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Renewable Natural Resource Technologies
As noted previously, renewable natural resources are those that within
a given positive rate horizon can be renewed. Solar energy is the
underlying source, which in turn affects the level of photosynthesis in
plants, and the magnitude of wind, solar, and tidal energy. We include
in this category also the role of geothermal and hydro technologies as
they also are affected by solar energy radiation.
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Figure 4.1. The Earth's Energy Flows. Adapted from M. King Hubbert, Energy
Resources (Washington, D.C.: National Academy of Sciences, National Resources
Council, 1962), reprinted in idem, “The Energy Resources of the Earth,” Scientific
American 224 (September 1971): 60-70.




Water Resources

From the earth’s hydrological cycle, we focus on three dimensions of a key
natural resource, namely, water. Rainfall is critical to agriculture, to human
settlement densities, to the availability of hydropower mechanical and electrical
energy, as well as to common property fishing resources. Rainfall also is
erratic in many parts of the world, and the variability of rainfall subjects
populations to periodic drought in agricultural crops, as well as the risk of
famine for some populations. How accumulated stocks of water are used
depends in part on the technology of accumulation, purification, and the
disposal of waste products from human activity. Since only a fraction of the
world’s accumulated stocks of water are potable, how water is priced ultimately
has a significant bearing on economic and environmental efficiency.
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Figure 7.1. Average Annual Water Rates for the Contiguous United States. Data
from U.S. Water Resources Council, The Nation’s Water Resources (Washington,
D.C.: U.S. Government Printing Office, 1968).
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Clean Water Access Rates
As population growth expands, unless offset by energy efficient
technologies, access rates to clean potable water may not expand,
and may even decline. Much of the failure to improve clean water
access rates can be traced to the absence of clearly defined and
judicially enforced property rights, with the result that populations may
remain at rising levels of health risks.
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Climatic Dimensions in Natural Resource Decisions

The level and variability of rainfall has a critical impact on agriculture.
Terracing, fertilizer additions, seed multiplication and genetic modification,
and the use of irrigated systems can maintain productivity, but the net gain
in terms of energy use may not be as great as it appears, once one
considers the cost of these innovations. In turn, yields may be affected as
deforestation expands and the amount of arable land declines as
conversion proceeds to accommodate larger population levels.
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Comparative Agricultural Yields

Per Capita Food Production Indices
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Cereal Yields in Ethiopia
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Regional Fertilizer Consumption per Hectare
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Hydropower Technology
Beyond agriculture, water resources also are an alternative to the use
of exhaustible fossil and nuclear resources in the generation of
electricity. The potential of hydropower is determined by variations in

the elevation of land over which water passes, how concentrated into
rivers are those flows, and the density and variability of annual rainfall.

Table 7.1. Hydroelectricity in the United States, 1900-1980

Hydroelectric Hydroelectric Installed Hydro-
Hydroelectric generation (in as a Percentage of electric Capacity
Capacity (in thousands of All Electricity as a Percentage of
net gigawatts) gigawatt-hours) Generation Ultimate Capacity

0.5 2.786 70.2% 0.3%
1.2 8.626 48.9 0.6%
3.2 18.779 34.3 1.6
8.6 35.870 34.2 43
11.2 50.131 33.4 5.6
15.9 84.747 35.9 7.9
18.7 100.685 29.3 9.4
25.0 116.236 20.7 12.5
32.0 149.000 17.7 16.0
4.0 196.981 17.0 22.0
55.0 250.610 15.3 27.5
55.0 269.582 15.0 27.5
56.0 273.003 14.7 28.0
62.0 272.000 13.8 31.0
64.0 301.010 15.3 32.0
66.0 300.020 14.4 33.0
68.0 284.132 13.9 34.0
68.0 220.143 10.4 34.0
71.0 280.419 12.7 35.5
71.2 279.783 12.4 35.6
71.4 276.021 12.1 35.7

Sources: U.S. Department of Energy, Energy Information Administration, Monthly Energy
Review (Washington, D.C.: U.S. Government Printing Office, May 1981); Federal Power Com-
mission, Annual Summary of Capacity, Production, and Fuel Consumption (Washington, D.C.:
U.S. Government Printing Office, selected years); and Sam H. Schurr and Bruce C. Netschert,
Energy in the American Economy, 1850-1975 (Baltimore: Johns Hopkins Press for Resources
for the Future, 1960).




