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CRESH PRODUCTION FUNCTIONS

By Giora HanocH!

The paper defines and analyzes a functional form for a one-output, many-factors
production function, which is homothetic (or homogeneous), and exhibits CRES; that is,
its ES (Allen-Uzawa elasticities of substitution) vary along isoquants and differ as between
pairs of factors, but the ES stand in fixed ratios everywhere.

Given data on factor prices, quantities, and output, and assuming competitive cost-
minimization, the parameters of CRESH are estimable from a system of log-linear equations,
each containing at most three independent variables.

The CES function, as well as its limiting forms (the Cobb-Douglas (¢ = 1), Leontief
(o = 0), and linear (¢ = o0) functions) are special cases of CRESH. The Mukerji CRES
function has an identical unit-isoquant surface, but it is not homothetic. Appendix A
analyzes the Mukerji function. Appendix B derives the (implicit) CRESH cost function.

SINCE THE BEGINNING of this decade, when the famous SMAC-CES production
function [2] was presented and applied, a continuous search has been made for
multifactor production functions with relatively simple and manageable proper-
ties. Uzawa [23] generalized the CES to n factors and showed that no further
generalizations were possible, if the Allen-Uzawa elasticities were to remain
constant. This was quite disappointing, since his function implied equality of
elasticities of substitution (ES) for different pairs of factors in a group, and unitary
ES for pairs of factors of different groups. McFadden [14] proved that, if other
definitions of ES were used, their constancy implied even more stringent restric-
tions on the production function. Sato’s [21] two-level CES function provided a
reasonable generalization, by using a CES function among composite-goods, each
of which was a CES combination of several factors. This construction, however,
did not lead to any simple features for individual pairwise ES, and proved difficult
to estimate. Others shared in similar results and some other modifications [5, 16,
19].

In 1963, Mrs. Mukerji [15] presented a function with different, but variable, ES,
which had the desirable property of constant ratios of ES (CRES). Dhrymes and
Kurz [6] applied, apparently independently, a similar function to their electricity
study in 1964. This function, however, is not homogeneous or homothetic, so that
_ individual ES vary with output as well as with factor combinations. The “‘expansion
lines” (for given factor prices) of this function are curved in a predetermined way,
and in many cases, in an undesirable way,” restricted by the form of the function:

(1) Y = [Y Dxéie,

! T am indebted to Zvi Griliches, who supported and encouraged this research, and supplied valuable
comments and suggestions. I also thank Erwin Diewert, Nissan Liviatan, and a referee for comments
and suggestions. Financial assistance was granted by the National Science Foundation (Grant No.
2762x) and Harvard University.

2 That is, the expansion elasticity and the substitution elasticity are both proportional to the same
parameter a; = 1/(1 — d;). In the special case d; > 1, all the factors x,, ..., x, are inferior, under com-
petitive profit maximization. See Appendix A.
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696 GIORA HANOCH

In addition, apparently no one analyzed carefully the ({D;}, {d;}, d) parameter
combinations and the factor combinations {x;}, permissible under cost minimiza-
tion or profit maximization (ie., quasi-concavity or concavity) for the func-
tion (1), and thus many interesting possibilities, as well as many peculiarities,
escaped notice.?

Following the tradition of proving impossibility of further generalizations,
Gorman [8] has shown in 1965 that if constant ratios of (Allen-Uzawa) ES are
imposed, then the technology implied by the production function is either of
“Uzawa type,” or of the “Mukerji type,” meaning that isoproduct surfaces are
given by

®) Y Dxt =4

for a given output. Gorman has added, almost parenthetically, that CRES
generalizations of the Mukerji function could result by having the parameters D;
and d, as functions of output Y, rather than constants.* This would alter the pattern
of change of individual ES with Y and the curvature of the expansion lines, but will
not remove the restrictions on combinations of ES permissible under (2)—while
preserving the CRES property throughout. Gorman, however, wrongly claimed
that ES could not be negative,” and apparently failed to notice the richness of the
class of functions defined by (2), where the parameters vary with output. As an
unfortunate result of these developments, it has been widely believed that the
class of CRES functions is relatively limited in flexibility. It has also been implied
(wrongly) that this “Mukerji technology’’ necessarily leads to non-homogeneous
or non-homothetic production functions.® '

In this paper a class of multi-factor CRES production functions which are
homothetic or homogeneous (hence CRESH) is presented and analyzed. The
restrictions on its domain and on the parameters implied by quasi-concavity (or
cost minimization under competitive factor markets) are fully examined in Section
1. These apply to Mukerji’s function (1) as well, since the unit isoquant surfaces of
the two types of functions are identical.” The additional restrictions implied by
concavity (or competition in the product market) are also indicated, while Appendix
A analyzes these restrictions for the function (1) and shows some of its peculiar
features.

In addition, some possibilities for statistical estimation of this function, as well as
for testing it against CES and other functional forms, are indicated briefly in
Section 2. It is shown below that under cost minimization in competitive factor

3 See Cook [4], Dhrymes and Kurz [6], Mukerji [15], and the analysis in Appendix A.

4 Actually, d(Y) must be of the form d; = 1 — (1/a))8(Y), where the a;’s are constant. See Gorman [8,
p. 218]. The right-hand side 4 = 6(Y) in Gorman may be absorbed in the functions D{(Y). For the
function (1), 4 = 1, 8(Y) = 1, and D(Y) = D,;Y .

® This was pointed out by Ramanujam [18].

© Solow [22, p. 46] implies both of these assertions.

