
within this phase 

Phase 2 Examine state-of-the-art 
in CM tools 

This phase requires identification and evaluation of CM 
systems 

Phase 3 Evaluate candidate CM 
tools 

In this phase, the alternatives are rated and selected based on 
the evaluation criteria 

Phase 4 Write the adoption plan In this phase, adoption guide and plan for strategy is written, 
budget is designated, and education and training needs are 
assessed. A pilot project is selected, in-house standards, 
policies, and procedures are written, and success criteria and 
milestones for adoption and for pilot project are defined 

Phase 5 Implement a pilot 
project 

In this phase, pilot project is implemented, evaluated and 
monitored. If required, adoption plan is updated based on pilot 
project results 

Phase 6 Institutionalise CM 
system 

In this phase, policies and procedures are refined at all levels 
for transitioning to the new CM system, CM system to each 
group is tailored, training courses, consulting support, user 
groups are planned. Procedures, policies, processes based on 
user feedback to improve quality and acceptability are 
evaluated against success criteria 

Phase 7 Prepare to start again Once the CM system cannot be further tailored and extended,  
a new adoption process is adopted. In this phase metrics  
such as timing, scheduling, people numbers are assessed, 
evaluation criteria, plans, strategies, resistance handling 
procedures are reviewed 

Source: Dart (1991) 

6 Framework validation 

The framework has been developed over the last several years of research, practice, and 
teaching by the primary author of this paper. The framework has been the basis of further 
development of detailed SI activities and processes. These have been used to assess SI 
process improvement and maturity at three different organisations and close to a dozen 
different development projects. Several related researches have been conducted by 
researchers on the different aspects of SI of the framework. Some of these areas include 
defining a SI process model based on the framework (Jain et al., 2008a), analysing the 
impact of system architecture on integration complexity (Jain et al., 2008c), and defining 
open systems interoperability and based on this building an architecture assessment 
framework. Figure 6 shows the areas of research emerging out the SIF that are currently 
being pursued and completed. Some of the findings have already been published in peer 
reviewed journals while others are being currently reviewed for publication. 
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Figure 6 SIF validation (see online version for colours) 

 

7 Conclusion 

SI is an emerging field and the most important part of systems engineering. SI requires  
a holistic end-to-end approach for purposes of better traceability starting early on.  
There is a need for a model framework that clearly specifies all aspects of SI and can be 
used as a baseline to assess SIM. This baseline framework can be used to assess the  
SI activities over the entire lifecycle in terms of how well they are defined, measured,  
and managed. 

In this paper we defined such a comprehensive approach to SI and introduced a SI 
framework and discussed how SI maturity, readiness and integration-friendliness 
measures are built into this framework. The framework identifies four critical 
development processes for SI, namely integrated requirements engineering, interface 
control and management, V&V, and CM. The framework also addresses common issues 
of SI in terms of interoperability, legacy and COTS integration, and enterprise and 
extended enterprise integration. 

The authors have further developed a SI process model by defining the SI processes 
and activities that would result in system operational effectiveness based on the 
framework. The proposed framework will provide guidance in identifying the weak areas 
and gaps and help in allocating efforts and resources appropriately. The authors have also 
analysed the application of this framework and the process model to assess the 
effectiveness of SI on projects based on the level of SI activities being performed  
(Jain et al., 2008a). Future areas of research would involve understanding how these SI 
activities would help in assessing the integration readiness and maturity of a system by 
identifying corresponding metrics for each of the activities. Towards this goal the authors 
are currently working on developing a SI readiness indicator and a model to assess and 
optimise SI maturity in terms of integration readiness, integration complexity, and 
operational effectiveness. Such a model will facilitate the projects in assessing the impact 
of SI activities on system quality and performance and understanding the scope of 
optimising the SI process. This will go a long way in reducing cost and time for product 
development and improving competitiveness.  
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