Solar Energy Technology
Solar energy technology utilizes direct radiation from the sun to provide
space heating, the generation of steam that can be used to operate an
electrical generating unit, or direct conversion of solar radiation into
electricity. For the latter, much depends on the energy efficiency of
semi-conductor materials used in the collection, concentration, and
conversion of solar radiation into electrical charges.
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Figure 7.3. The Earth's Spectral Distribution of Solar Radiation. The outer distri-
bution refers to solar radiation reaching the earth at the top of its atmosphere. The in-
ner distribution refers to solar radiation reaching the ground, and takes into account
the absorbing effects of water vapor, carbon dioxide, oxygen, nitrogen, ozone, and
particles of dust. Data are based on a solar constant of 1.95 calories per square centi-
meter per minute. Adapted from D. M. Gates, “The Flow of Energy in the Biosphere,”
in Energy and Power, edited by the editors of Scientific American (San Francisco: W. H.
Freeman and Co., 1971), p. 47; Farrington Daniels, Direct Use of the Sun's Energy
(New York: Ballantine Books, 1974); and M. P. Thekaekara, ““Data on Incident Solar
Radiation," in Solar Cells, ed. Charles E. Backus (New York: IEEE Press, 1976), p. 3.

Calculating Solar Energy Potential
The potential level of solar energy in a given environment depends on the angle
of the surface relative to the sun, and on the intensity of radiation as a function of
latitude. For the United States, aggregate solar radiation arrives at an
approximate rate of 1650x10'? watts. Allowing for seasonal and nocturnal
variations, if solar radiation is released t this rate for only half of any average
year, then the annual flow would provide the following total amount of energy:

E = 1650x10'? watts x 8760 hours per year/2
= 7.227 x 10'® watt-hours.

Since one watt-hour is equal to 3.413 Btu’s, the theoretically available solar
energy in the United States amounts to 2.4666 x 10'° Btu’s, or 24,700 quads.
This is over 300 times the amount of energy consumed from existing fossil,
nuclear, and hydropower resources. For developing countries in more tropical
climate zones, the ratio would be much higher.




Calculating Solar Heating Collector Requirements

Consider the storage capacity of a hot water tank. At 400 C, it can store up t01.67 x 10°
joules (158.48 Btu’s) of energy per kilogram. For a typical 140 square meter (1,500
square foot) residential structure, around 800 million joules (759,200 Btu’s) of energy
per day for space and water heating. If the residence uses a solar collector with an
efficiency of 500 watts per square meter, then over the course of a seven-hour day, the
energy per square meter of collector space would be be 3,500 watt-hours, or 12.6x10°
joules. The collector space needed to sustain 100 percent of daily space and water
heating is thus:

A = (8x108 joules of daily consumption)/(12.6x10%oules/m?/day)
= 63.49 m?

The volume of water necessary to sustain daily energy consumption is obtained by
dividing daily consumption b the thermal capacity of water. In the present case, the
necessary water storage volume is:

V = (8x108 joules of daily energy consumption)/(1.67x10° joules/kg of water storage)
= 4,790 kg = 4.79 cubic meters of water = 1,264 gallons of water.

The preceding can be expanded to allow for the infrequency of cloud-free sunny days,
based on the underlying climate regime.

Three variations of solar systems are illustrated below.
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Figure 7.5. Residential Solar Energy Systems. The figure is based on an 800-square-
foot collector. Numbers are in millions of Btu’s per year. From Albert Weinstein,
“Technical and Economic Considerations for Solar Heating and Cooling of Buildings:
A Report by Westinghouse Heating Electric Corporation,” in lachetta, Proceedings of
the Workshop on Solar Heating and Cooling of Buildings, p. 37.




Biomass and Biofuel Natural Resources
While solar technologies can provide substitution possibilities for reliance
on traditional and enhanced fossil and nuclear fuel technologies. Biomass
resources include cellulose and charcoal based wood, bio-digested gas
from organic wastes, as well as recycled solid waste for use as fuel in
cooking. We illustrate here some variations of these resources.