7 However, the additional restriction D; > 0, all i, is required for the function (1) to exist (with a non-
negative, finite output) for all x > 0. (x > 0 means x; > 0, all i; x > O denotes x; > 0, alli;and x > 0
denotes x > Q but x # 0.
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markets, CRESH yields the following system of log-linear equations:
(24) log x; = by log x; + by, log h(y) + b;log (p,/py) + bio (i=2,...,n),

which provides a convenient basis (given additional specifications for the stochastic
elements) for estimation and testing. It is our intention to carry out shortly some
empirical investigations along these lines, where a more thorough econometric
analysis will be presented.

Finally, a few concluding remarks (Section 3) refer to the potential of this class
of functions as well as to its limitations, and to some possible generalizations and
modifications. Appendix B derives the cost function corresponding to CRESH.

1. THE CRESH FUNCTION

Let x = (x4,..., x,) denote a vector of n inputs, and Y output. The production
function Y = f(x) is defined implicitly by the following equation:

A3) F(Y,x) = Y Dx/nY)* -1=0,

i=1
for x; >0, 0 <Y< Y < +00, where h(Y) is continuously differentiable with
h(0) = 0, K(Y) = + o0, and K(Y) > 0. (Y denotes maximum producible output.)
Also, F(0,0) = 0.

Equation (3) yields a unique, continuously differentiable production function
Y = f(x),if and only if max; D; > 0, and {D; d;} are of the same sign for all i.® This
function Y = f(x) is clearly homothetic, satisfying h[ f(tx)] = th[ f(x)]. Thatis, h(Y)
is linear homogeneous with respect to x.° If one chooses h(Y) = Y'/*, then f(x)
is homogeneous of degree p, ie., f(tx) = t*f(x). The constant returns to scale
(CRS) case is h(Y) = Y. For the case h(Y,) = 1, the isoproduct surface is clearly
identical with that of the Mukerji function (1) for Y = 1. But for other levels of
output, f(x) = Y, is expanded uniformly (or homothetically), and differs from (1).

Assuming a set of n (shadow or competitive) factor prices p, we can analyze the
first and second order conditions for cost minimization, which are equivalent to the
conditions for quasi-concavity of f(x). For minimizing cost C = X p,x;, subject to
(3), form the Lagrangian

) L=Lx;Y,p)=C—iF =Y pox, — 1{2 Dk[%}dk _ 1},
k k

8 It may be shown (details of the proof are omitted here), that under these conditions the function F
satisfies the requirements of the implicit function theorem for yielding a unique, monotone y = f(x) for
all x » 0: F(0, x) and F(Y, x) always bracket zero, and FyF,, < 0.(See Hadley [11, p. 47].)

The case d; = 0 for some j may be included, if the corresponding term is replaced by B; log [x;/h(Y)],
and B; is of the same sign as all Dd,. In addition, one could add “limitational factors” in the form: .
X, 4+ = 7h(Y) without affecting the results. See Gorman [8, p. 218], and the discussion of these cases (as
well as the case d, = 1) below.

° This is in accordance with the accepted definitions of homotheticity. The definition given by
Lancaster [12, p. 334], f(tx) = 6(t) - f(x), is in error since it corresponds to homogeneous functions only
(of degree 6'(1)). See Hanoch [10].
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where A is a Lagrange multiplier, and is a linear homogeneous function of all
prices p.

In order to obtain the results with relative algebraic ease, we carry out the
following transformations of variables and parameters:

) logx; =z, logh(Y)=y, logpi=g¢;, log|i =4,

log|Dd{| = ¢;,

The Lagrangian function (4) is now transformed:

(6) L(z; y,q9) = Y exp(qx + z¢) — 1{; Dy exp [diz — y)] — 1} :
‘ 3

The first order conditions for minimum C are, in these terms,

oL
(M 2z exp (q; + z) — AD;d; exp {(d(z; — y)} = 0 (i=1,...,n).
From these we infer that all D,d; have the same sign as A, since AD,d; > 0. Note
that neither D; > 0 nor Dd; > 0 is necessary. Equations (7) yield (using the
definitions (5)):

@®) z;=a{Ad — q; — diy + ¢)).

If the system of (n + 1) equations (3) and (8) is solved for A(g, y), and the result
substituted in (8), then equations (8) give the factor demand functions, at a given y,
where x(p, Y) are homogeneous of degree 0 in p.

From (8) the price elasticities of factor demands are directly derived:

0 0z; 4 oA
= — =, — — d:
Y 0g '0q; v
©
0z; oA L
= = 1 #] i=1,...,n).

Nij = 73— =087,
T 0 q;

To solve for (04/dq;), use the restriction
(10) Zﬂkjsk =0,'°
k

where s; = (p;x;/Z pX,) is the share of the ith factor in total cost (since Y = f(x) is
homothetic, s; is clearly independent of Y): X, #,;5, = (04/0q;) Z s,ay, — s;a; = 0;
hence

oA s

0q;  Ys

10 Allen [1, pp. 503-509].

(11)
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Substituting (11) in (9) gives the elasticities of demand :
s;a?
— —q
Z Skl
_ S;9,4; Pt

Z Sy

The ES (Allen-Uzawa pairwise partial ES) are related to the demand elasticities
as follows:

(12)

1’1 a,a; oy
ij — 1 s
! Zskak

I
q

(13) c

ij

and the “own elasticity” terms!! are, similarly,

1 a? a.
14 = =N, = d !
( ) Gu S_nu Z skak

i

s;

The CRES property is thus clear, since all ¢;; vary proportionately, with the
common factor of proportionality being 1/X s,a, = 1/a, where a is a weighted
average of {q;}, with the factor shares {s;} as weights.

