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  The Nature of Renewable Natural Resources

1. Renewable resources: biological entities with
the capacity for reproduction and growth or
inanimate mass/energy source subject to
constant and/or continuous change
2. As noted, modeling dynamics of resources
requires defining the state variables i.e., those
that adequately describe the state of the resource
at a point in time.
3. Let Xt (discrete), X(t) (continuous) denote the
size the stock at time t.
4. The natural resource dynamics/without
harvesting/ is described by the difference
equation (discrete case)

Assumption: growth is density dependent; i.e.,
changes in the resource depend on current stock
size (Xt or X(t)).
F() = the growth function, and is defined over the
interval X≥0 with two values for which
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Functions that exhibit these properties are shown
below:

The characteristics of these functions are:
1. A purely compensatory growth function:  if
              And F() is strictly concave=> the
    relative growth rate r(X) = F(X)/X is
    decreasing in x.
2. A depensatory growth function:  if           and
    F() is initially convex then concave (thus it has
    an inflection point.
3. Growth functions with critical depensation:  if
                and F() is initially convex then
     concave, then       is the minimum viable
     population.
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The distinction between compensatory and
depensatory growth functions is important in
understanding the relationship between yield
and effort.
A simple and best known functional specification
for F() is the logistic model.  When written as a
differential equation, it takes the form:

where r = the intrinsic growth rate and K = the
environmental carrying capacity.

The explicit solution for X(t) is:

where:

This can be shown graphically as follows:
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For the discrete case, more complex results can
arise, depending on the value of r

r=3

t

r=0.2

t

r=1.99

r=2.2

t

r=2.5

t

r=2.7

t



               Production/Yield Functions
The harvest rate per unit of time for a renewable
resources is a function of inputs and the stock at
time t.
Let E(t) be a measure of inputs referred to as
“effort”.

The production function may be written as:
Y(t) = H(E(t), X(t)), where Y(t) is the harvest rate
measured in the same units as X(t).

A production function used in fishery management
can be defined as:
Y(t) = qE(t)X(t), where q>0 (a constant), and is
sometimes called a “catchability coefficient.” This
function is derived on the assumptions that:
   - the catch per effort (Y/E) is proportional to the density
      of fish in a given water body (the function is referred
      to as catch-per-unit-effort (CPUE) production
      function)
   - the density of fish is proportion to the abundance X(t).

Changes in the resource stock must reflect growth
and harvest: ( )1t t t t
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From this we derive a sustained yield function:  This refers
to an equilibrium level that expresses the sustainable
harvest (yield) as a function of effort.  The sustained yield
means that X, Y, and E remain constant over time:



Managing Renewable Resource Stocks:
The Static Efficient Sustainable Yield by a sole owner

                    Derivation of the
       Maximum Sustainable Yield (MSY):
The maximum sustainable yield (MSY): a common
objective of renewable resource management,
which has been to maintain the standing stock
X(t)=X so as to afford the MSY
With continuous time this means maximizing the
sustained yield Y=F(X), which requires F’(X)=0.
For the logistic growth function,

    F’(x)=0 at XMSY=K/2 and YMSY=rK/4.



Alternatively, one can maximize the yield function
Y=Y(E) with respect to E, but the results are the
same.

Economists tend to view renewable resources
simply as a type of capital asset that should be
managed so as to maximize its value to society.
If the objective is to maximize the present value of
a renewable resource,the static rent maximization
approach is not optimal.  Instead, the problem
needs to be reformulated as:

Maximize ∑ρt U(Xt, Yt),
         subject to Xt+1 –Xt=F(Xt)-Yt  and where
         X0 is given.

In a steady-state, the first-order conditions collapse
to three equations in three unknowns, X, Y, and λ.
After some manipulation, ρλ can be eliminated,
leaving the following two-equation system:

   F’(X)+ (∂U(.)/∂X)/∂U(.)/∂Y = δ        EQ 5

       and Y=F(X)       EQ 6

Equation 5 is the fundamental equation for
maximizing the present value of a renewable
resource:  with steady-state levels of X and Y, the
resource’s own rate of return (LSH) is equated to
the discount rate (RHS).



           An economic interpretation of equation 5:
      - LHS: the first term is the marginal net growth rate while
        the second is the “marginal stock effort” that measures
        the marginal value of the stock relative to the marginal
        value of the harvest.
      -The two terms on the LHS sum to the “resource’s internal
        rate of return”
By the implicit function theorem, equation 5 implies a curve
Y=h(X) and we can plot this along with Y=F(x) to identify the
optimal levels of X* and Y*.

Let us assume the asset behaves according to a logistic growth
function, F(Xt)=rXt(1=Xt)/K), then the production function
Yt=H(Xt, Et) = qXtEt, and the cost function can be noted as
Ct=cEt.

We can solve the production function for Et=Yt/(qXt) and
substitute this into the cost equation to obtain the optimal cost
function Ct=cYt/(qXt).