For some economies such as the U.S., continued application of energy in
the form of fertilizers, and in energy-saving capital equipment has permitted
a reduction in the amount of farmland as well as in the size of the farm
population, even though total agricultural production has increased. This
has enabled the U.S. to consider not only self-sufficiency in major food
crops, but also to consider the production of non-food biomass resources
such as ethanol, which functions as a substitute for refined gasoline, and is
now widely used throughout the U.S.

For developing economies, food self-sufficiency often does not exist, nor is
domestic food production typically sufficient to reach daily kilocaloric intake
levels consistent with maximization of life expectancy. As a result, biomass
fuel production is more problematic than elsewhere.
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Residential Primary Energy Fuels in Ethiopian Cooking and Heating

Ethiopia National Cooking Energy Profile
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Ethiopia relies more on wood energy resources for household
cooking and heating than countries with a higher level of per
capita income such as China or India. Because a substantial
proportion of fuelwood consumed is collected rather than
purchased, there is less incentive to consume fuelwood
efficiently through the use of stove technologies, while at the
same time, it leads to accelerated deforestation, especially in
the absence of well-defined property rights.

When broken into rural and urban samples, however, urban
consumers purchase a much higher share of their fuelwood
than do rural consumers, pointing to the costs of transportation,
as well as to a mechanism whereby fuelwood may be priced
more closely to its opportunity cost in the future as urbanization
proceeds.




Rural-Urban Differences in Residential Primary Energy
Fuels in Ethiopian Cooking and Heating

Ethiopia Rural Cooking Energy Profile
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Comparative Differences in Energy Consumption in
Developing Countries

Table 15.9. Sector Distribution and Technical Efficiency of Per Capita Energy Use in Rural Areas of Developing Countries, ca. 1975

India China Tanzania Nigeria Mexico

Distri- Effi- Distri- Effi- Distri- Effi- Distri- Effi- Distri- Effi-
bution ciency bution ciency bution ciency bution ciency bution ciency

Noncommercial Energy
Residential 0.265 5.0% 0.635 5.0% X 5.0% 0.819 5.0% 0.276 9.4%
Agricultural 0.510 6.5 0.263 16.9 Y 2.6 0.131 6.7 0.666 329
Transportation 0.225 2.9 0.102 3.1 . 29 0.050 3.3 0.058 2.8
Total 1.000 2 § 1.000 1.0000
Amount® 15.1 S i 18.3 61.6
Useful energy® 0.8 5.3% . 7.9% G 4.8% 0.9 4.9% 15.2 24.7%
Commercial energy®
Inputs 2.5 X 4 0.7 15.0
Useful energy 0.5 20.0% 4 20.0% 5 20.0% 0.14 20.0% 3.0 20.0%
Total Energy*
Inputs 17.2 . . 19.2 75.6
Useful energy 1.3 7.6% g 10.4% . 5.4% 1.1 5.9% 18.2 24.1%
Energy Mix
Noncommercial share of
total energy 85.8% 79.7% 96.2% 96.3% 80.4%
Noncommercial share of
useful energy 27.8% 28.1% 12.5% 10.9% 14.2%
Energy Intensity
In megajoules
Rural 202.32 282.09 273.64 119.98 167.97
Total® 49.01 12.88 14.76 9.27 35.56
In Btu's
Rural 191,952 267,641 259,617 113,832 159,364
Total® 46,501 12,222 14,000 8,799 33,737

Sources: Arjun Makhijani, “Energy in the Rural Third World,” in Energy in the Developing World—The Real Energy Crisis, ed. Vaclav Smil and William E.
Knowland (New York: Oxford University Press, 1980), p. 18. Per capita GDP figures used to estimate energy intensities have been derived from World Bank,
World Tables, 1980 (Baltimore: Johns Hopkins University Press, 1980).

3Unless otherwise noted, energy units given are in Gigajoules (10 joules).

Total energy intensity, or energy consumption per 1975 U.S. dollar of GDP, is based only on commercial energy. Given that rural per capita GDP estimates

1 COmmers 1 )| v Intensitis W 't 1\ |

Comparative studies on energy use patterns vary significantly
across countries. The higher is the level of per capita income,
the higher is the share of commercial energy.

In addition, the higher is the level of per capita income, the higher
is the end use energy efficiency. This reflects to some extent
differences in the age and vintage of energy-using capital stocks.