To analyze the restrictions on the parameters D; and a; (or d;), implied by
second-order conditions for cost minimization, i.e., by quasi-concavity of f(x), note
that these conditions may be specified in terms of the matrix X, = [0;;], of ES: Z,
should be negative semi-definite.'> Thus we require

(15) (=D"Z, >0 m=1,....,.n—1)
and
Iznl = 0,

where |2,| is the principal minor determinant of order m of X,. Substituting (13)
and (14) in (15) yields, after some manipulations,

16 (- 1)"'|21—( —)( )(1-2%’4‘) (m=1,...,n).
i=1 i=14 i=1 @

Clearly, |X,| = 0 (since a = X}_, s;a;), which is a natural result of the zero
homogeneity in p of the factor demands. If all prices change in the same proportion,
no change occurs, and |X,| = 0; hence X, is semi-definite.

For m < n, however, equation (16) may be shown to be equivalent to the
following conditions for a (regular interior) minimum cost :

(17) (f] ai) 3 s> 0 (m=1....n).

11 Allen 1, pp. 503-509].
12 See Samuelson [20, p. 78] and Allen [1, p. 505].
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Conditions (17) must apply to the Mukerji function (1) as well, since the unit
isoquants coincide, and output is held constant.

There are several immediate interesting implications to be drawn from (17).
(i) If all @; > 0, the condition holds everywhere for x > Q. (In particular, the signs
of D, are immaterial, except that they may not be all negative by (3).) (ii) If a, (say)
is negative, and a; > 0 for i = 2,...,n, condition (17) may still hold locally if
Xy sa; < 0,o0r
(18) —sya; > Y. sa; > 0.

i=2
(iii) Not more than one a; may be negative. Suppose ¢, < 0 and a, < 0. But this
implies a a,(s;a; + s,a,) < 0, which contradicts (17) for the case m = 2.
We thus have two general cases.

Casge I: All g, > 0. Hence by (13) all ES are positive, and all factors are substi-
tutes. For any a; > 1, we have 0 < d; < 1 and for any 0 < g; < 1,d; < 0. Remem-
ber also that all D,d; must have the same sign, and max; D; > 0; i.e, if either all
a; > 1, or all 0 < g; < 1, then all D; > 0. But in other cases, some D; may be
positive and some negative, corresponding to a; > 1 or 0 < g; < 1, respectively,
or vice versa.

Case II: a; <0;then g; > 0 (i = 2,...,n) by (ii) and (iii) above. This implies
also d; > 1, and @ = Z}_, s,a; < 0 by (18). Using (13), we get o,; = (a,a;)/a > 0
and o, < 0 for j > 1, k > 1. Thus, in this case factor x, (say) is a substitute for all
other factors, while the factors. x,,...,x, form a group of complements, with
negative ES for any pair in the group. However, this case is not valid globally

for all x >» 0. The restriction (18) implies, for a, < 0,

o XiDidi
—1< Yy TP
i=2X1P104

Using (7) we get

XiDi _
x,p; Dy d

[ /(Y Px /(YY)

and hence, substituting in the above and solving for [x, /h(Y)], the following restric-
tion is obtained :

n

(19) xl/h(Y)>{z D]

1/dy
[x /h(m"-} .

The domain where (19) holds is a cone with large relative values of x, . At smaller
x, values, the isoquant surfaces are not convex.'?

13 Thus d, < 1 (a; > 0) are necessary and sufficient conditions for global quasi-concavity for all
x > 0 (in addition to the specified conditions on D,).
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We now consider the special case (see Footnote 8 above) d; = 0 or a, = 1, and
also the limiting cases d; - — oo or g; = 0 (limitational factors), and d;, = 1 or
a; — oo (perfect substitutes). It may be established now that if any term in (3) is
replaced by B;log(x;/h(Y)), all the above results hold as if the corresponding a ;
is equal to 1 (or d; = 0) and D;d; = B;. The corresponding term in equation (6),
D;exp[dz; — y)], is replaced by Bjz; — y), and equation (7) for this factor
becomes

. aL
(7) g=exp(qj+zj)—lBj,

J
and equation (8) becomes

8y z;=A —q; + ¢;, where c; = logB;.

From (8) on, all the results are valid for this generalization, with d ;=0anda; = 1.
(If, however, all a; = 1, the function f(x) obviously reduces to the Cobb-Douglas
case, or a monotonic transformation h(f) of it, and all ES are = 1.)

Similarly, the case of limitational factors, x,,, = g(Y) = y,- k(Y) (to preserve
homotheticity in all factors), may also be integrated into the above results, if one
puts a, ., = 0 for such factors. The ES of any such factor is then zero by (13). (If all
a; = 0, the production function degenerates into the constant-coefficients Leontief
type; cf. Gorman [8].)

The case d,, = 1 or a,, - oo is integrated here by noting that the corresponding
factor enters linearly into F of (3); hence it is a perfect substitute for the “compo-
site factor” made up by all the other factors. The expression z,, is now cancelled
out from the equation corresponding to (7), and the marginal conditions can not
be satisfied. The result is a corner solution, where either only x,, is employed at a
given output, or no x,, at all. Formally, the elasticity of substitution for this factor
with any other factor x; (where d; # 1) yields

m%i = 1 a;

1
am— © Z S,y am— o Sy

(taking ratio of derivatives), and is either g;, if only x,, is employed and s,, = 1;
or oo, if no x,, is employed and s,, = 0. (A function with all d,, = 1 has linear iso-
product surfaces with the obvious results.)