Assuming a constant price and constant marginal cost, we can
define U(X,Y) as profit, which is pYt-cYt/(qXt)=[p-c/(qXt)]Yt.
The derivative of the net growth function is F’(Xt)=r(1-2Xt/K).
Using this derivative and evaluating the partials in equation 5 at
the steady-state, equation 5 then becomes:

                r(1-2X/K)+cY[X(pqX-c] = δ            EQ 7

Solving equation 7 for Y we obtain:

Y = h(X) = (X(pqX-c)[δ-r(1-2X/K)]/c.

The value of h(X) depends on the entire set of bio-economic
parameters c, δ, K, p, q and r, while the maximum sustainable
yield(MSY) and XMSY only depend on r and K.



The intersection of h(X and F(X) could result in the optimal stock
lying above or below XMSY=K/2.

The optimal stock will be less than K/2 if the ‘marginal stock effect’
is less than the discount rate.

The optimal stock will be greater than K/2 if smaller renewable
stocks significantly increase cost.  In such a case, it is optimal to
maintain a large stock even greater than the MSY stock.

  Open Access Common Property Resource (CPR) Choices
Many renewable resources can be classified as “common
property”, I.e., no individual or firm possesses exclusive rights to
exploit them.

The general conclusion is that common property resources tend to
be over-exploited. Yet this rule is often misunderstood. One result
is that policymakers often have failed to achieve desired or stated
objectives.

An early model of a common property resource is due to Gordon
(1954), with the property that is follows the yield-effort curve of the
Schaefer model and assumes a constant fish price p and effort
cost c. Under these assumptions, TR = pY, and TC = cE, as
functions of effort E.



Gordon argues that:
       - the optimum point is at E = E*, where MR = MC,
       - the CPR will reach an equilibrium at E =    ,  where
         TR = TC (or, AR = AC).
       - Rent, TR - TC, (which is maximized at E*) is totally
         “dissipated” at E =          and
       - the resource stock will be seriously depleted, since
          E*>EMSY.

Though he argues much about the fact that E*<EMSY,
dynamic analysis shows that this conclusion depends on
the assumption of zero discounting, which Gordon makes
tacitly rather than explicitly in his analysis.
 It is always true, even for δ>0, that the optimal level is less
than     ,which in fact corresponds to
The argument behind this prediction is simple:  sustained
effort level will not occur at:
      - E >         as producers will lose money and give up
         production, or
      - E <          as producers make more than their
         opportunity costs, cE, attracting more producers (or
        existing producers to expand their effort).

Equilibrium can be established only if E =
Gordon calls this bionomic equilibrium of the common
property fishery.
To express this in terms of theory, we have:

     X = F(X) - Y                                   EQ   8.
     Y = xEX                                         EQ   9.
     U(X,E) = pY - cE = (pqX - c)E      EQ 10.
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Bionomic equilibrium occurs when net returns U(X,E) are
zero.
Using equation 7, we have X =         = c/pq      EQ 11.
Thus       is the stock level at which net returns from fishing
become zero.
The corresponding bionomic yield and effort levels are
obtained from equations 8 and 9,                        and
 E ∞ =Y ∞ /qX ∞ =F(X ∞)/qX∞
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                           Extinction of Species
Could common-property exploitation drive a renewable
resource stock to extinction?
According to equation11, we have           ; if also
then bionomic equilibrium also is a biological equilibrium
at X = X∞
But if                 (i.e.,             = the minimum viable
population), then extinction will result, although exploitation
will cease when X(t) falls below             .
The fact that        is positive is a result of the form of the
production function used Y = qEX.
This implies that the catch per unit effort Y/E = >0 as
X =>0.  Since price p is also assumed constant, it follows
that revenues will fall below effort costs at low but positive
X levels.  In fact, this model assumes that the cost of
driving the resource to extinction is infinite  a rather strong
assumption.  But even where the marginal cost is finite,
policy instruments can be used to forestall extinction.
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                       Optimal Forestry Rotation
Let V(t) denote the “stumpage” value of a given strand of
trees at age t years.
Typically we have:

       V(t) = 0 for O<=t<=t1 and
       V(t)>0 for t>t1.

If the forest is clear-cut at age t, net revenue will be
       V(t) - c,
where c is the total cost of clear-cutting and replanting.
After clear-cutting a new rotation is begun and we wish to
determine the optimal rotation period t = T.

We assume a discount rate δ, and suppose that all
parameters remain constant over time (e.g., soil
productivity, price, discount rate, and replanting cost).
Given these assumptions, from the principle of optimality it
follows that all rotation periods will have the same length T.

The total net present value (TNPV) of all future forest
cuttings can be defined as:

      J=(V(T)-c) (e-δT+e-2δT+…)=(V(T)-c)/(eδT-1)

The optimal rotation period T is then obtained by setting
δJ/δT = 0.  The resulting equation is:

           V’(T)/(V(T)-c) =δ/(1-e-δ T)

This is called the Faustmann (1949) equation.  Since the
growth rate of forests usually is quite low, the rotation
period is highly sensitive to the discount rate.  The average
yield also is sensitive to the discount rate.