Finally, the higher is the level of per capita income, the lower is
the level of aggregate energy intensity. This difference provide a
further reflection of the impact of energy-conserving capital
stocks.




Geothermal Energy Technology

Countries as disparate as Iceland, Italy, and Ethiopia are
endowed with significant potential for geothermal energy. The
natural release of hot air and gases from fissures in the earth’s
surface plates can be tapped to generate steam for the operation
of commercial electric generating stations. Shown below is a
geographic distribution of geothermal sites, followed by an
illustration of basic geothermal steam generation technology.
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Wind Energy Technology
Wind energy potential is significant for many countries, including many developing
countries such as Ethiopia. Wind energy has long been used to empty flooded regions, as
in Holland centuries ago, and to lift water from boreholes in arid climates, as in the
southwestern United States and in the Sahel of West Africa.

More recently, windmill technology has been refined to be able to generate electricity from
large scale windmill grids. This already exists in California in the U.S., in Denmark, the
U.K., Germany, and France in Europe, and is now an option for developing countries
seeking to install generating capacity with fewer adverse effects on the environment in
comparison with traditional fossil fuel or nuclear technologies.

Figure 7.9. The Distribution of Wind Energy Potential in the United States. From
J. W. Reed, “Wind Climatology,"” in Second Workshop on Wind Energy Conversion
Systems, ed. F. R. Eldridge, NSF-RA-N-75-050 (Washington, D.C.: National Science
Foundation, 1975), pp. 319, 325, reprinted in David R. Inglis, Wind Power and Other
Energy Options (Ann Arbor: University of Michigan Press, 1978), p.

Source: http://www.awea.org/utility/wind_overview.html (total wind capacity = 12,634 MW as of June 30, 2007)
http://www.ferc.gov/industries/electric/indus-act/rto/rto-map.asp (RTOs as of September 2007)




Calibrating Wind Energy Technology Requirements
The kinetic energy from a windmill can be calculated as follows:
E = (.5)pV? joules per cubic meter, where p is the density of air, that is, its
kilogram unit mass divided by its cubic-meter volume. V2 is the square of
the meters-per-second velocity of air. In turn, when a volume of air moves
one meter, we can derive the available power per square meter of air as:

P=EV
= (.5)pV? watts per square meter.

Not all air flows can be converted to power. Moreover, in the case of rotary
windmills, power can not be expressed in simple cubic-meter blocks. To
adjust for efficiency, we restate the above as follows:

P = 2rr?pV3a(1-a)?, where:

np? is the cylindrical volume of air, in cubic meters;

p is the density of air, V3 is the cube of the velocity of entering air; and

a is the axial interference of the mindmill rotors, defined by the pitch of
the blades, as well as their number, width, and thickness.

When the rate of change in power is computed as a function of axial
interference, it is possible to determine the most efficient degree of axial
interference needed to obtain the maximum power from a given windflow. It
turns out that this occurs when the coefficient, a, has a value of .33, which
when inserted into the preceding equation yields:

P, = 27r2pV3(.333)(1-.333)
= (8/27)mr2pV/3

The theoretical net efficiency of a given wind machine is then defined as the
ratio of the maximum output to its actual output, i.e,:

IT= [(8/27)nr2pV3]/[.5nr2pV?3]
= (16/27) = .5926 = 59.3 percent.

In practice, there are may possible configurations of wind energy
technologies. lllustrated here are some of those alternatives.




Alternative Wind Energy Configurations
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7.11. Wind Energy Alternative Applications. From National Sci Foun-
on, Division of Advanced Energy and Resources Research and Technology, Wind

U.S. Annual Gross Renewable Energy Potential

For the U.S. alone, the annual gross renewable energy potential is over eight
times the presently known stocks of recoverable fossil fuel resources and is
127 times the presently known stock of nuclear energy reserves using
conventional fission technology. Yet substitution requires ultimately
consideration of relative life cycle costs relative to the level of aggregate
energy demand by end use. Such comparisons apply equally to developing
economies as well.