Finally, if all a; are equal, one gets back, of course, to the CES technology
(meaning any positively monotonic transformation h(Y) of Y = f(x) which is CES).

This completes the analysis and classification of parameter values and input
combinations which are consistent with cost minimization, or quasi-concavity.
If one adds the assumption of profit maximization under a competitive product
market, however, or a given constant shadow price for output, the production
function must be concave throughout the range of potential optimum points.
This, in turn, is equivalent to a non-decreasing long-run average cost curve in the
relevant range. Since the CRESH function defined in (3) is homothetic, however,
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its cost function is separable into a product of two functions:

(20) cp, Y) = g(p)- h(Y),

where g(p) is the “unit cost” function'* (i.e., the cost of producing Y,, where
h(Y,) = 1), which is independent of Y, and is zero homogeneous in factor prices;
and h(Y) is independent of p, and is linear-homogeneous in x. The structure (20)
implies, then,

h(Y)

=gp)- (h/(Y) - —Y_) = 0.

dc ¢
@) Y Y
Since g(p) > 0, the additional restriction amounts to assuming Y#'(Y)/h(Y) > 1.
In particular, no additional restrictions are imposed on the domain of x or on the
parameters of (3). In the homogeneous case, h(Y) = Y'/¥, so that (21) implies
O<pu<l.

The preceding analysis does not apply, however, to the non-homothetic function
(1). Appendix A shows that in addition to (17) the concavity of the function (1)
imposes additional restrictions on the parameter d and on the domain of variation
of x. It is also shown there that in the case corresponding to Case II above (i.e.,
a, negative), all factors except x, (say) are inferior factors, such that an increase
i1. demand (factor prices constant) gives rise to a reduction in all inputs'> except x; .
Eoth these features stress the undesirable properties of the CRES function (1)
that result from its particular form—totally independently of its “technology,”
meaning the shape of a given isoproduct surface, which is identical with that of our
CRESH function. The way these surfaces change with a changing level of output
creates the unwarranted features of the function (1).

2. ESTIMATION AND TESTING OF HYPOTHESES

Any empirical application of the CRESH function requires, first of all, a par-
ticular specification of the function A(Y) which enters the definition (3). As indicated
above, this function determines the behavior of the cost function with respect to
output. Hence if one feels that the model which generated the relevant data justifies
the assumption of homogeneity, the specification h,(Y) = Y* could be chosen.
For many types of models and data (particularly for time-series aggregate models)
it is both reasonable and customary to assume constant returns to scale, with a
perfectly elastic unit cost curve, implying h,(Y) = Y. For other types of data
generation models (e.g., for cross-sectional studies of individual firms in competi-
tive factor markets), one would like to have an S-shaped total cost curve, which
yields a U-shaped average cost curve. There are many functional forms in this
general class. A particularly convenient one is, e.g., h3(Y) = exp (Y/Y,), which has

4 In Appendix B the function g(p) is derived and related to A(p) of equation (4) above.

!5 An equivalent result is that marginal cost decreases with an increase in the price of any inferior
factor (at a given output), and hence that the quantity of output supplied under competition increases
with p; (j # 1). Cf. Samuelson [20, p. 66] and Bear [3].
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a minimum average cost at Y = Y,,. The estimation equations presented in this
section are based on these three specific functions h,, h,, or hy. The modifications
required for other types of h(Y) would be relatively self-evident.

First, applying equation (8) above to i = 1, and solving for A gives

(22) A =(z,/a,) + q, +dyy — ¢y

Substitution of (22) in (8) and rearrangement yield the following system of (n — 1)
equations:

a; a; .
(23) Z;=—2z; + (1 __)y_ai(qi_q1)+ai(ci_cl) i=2,...,n).
a4 a,
In terms of the original variables (23) becomes
24) log x; = b;; logx; + b;, logh(Y) + b; log% + b;o,
1

where b;; = (aj/a;), by, =1 —(aja;), b;= —a;, and b, = a;log(Didy/D,d,),
i=2,...,n

Let us start with the general homogeneous case h(Y) = Y'/“ In this case, the
term b, logh(Y) in (24) is replaced by B}, log Y, where Bj, = (1/u)(1 — (a;/a,)).
The coefficients are now subject to the following linear restrictions:

(25) albil + bi =0 and bil + ,uB,Iy =1 (l = 2,. .. ,n),

where a, and u are constant for all i.

If the coefficients of any equation in (24) are known, one can clearly solve for the
parameters u, a; (or d;), a; (or d,), and D,/D, . If consistent estimates can be found
for these coefficients, under any statistical model, then consistent estimates of the
above are also given. Since the level of individual D; depends on units of measure-
ment, it can only be computed (or estimated) directly from the production function
relation (3) (with not much economic contents, however).!®

For the CRS case, h,(Y) = Y, equation (24) may be transformed as follows:

Xi| _ X1 _ bi ,
log (?) = b;; log ( Y) + b;log (P1) + bjo
(26) oe (] = 12 (¥ |
= b;|log|—] — —log |=| | + b; i=2,...,n).
g Py a, g Y 0 (

Several alternative formulations may be derived from equation (26) (or (23)).
The following is a noteworthy example :

Xi P G4 — G Y
27) log— = g;log— + ———1log— + ayc; — cy).
x g a4, OB ( 1)

16 Sometimes it is convenient to define D; = AJ;, where J; are subject to a “‘normalization scheme,”
e.g. L9, = 1. The §; are called “distribution parameters,” and they may now be derived from the given
set {D;/D,}. Cf. Arrow et. al. [2], and Dhrymes and Kurz [6, p. 289].
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If a; = a, for some i, the second term on the right cancels out, and the equation
is that given in Arrow et al. [2] for CES in the two-factor case. The variable Y/x,
thus represents, in each of equations (27), the deviation from constant ES,!” for
any pair of factors.!8

For h;(Y) = exp (Y/Y,), log h5(Y) = Y/Y,, a similar procedure yields

(28) log x; = b;; logx; + BjY + b;log (II:—I) + bios
. 1

where

B,:’;:i(l—ﬁ) and ayb;, + b; =0 (i=2,....n).
Y, a;

Clearly, if either log (p;/p,), or log Y (Y in the case of h3(Y)) is to be regarded as
the dependent variable in the particular specification of the model, then equations
equivalent to (24), (26), or (28) may be derived from these with no difficulty, and
will preserve their linear properties.

In order to simplify the following discussion, it is assumed now that the statistical
models corresponding to equation (24) (and the like) consist of the given equations,
with an additive error term U;, where U, have zero means, constant variance-
covariance matrix, and no serial correlation. Modifications of these methods,
required if additional complications (such as serial correlation of U,,) are present,
are dealt with extensively in the econometric literature, and would best be avoided
here.

The equations presented above are suitable for estimating models where all the
inputs x; are regarded as endogenous, determined by the marginal conditions for
cost minimization under competitive factor markets, whereas both relative factor
prices p;/p; and output Y, are determined exogenously. There are two problems
connected with the estimation of these equations. First, in all these equations (24),
(26), and (28), a term depending on the endogenous variable x,; appears on the right-
hand side. Hence direct least squares (regression) estimates will in general be sub-
ject to simultaneity bias.'® To get consistent estimates for the parameters, one may
use the instrumental variable method in a two stage procedure, where in the first
stage the appropriate (x,) variable (log x, or log (x,/Y)) is regressed against all the

17 In the sense of “Direct ES (DES)” defined for substitution between two factors if all other factors
are held constant. Cf. McFadden [14, p. 73]. (We may note here, that the DES for CRESH are given by:
D;; = aa;/a;;, where a;; = (sia; + s;a;)/(s; + s;), and therefore the DES do not preserve constant ratios.)

18 A somewhat similar analysis, for the two-factor CRS case, was used by Liu and Hildebrand [13],
who added a term in (x,/x,) to the SMAC equation relating Y/x; to p,. Bruno (see Nerlove [17, p. 75])
integrated the equation to get the corresponding production function. Their function is different,
however, from the two-factor case of CRESH.

19 An x, which is determined exogenously, e.g., capital in the short run, will not satisfy the marginal
conditions, and hence cannot serve as a ‘“numeraire” in equations like (24). In this case one has to
replace x, by a variable (endogenous) factor, e.g., x,, in these equations, and the number of equations
in the system is reduced to (n — 2). The parameters connected with x, are then estimable in a non-linear
fashion from the production relation (3), given the estimates for all the parameters connected with the
other factors x,, ..., x,. '
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exogenous variables of the system, and in the second stage the computed value
(x;)* is used as an instrumental variable for estimation of (24) or the equivalent
equation. These estimates will be consistent and their efficiency will depend on the
goodness of fit in the first stage [i.e., on 7%(x,)* - (x,)].2°

The second problem arising in the estimation of these equations is due to the
linear restrictions (such as (25)) placed on the parameters. One may follow two
alternative routes: (i) estimate the equations by the above method, disregarding
the linear restrictions, and then perform statistical tests of the model, by testing
whether there exist significant deviations from the restrictions given in (25); or
(i) use a scheme such as Zellner’s [24], adapted to the instrumental variables
method, to estimate all equations simultaneously under the linear restrictions.?!
We recommend using first (i) and then, if the model is not rejected, proceeding
to get more efficient estimates by using (ii).

In many applications, however, the level of output Y may not be regarded as
exogenously determined. Instead, it is determined within the system, through a
profit maximization mechanism, where the exogenous element is either the product
price p (under competition), or a demand function Y = Q(p) (e.g., under monopoly).
Substituting for Y in equations (24) the exogenous element p (or a demand shift
parameter) does not yield, however, equations which are linear in logs, or otherwise
simple. Therefore to estimate systems such as (24) regarding Y as endogenous
we recommend extending the instrumental variable methods explained above to
the case of two endogenous variables.??

Maximum likelihood estimation of non-linear equations derived from this
model (including direct, non-linear estimation of the production function relation
(3) itself), are also feasible with current computer technology, for relatively small n.
Their description, however, would be beyond the scope of this survey.

In what follows, we present one additional estimation procedure, which is
based on approximate equations, rather than on exact relations.

Suppose that a first-order Taylor expansion of the (non-linear) function A(q)
of equation (8) gives a reasonably good approximation around some (g,). We
therefore assume

" A
@) 4@ =cgo) + 2 545

Substitution of (04/dq;) from (11) into (29) and introduction of the result into
equation (8) leads to the following system :

(30) z; = By —alq; — 9) — (a; — 1)y (i=1,...,n),

20 See Goldberger [7, p. 286]. The simple two-stage least squares method is not valid here, since the
true reduced-form equations are not linear. However, if multicollinearity is not prohibitive, one can
use second-order terms in the first stage, for computing (x,)* with a better fit.