Table 7.5. U.S. Annual Gross Renewable Energy Potential

Renewable Resource Watts Distribution

IO"
10"?
10°

10"
loll
IO"
1010
]015

Hydropower
Direct solar energy
Biomass energy®
Hydrothermal power®
Geothermal energy
Wind energy
Tidal energy

Total®

Noaxmunauoo
XX X XXX X X

Note: Unless otherwise noted, all estimates are those identified in the chapter.

*Derived by multiplying the rate of photosynthetic energy by the gross amount
of U.S. farmland, in square meters, as computed from table 7.3

YDetermined by multiplying the amount of hydrothermal energy per square
meter by the 200-mile offshore water equivalent of the ocean coastline of the
United States

€1.49 X 10" watt-hours per year; 50,826 X 10'° Btu's, or 50,826 quads, per
year




Alternative Energy Storage and Conversion Technologies

One issue in any shift from exhaustible to renewable energy resources is the
capacity for energy storage and conversion. Energy can be stored through air
compression, through flywheel technology, through batteries, and through
hydrogen. Without examining in detail how each of these technologies works
here, we illustrate in the table below the various levels of maximum energy
storage density associated with these alternative technologies. The economic
competitiveness of any one of these depends on the level of production, the
costs of production, and on relative prices in each potential end-use sector.
Common end use storage technologies include batteries used in computer
laptops, pda’s, cellphones, hybrid and all-electric vehicles, as well as in
storage-backup systems for central electricity generation.

Table 8.1. Capacities of Alternative Energy Storage Systems

Maximum Energy
Storage Density
System (in watt-hours per Kg)

Air Compression 7.7
Flywheel
Aluminun alloy 21.0
4340 steel 33.2
Maraging steel 48.0
E-glass 190.0
Carbon fiber 215.0
S-glass 265.0
PRD-49 (“Kevion™) 350.0
Fused silica 870.0
Battery
Agqueous electrolyte
Lead-acid 6
Nickel-iron 45.5
Nickel-iron ss.0
Nickel-zine 66.4
Nickel-hydrogen 80.5
Zinc-bromide 89.1
Zinc-chloride 9.9
Organic
Lithium-sulfur 225.0
Lithium-bromide 229.0
High-temperature
Sodium-sulfur 142.0
Lithium-tellurium-tetrachloride 232.0
Aluminum-chlorine 296.0
Lithium-sulfur 318.0
Meral-air
Cadmium 119.0
Iron 253.0
Zinc 27.0
Manganese 304.0
Chromium 542.0
Sodium 747.0
Calcium 943.0
Titanium 983.0
Magnesium 1,405.0
Aluminum 1,690.0
Lithium 2,748.0
Berylium 3,701.0
Hydrogen 7,725.0

Sowrce: R. F. Post and S. W. Post, “Flywheels,” Scientific American 229 (December 1973):
20; R. C. Dorf, Energy. Resources. and Policy (Reading, Mass.: Addison-Wesley Publishing
Co., 1978), p. 362; and S. W. Angrist, Direct Energy Conversion, 3d ed. (Boston: Allyn and
Bacon, 1976), pp. 45-53.




Hydrogen Powered Vehicles

How a Hydrogen (Proton Exchange) Fuel Cell Works

5

Electron |Hydrogen -powered car
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) Water s
1 Hydrogen: Constantly pumped 1n at negative terminal
2 Oxygen: Pumped 1in at opposite positive terminal
3 Catalyst: Helps electrons break free from hydrogen atoms
4 Membrane: Allows hydrogen 1ons through but blocks electrons
5 Circuit: Electrons flow through circuit to positive terminal

6 Electrons and hydrogen 1ons combine with oxygen. forming water

Fuel cell technology now competes with hybrid electric and all electric vehicle
technology. The basic technology of fuel cells is illustrated above, and shows
that vehicles can use fuel cells to generate electricity to provide energy to
vehicles, and the only exhaust emission is water. The problem with hydrogen
energy technology is that it requires a primary energy source to produce, and
must be compressed if it is to substitute for traditional gasoline and diesel
powered vehicles.




Organic Natural Resources and Recycling Technologies

Given the relative inefficiencies of various traditional and hybrid technologies,
environmental conservation may be as well served by adoption of
recycling,and organic technologies, including biogas. We illustrate here the
potential of these technologies, which may be of more immediate practical
import to developing economies.