21 A detailed derivation of this metiiod is outside the scope of this paper.

22 For more than three factors, identification is guaranteed within the system, since the number of
exogenous price-ratios excluded from each equation is at least two. (The efficiency may be low, however,
if the correlation of these price ratios with Y is low.) For three factors, however, an external exogenous
variable is required, e.g., a fourth factor which is exogenous (see footnote 19) or the exogenous product-
price in the case of a competitive product market.
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where .
- Si4:4;
z 5;a;
and By, is a constant (= a;[¢; + ¢(qo)]). For the homogeneous case h,(Y) = Y/¥,
we get

S 1
(1) log x; = B;y — aylog p; — log p) — ;(ai —1logY (i=1,...,n),

where log p = 7 is a weighted mean of all the (exogenous) log p;, with s;a; as
(variable) weights. However, since presumably a weighted mean is not too sensitive
to weights,?3 one may try the following iterative procedure.

(i) Compute for each observation, log p* = X;s;log p;, disregarding the dif-
ferences among a;.2*

(ii) Estimate the system of n equations (31) by simple least squares (under the
linear restriction involving the second and third coefficients), using log p* instead
of log p. _

(iii) Use the g; estimated in (ii) to re-estimate log p** for each observation, and
iterate on (ii).

(iv) One can then perform tests on the generalized residual variance to be satisfied
that the second iteration (or consecutive ones) indeed improve the explanatory
power of the system, and that the estimated {a;} tend to stabilize. Using these
estimates will then provide estimates for all ES and for the returns to scale para-
meter u (but not for the D; or §,).

Alternatively, equations (31) may be estimated by non-linear methods to give
approximate maximum likelihood estimates, e.g., by scanning over different values
of {a;} to minimize the generalized residual variance—if n is not too large.

3. CONCLUDING REMARKS

Let us summarize briefly some of the main features of the CRESH production
function (3), in comparison with other functional forms currently in common
usage. Unlike Cobb-Douglas and CES (or monotonic transformations of these),
the CRESH function does not have constant individual (Allen-Uzawa) ES for
changing factor proportions. However, all ES vary proportionately, and presum-
ably very gradually, since the variable element @ = X s,q; is a weighted mean of the
constant g;’s. There is no economic a priori preference, however, for constancy of
ES, except for empirical indications of relative constancy in two-factor aggregate
models, as explained by SMAC [2], and the relatively convenient estimation
equations produced by CES. If one is interested in studying patterns of substitution
or complementarity among three factors or more, however, as would be the case in

23 The difference may be shown to be of a second order of magnitude, under reasonable assumptions.
24 For testing against CES, this is the true g under the null hypothesis a; = a;, all i, j, and the proce-
dure is therefore entirely valid at the first iteration. Both s; ar:d log p; are observable magnitudes.
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the current widely researched area of the interrelations among different types
of labor and skills, or in distinguishing various inherently different forms of capital
(e.g., structures, equipment, raw materials), the CES model stands in sharp contra-
diction to economic common sense as well as to the very purpose of such studies.
It is the differences among ES which are the focus of attention, whereas the CES
model assumes these differences away.

The CRESH function presented here allows for such differences, and simplifies
matters by having constant relative differences of ES. Its flexibility is sufficiently
extensive to encompass cases of negative ES, or complementarity (although in a
rather limited fashion), as well as widely varying degrees of substitutability.

At the same time, the CRESH function is relatively manageable in terms of the
estimation procedures available, such as those suggested in Section 2. Although
less simple than the CES equations (or obviously, the Cobb-Douglas special case),
these equations offer no insurmountable statistical or computational difficulties
for many aggregate or disaggregate economic models. It remains to be verified
empirically, however, that the quality of the available data justified this degree of
sophistication.?®

Comparing our function with the Mukerji function (1), the CRESH model is
to be preferred for several reasons: having the same “technology” (or unit iso-
quant surface) gives rise to the same patterns of ES, while it is well behaved (i.e.,
concave) in a wider domain of factor combinations. The fact that CRESH
is a homogeneous (or a homothetic) function makes it a more natural generaliza-
tion of the homogeneous CES model, and more adaptable to integration into
current economic theory and practice—on the micro level as well as on the
aggregate level, and especially in studies of economic growth and technical
change.

It may be argued that technical change, specifically of the factor-augmenting
or biased variety, requires, by definition, non-homothetic production function
models. Hence one could argue that the Mukerji function would be more suitable
for its study. This, however, is an obvious non-sequitur. The “bias,”” or curvature
of expansion lines inherent in that function, is predetermined and arbitrary,
and bears no relation to the bias produced by an assumed pattern of technical
change, except by a highly improbable coincidence. Appendix A shows that the
curvature of the expansion lines of the Mukerji function is quite peculiar since it
depends on the same parameters as the ES.

As a contrast to the above, the CRESH function can easily be modified and
generalized to incorporate any desired pattern of technical change; in fact, the
implicit form of the defining equation (3)—although somewhat inconvenient in
other respects—is particularly convenient for this purpose:

251t has been argued in the recent literature (e.g., Nerlove [17, p. 56], and Griliches [9]) that devia-
tions of ES from 1 are second-order magnitudes, and hence are not effectively estimable with the kind
of data that is currently available. This would lead to preference for the Cobb-Douglas simple form
over both the CES and the CRESH models. It seems that these arguments, however, are based on
results which imposed CES behavior on data that did not satisfy it. In the more general CRESH model,
this argument may no longer be valid.
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(i) Any neutral, unbiased, technical change involves merely a modification of the
function h(Y) to make it rising with output, with accumulated investment, or
with time ¢ in a given desirable way. This obviously does not change equation (3)
for a given level of h(Y), and thus the isoquant surface map is invariant.