Table 8.2. Energy Efficiency of Product Recycling in the U.S. Economy

Energy Needed to Produce:

One Short Ton 1980 Domestic Consumption
1980 Domestic
Consumption With Conventional With Recycling With Conventional With Recycling
(in millions of Technology Technology Technology Technology as Half
Industry short tons) (in millions of Btu’s)  (in millions of Btu’s) (in Btu's) of Production (in Btu's)

Aluminum 6.9 269.4 : 1.858 % 1015 0.963 % 10"
Plastic 19.3 9.0 X 1.911 % 10" 0.981 x 10"
Raw steel 80.0 43.0 ; 3.440 x 10" 2.072 X 10"
Newsprint 11.5 2.8 : 0.262 X 10" 0.232 X 10%
Glass containers 14.0 15.6 b 0.218 x 10'° 0.210 x 10'°
Paperboard 63.7 6.5 ; 0.329 X 10'S 0.312 X 10"
Total L i 8.018 X 101 4.770 X 10°%

Sources: A. B. Makhijani and A. J. Lichtenberg, “An Assessment of Residential Energy Utilization in the U.S.A.” (Berkeley: University of
California, 1972); R. S. Berry and H. Makino, “Energy Thrift in Packaging and Marketing,” Technology Review, February 1974, pp. 33-43;
D. Hayes, “Repairs, Re-Use, Recycling—First Steps toward a Sustainable Society” (Washington, D.C.: World Watch Institute, September
1978); and U.S. Department of Commerce, 1981 Industrial Outlook (Washington, D.C.: U.S. Government Printing Office, January 1981).

Note: 1980 primary energy consumption was 76.201 X 10'5 Btu's, or 76.201 quads.

Total Waste Generation® Recoverable Wastes®

Millions of Millions of
Organic Material short tons Percent short tons Percent

Manure 200 22.73% 26.0 19.08%
Urban refuse 129 14.66 71.0 52.09
Logging, wood residue 55 6.25 5.0 3.67
Agricultural crop and food

wastes 390 44.32 22.6 16.58
Industrial wastes 44 5.00 5.2 3.82
Municipal sewage 12 1.36 1.5 1.10
Miscellaneous _S0 5.68 5.0 3.67

Total 880 100.00% 136.3 100.00%

Source: L. L. Anderson, Energy Potential from Organic Wastes: A Review of the Quantities
and Sources, U.S. Burcau of Mines Information Circular no. 8549 (Washington, D.C.: U.S.
Government Printing Office, 1972).

*1. 10" barrels of oil = 5.8 X 10" Bu's

2. 8.8 X 10" cubic feet of natural gas = 9.1 X 10" Btu's
Total 14.9 X 105 Btu's
= 14.9 quads

P1. 170 X 10° barrels of oil = 9.86 X 10" Btu's

2. 1.36 X 10"? cubic feet of natural gas = 1.40 X 10" Btu's
Total 2.38 X 101 Btu's
N (] {




Table 8.4. Biogas Production from Anaerobic Fermentation at Room Temperature

Production per Unit Weight Percentage of Gas Composition
of Dry Solids after 21 Days

24 Days 80 Days CO,
CH,4 H, (Carbon
Raw Material ft*/lb mikg  ft%1b  m/kg  (Methane)  (Hydrogen) Dioxide)

. Cow dung 1.00 0.063 3.30 0.210 60.0% 1.
. Cow dung + 0.4% cane sugar 1.10 0.070 3.30 0.210 57.6 2.
. Cow dung + 1% ashes 0.98 0.061 3.00 0.190 60.4 2
. Cow dung + 2.4% fresh

leguminous leaves (25% dry

matter, 2.31% nitrogen) 1.00 0.063 3.20 . 61.6 4.0 32.0
. Cow dung + 1.2% sarson oil

cake (94% dry matter,

(4.74% nitrogen) ! 0.063 3.30 . 67.7 30.4
. Cow dung + 1% cellulose . 0.084 3.30 . 52.8 4.0
. Cow dung + 0.4% casein

(12.6% nitrogen) . 0.087 3.50 64.0 . 32.0
. Cow dung + 1% cane sugar +

1% urea (44.5% nitrogen) ¢ 0.087 4.20 68.0 30.6
. Cow dung + 1% cane sugar +

1% calcium carbonate . 0.091 3.90 70.0 28.0
. Cow dung + urine (4% solids)

at 20 ml/100 g (15 fl oz/Ib) : 0.087 3.90 67.0 32.0
. Cow dung + 0.4% charcoal . 0.065 2.60 65.6 32.0
. Cow dung + 20% dry, non-

leguminous leaves (1.71%

nitrogen) 1.30 0.081 3.50 0.220 63.0 0.6 28.0

1% 34.4%
1 38.4
9 344

Source: National Academy of Sciences, Methane Generation from Human, Animal, and Agricultural Wastes (Washington,
D.C.: National Academy of Sciences. 1977), p. 69.