(i) Any technical change which is “embodied” in x;, or is x;-augmenting, is
equivalent to changing units of measurement for x; with respect to time ¢ or output
Y. Hence it is simply incorporated in (3) by replacing the constant D; coefficient by
an appropriate function Dt), or D(Y).

Both these modifications will not change the ratios of ES among factors (since
these depend only on d;), but individual elasticities would change under (ii), for any
given factor prices.

It would be outside the scope of our presentation to plunge into these matters
in any detail, or to try additional generalizations.

As a final remark it is suggested that the CRESH functional form may prove to
be useful as an n-commodity utility function, in cases where homotheticity (i.e.,
unitary elasticities with respect to income, or wealth) may reasonably be assumed,
as in the Fisher-type analysis of optimization of total consumption over time.
In other cases, the more general CRES model of Gorman [8] may be used, with
estimation equations quite similar to the CRESH equations presented here.

Hebrew University, Jerusalem
Manuscript received August, 1969 ; revision received May, 1970.

APPENDIX A: AN ANALYSIS OF MUKERIJI’'S FUNCTION
The function given in (1) is defined explicitly by

(A.1) Y = M) = ( i Dix?')lld.

Since for unit output (Y = 1) the equation of the unit isoquant surface M[x(1)] = 1 is identical with the
“unit” isoquant (h(Y) = 1) of the CRESH function (3), it is evident that cost minimization at this output
has exactly the same implications for the domain of x(1) and the valid {D;, d;} parameter combinations
as the CRESH function, and need not be re-examined here. However, the restrictions on the parameter d,
the domain of x for Y # 1, and the restrictions implied by concavity of M (or profit maximization under
competition) require a separate analysis.

It can be verified that the first and second order derivatives M; and M;; (i, j = 1,...,n) are given by

(A2) M, = D#d' yldy (-d) = Diaﬁi. }1___%, Y tax; Ve,
(A3) M, = %’2(1 ! )

Y\ ka;
and
(A4) M, = MM;

Ya
where

1 ! M;x;
i#J, a=i—_—d, al:l_d’ k’_—Y— 0
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Since positive marginal productivities M; are required by the first order conditions, (A.2) implies
(Dyd;/d) > 0, all i; hence the sign of d must be equal to the sign of all D;d; (which are all equal). In addi-
tion, for M(x) to be non-negative and finite at all x » 0, (A.1) implies D; > 0, all i. This implies either
d; <0,alli,andd < 0, 0rd; > 0,all i, and d > 0. For the general case where some D; < 0, there exist
isoquants with x > 0 corresponding to all finite, positive output levels, with the required monotonicity
and convexity properties. However, the domain of x covered by these isoquants is restricted to a proper
subset of the positive orthant of R,. One could extend M(x) to all x > 0 in these cases, by defining
M(x) = Oforall0 < x < x'suchthat M(x') = 0,and M(x) = oo forallx > x” > 0, such that M(x") =

The second order conditions for profit maximization (necessary and sufficient for interior regular
maximum) require that the Hessian matrix H, = [M,;], be negative definite, i.e., that

(A.5) (—ly"H,| >0 m=1..n
where |H,| is the m-order principal minor of H,. From (A.3) and (A.4) we have
(A.6) H, = [M,], = [M",Mf(l _ (5”,‘1,)}
Yu k;a;
where
P K

ij \l

o=
Evaluation of |/, yields, then,

(m=1,...,n).

l)m " ki,
wn =) Z
' ! a [] a
Thus the condition (A.5) implies here
~ S k.
a i mz fu‘ >0
all«

Combining this with condition (17) in the text (and noting that k; = (M;x,/Y) is proportional to the
share of costs s; = (p;x;/Z pyx,) = (M, x,/E M,x,), we may now distinguish the following cases:

(A.8) (m=1,....n).

CASE (1) a > 0. By (A8), for m = 1 we get (a — ka;))/a a; > 0, therefore a; > 0, all i (i.e., a subcase
of Case I).

In this case the necessary and sufficient condition for (strict) concavity is ™ k;a; < g, all m. Substitut-

ing k; = (M;x;/Y) = (pix,/pY) 2 (5; £ puxi/pY) from the first order conditions for profit maximization,
pM; = p;(wherc s, = (p;x;/Z p,x,) is the share in total costs and p is output price), we then have
S‘ X I m
(A9) [“‘p;v k] Y osa; < a (m=1,...,n).
P

Since (X pix,/pY) is at most equal to one (profits non-negative in long-run equilibrium), and £ s; = 1,
we infer that if u; < a, all i, condition (A.9) is satisfied. But if at least some a; > g, then (A.9) 1mplles
restrictions on the domain of variation of the {x;}, for any given set of parameters a, {a;}. Outside this
domain, concavity is not preserved.

CASE (ii): a < 0. all ¢; > 0 (also a subcase of Case I). In this case a — X" k;a; < 0, and a [1"q; < 0,
all m, so that condition (A.8) is satisfied for all (x).