Environmental Effects of Biofuels
Biofuels have the appeal of substitutability for traditional gasoline fuel. There
are, however, limits to the substitutability. Among them are the energy
efficiency of ethanol, the principal biofuel grown from corn or sugarcane, and
secondly, environmental emissions from the conversion of biofuels into end
uses. Finally, biofuels may compete with food production at some point, thus
raising the cost of food beyond what it would be otherwise.

Life-Cycle Greenhouse-Gas Emissions from Selected Fuels

(Pounds of CO,e per energy-equivalent gallon of gasoline)

Corn Ethanol Corn Ethanol Corn Ethanol Cellulosic Ethanol
Produced (Average)® Produced Using (Projected)®
Using Coal Natural Gas

Source: Congressional Budget Office based on Michael Wang, May Wu, and Hong Huo, "Life-Cycle Energy and Greenhouse Gas Emission
Impacts of Different Corn Ethanol Plant Types,” Environmental Research Letters, vol. 2, no. 2 (2007).




How Land Conversion to Grow Crops for Ethanol Production May Delay
Reductions in Greenhouse-Gas Emissions Resulting from the Use of Ethanol

Years Until Net
Biofuel/Land Converted Location Carbon Reduction Study

Corn Ethanol
Grassland United States 93 Fargione and others
Abandoned Cropland United States 48 Fargione and others
Mix of Forest and Grassland United States 167 Searchinger and others
Prairie Biomass®/Abandoned Cropland United States 1 Fargione and others
Sugarcane Ethanol
Forest Brazil 17 Fargione and others
Grazing Land Brazil 4 Searchinger and others
Rainforest Brazil 45 Searchinger and others
Grassland Brazil 3to10 Renewable Fuels Agency
Forest Brazil 15t0 39 Renewable Fuels Agency
Switchgrass Ethanol®/Cropland United States 52 Searchinger and others
Wheat Ethanol
Grassland United Kingdom 20to 34 Renewable Fuels Agency
Forest United Kingdom 80 to 140 Renewable Fuels Agency

Source: Congressional Budget Office based on Joseph Fargione and others, “Land Clearing and the Biofuel Carbon Debt,” Saence, vol. 319,
no. 5867 (2008), pp. 1235-1238; Timothy Searchinger and others, "Use of U.S. Croplands for Biofuels Increases Greenhouse Gases
Through Emissions from Land-Use Change,” Sceence vol. 319, no. 5867 (2008), pp. 1238-1240; and Renewable Fuels Agency, 7he
Gallagher Review of the Indirect Effects of Biofuels Production (study commissioned by the Secretary of State for Transport, United
Kingdom, July 2008).

a. Prairie biomass constitutes mixtures of native perennial prairie grasses and other flowering plants.

b. Switchgrass is a type of grass native to North America and used primarily as rangeland forage and hay.

Conclusions

The adoption of any of the various renewable, and alternative storage and
conversion technologies depends not just on the underlying compatibility with
existing forms of energy use, but also on relative prices. What remains fairly
clear is that rising concern over carbon emissions from the combustion of
fossil fuels places growing pressure on increasing the efficiency of energy
conversion processes, the adoption of lower carbon emission technologies,
and selecting choices that are as compatible as possible with existing
economic patterns of production and consumption of goods and services.

How this is to be accomplished depends on the pricing of energy and natural
resources. From an economic perspective, this means taking into account all
forms of market failure, and finding mechanisms to minimize the adverse
effects of natural resource use in ways that are consistent with achieving
rising standards of living, some form of sustainability in the use of natural
resources, and mechanisms to contain the adverse effects of global climate
change.