CASE(1i):a < 0,a, (say) < O,anda; > 0(i = 2...., n) (corresponding to Case lI). Factor x, is then a
substitute to all others, whereas x,...... x, constitute a group of complements, with o < 0:j.k > 1.
In this case (A.8) implies X/ ka; < a <0, since a I1fL, a; > 0. or kija,| > |a| + £}, kja; > 0.
Substitution from (A.2) and rearrangements yield. finally,

in

a;Dd;
(lDtl

B utlY

(A.10) Xy > [Z x4 o
1dy

2
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which limits the domain of variation of x, , for unit h(Y), more than in equation (19), due to the additional
positive term |(a dY?/D,d,)| on the right.

Again, not more than one a; may be negative, as can be seen from (17), or directly from (A.8). If
a; <0,a, <0,a < 0,wehave (@ — k,a,)/aa, > 0and (a — k,a,)/aa, > 0, which implies [(a — k,a; —
k,a,)/(aa,a,)] < 0, contradicting (A.8) for m = 2. Thus the three cases given above cover all possible
(a, {a;}) combinations. The extensions to limiting cases with a; — 0, 1, 0r o (d; = 0,0, or 1, respectively)
are similar to the cases analyzed in the text. For the case d = 1 (or a — o) we get

Dd
M; = Didx7 ™%, My = ——ixh-2 and M;=0, i#j,
so that the second order conditions imply (since M; > 0, M;; < 0) a; > 0, all i, and
m m Dd'
(=DHy = (=" [[ My = [[——x*"? >0, allm,
i=1 i=1 G
which is satisfied for all x, as in the case (ii) above. (The cases d — 0 or — co are economically meaning-
less.)

The signs of individual d; and D; in the three cases are subject to the relations D; > 0; and all d; have
the same sign as d.2°

Returning to the conditions for cost minimization we have, using (A.2),

ADd,;
pi = AM; =—d‘Y1_dxi_(l_d') i=1...,n),
where A = A(y; p,. . ., P,) is marginal cost. Solving for x; (using the definitions of a;, a) gives
(A.11) X; = A;p;“YM),
where A; = [D;d;/d)*. For profit maximization 1 = p, and we get?’
x; = A{p/p)~ Y.

We may now evaluate the expansion elasticities of x; by taking the partial logarithmic derivative of
(A.11) (at constant factor prices {p;}) with respect to Y :

dlogx; 4 [1 6logl]
dlogY ‘la alogY]

(A.12)

where (0 log A/dlog Y) > 0 for profit maximization (concave M(x)).

Equation (A.12) indicates clearly the peculiarity of the function (1), as compared with the CRESH
function. In CRESH (or any homothetic function), the elasticities of all inputs with respect to Y (at a
given point) are equal (equal to one for CRS), since the expansion lines are straight lines through the
origin. But for M(x) these elasticities are different, and proportional to the parameters a;. Since (5;;/5;) =
(aj/a) = (Mx;/Mx,y), We observe that the more factor x; is a substitute to any given factor i, relative to
factor x,, the more the expansion line curvature in direction x;, relative to direction x,. In the special
case a; < 0 (Case iii) under profit maximization we have (0log /0 log Y) > 0, 1/a < 0, so that the
bracketed term in (A.12) is negative, and (0 log x;/dlog Y) > 0, but (0 log x;/0log Y) < 0 for j = 2,

.., n. Hence the group of complementary factors {x, ... x,} is also a group of inferior factors. With
increasing output, their quantity decreases (factor prices constant), and with an increase in any of their
prices p;, marginal cost decreases, and the amount of output supplied perversely increases?®—in the
domain where the function M(x) is concave.

26 That is, if M(x) is finite and positive for all x > 0. In the more general case, the following weaker
conditions are sufficient : max; D; > 0, and all D,d; have the same sign as d.

27 These are equilibrium conditions, but not demand equations. If Y is solved from this system in
terms of {p;}, the resulting equations will be the factor demands x(p, p). Equations (A.12) which are
linear in logs of p, p;, and Y, could be used as a system of estimating equations. Alternatively, one could
derive a set of (n — 1) estimation equations under cost minimization, by elimination of A between pairs
of equations in (A.11). Cf. Cook [4], Dhrymes and Kurz [6], and Mukerji [15].

28 See Footnote 15.
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APPENDIX B: THE CRESH COST FUNCTION

We have argued above, that since the CRESH function is homothetic, its total cost function ¢(p, Y)
is given by ¢(p, Y) = g(p) - h(Y), where h(Y) is the same function appearing in definition (3). We now
derive the unit cost function g(p). which is linear homogeneous in p, and independent of Y.

Define x(1) as the factor quantities on the “‘unit’ isoquant i(Y) = 1 (where y = log h(Y) = 0), and

= log x,(1). £ will now satisfy equations (3) and (8) for the case y = 0, 1.e.,

(B.1) Y D=1,

(B.2) C, =afA — q; + ¢).

Clearly, g(p) is the cost function, where h(Y) = 1; hence
(B.3) gp) = Y pxil) = Y pet.

Substituting (B.2) in (B.1) yields

(B.4) > Diexp {dafA — g, + <)) =1,

and substituting (B.2) in (B.3) gives

(B.5) gp) =Y piexp{afA — q; + ¢)}.

Writing equations (B.4) and (B.5) in terms of original variables we finally get (since dja; = a; — 1)

wo Lall)-

. Al
(B.7) gp) =3, B‘,p‘_(,A) .
Di
where
Ay = D|Dd ™! and B, = [Dd|" = |d;A].

Equation (B.6) now defines (implicitly) the function A(p) (where 4 is the Lagrange multiplier of equation
(4)), and equation (B.7) gives the unit cost function g(p) in terms of p and A(p). Clearly, both A(p) and g(p)
are linear homogeneous in p, and (7g/dp;) = x(1).
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