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AN ECONOMETRIC INVESTIGATION OF THE
TECHNOLOGY OF AGRICULTURAL
PRODUCTION FUNCTIONS

By Earn O. HEapY!

1. INTRODUCTION

ProbuctioN THEORY long has held a central place in the literature of economics.
Except for simple theories of single-commodity supply and demand functions,
more has been written about either (1) the physical nature of (2) the implications
of the algebraic form of the production function than about any other particular
relationship of concern to economists. But while this large skeleton of theory
exists, little empirical flesh has been fitted to it. Empirical production functions
have been fitted to various types of cross-sectional and time-series observations,
both for industrial and agricultural firms. Still, however, very little has been
done to establish the physical nature of production coefficients. This is true
even though the student in economics, from the undergraduate in his first course
to the advanced graduate student, devotes an important part of his study to
the implications of the physical production function.

To help fill these important but quite empty ‘“shoeboxes,”” the writer has
initiated and completed several production function studies in cooperation with
physical scientists. These studies include controlled experiments with estimates
by least-squares, single equation methods. The designs of the experiments have
been based on mathematical models of the theory of production. The several
reasons for initiating these studies include: (1) The data are useful for teaching
purposes, at both the undergraduate and graduate levels. In providing some
notion of the empirical nature of physical production functions, reality is at-
tached to the purely logical statements which have claimed so much of the
student’s time. (2) The results provide fundamental knowledge of the physical
world. (3) A saving in public funds results. Physical scientists have concen-
trated on providing point estimates which are most practical; and they have
been efficient in doing so. At the same time, however, they have been carrying
on experiments relating to the phenomena concerned but have employed models
which suppose the observations to be discrete. Their general approach, in which
a large proportion of Land Grant College research resources have been invested,
generally provides a notion of a very few points on the production surfaces; and
ordinarily to not lend themselves to economic interpretation by farmers who
must use them. Since society already is investing experimental funds for these
purposes, more information can be obtained from the same public resources by
adopting procedures and estimates of the type outlined in this paper. (4) The
data are basic for decisions by managers of farm firms.

! Journal paper J-3011 of the Iowa Agricultural Experiment Station, project 1135.
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2. EXPERIMENTS COMPLETED AND UNDERWAY

This paper is an attempt to summarize and interpret briefly the econometric
results from the several studies initiated to date. Because of space limitations,
no attempt will be made to outline the details of experimental designs or to
present all of the equations employed before particular algebraic forms were
selected as providing the most efficient estimates for each set of observations.
The extreme details of experimental design and statistical analysis can be found
elsewhere.? To date, 14 experiments have been completed for fertilization of
crops and four new ones are being initiated. These experiments include as many
as four and as few as two variable nutrients. Two experiments have been com-
pleted for hogs, one in drylot and one on pasture; with the two major categories
of feeds, corn and fortified protein feed (soybean oilmeal), as variables. An
additional experiment has been initiated to deal with other feed alternatives.
One experiment each has been conducted for broilers (young chickens) and
turkeys. Again, these two studies include grain and protein feed as the variable
resources around which main economic decisions revolve. One experiment has
been completed with dairy cows and a new one has been initiated. These studies
include concentrate (grain) feeds, forage feed, the inherent capacity of cows, and
time in lactation period as variables. Several sets of data are being analyzed and
a new experiment is being initiated for feeder (beef) cattle; with hay, corn, and
protein feed as independent variables. In all of these studies, the factors men-
tioned above are considered to be those which farmers can control. Observations
for these variables are controlled in the experiments; their only variance is that
incorporated into the experimental design. The attempt is to predict yield per
acre for crops, gain per bird or animal for chickens, turkeys, hogs and beef
cattle, and milk production per cow for dairy animals.

In each experiment, an algebraic form of function was selected which was
considered within the logic of plant and animal response and yet appeared to
give the most efficient estimates. Several algebraic forms of equations were tried
for each experiment. It is not claimed, however, that the mathematical forms
presented provide the final biological representation of the phenomena con-
cerned. Numerous statistical criteria were used in selecting the production
functions used for prediction. In most of the studies, alternative algebraic forms
which were computed have been provided for persons who wish to use estimates
based on other functions. After selection of an algebraic form of production

2 See the following: Heady, Earl O., John T. Pesek, and W. G. Brown, ‘““Crop Response
Surfaces and Economic Optima in Fertilizer Use,” Iowa Agr. Exp. Sta. Bul. 424. Heady,
Earl O., et al., “Feed Substitute Rates and Economic Efficiency in Pork Production,’’ Iowa
Agr. Exp. Sta. Bul. 409. Brown, W. G., Earl O. Heady, and John T. Pesek, ‘Production
Functions, Isoquants and Isoclines in Fertilizer Use,”” Iowa Agr. Exp. Sta. Bul. 439. Heady,
Earl O., et al., “Production Functions, Gain Isoquants and Least-Cost Rations for Broil-
ers,” Jowa Agr. Exp. Sta. Bul. 442. Heady, Earl O, John Schnittker, and Norman L. Jacob-
son, ‘“Milk Production Functions, Hay/Grain Substitution Rates and Economic Optima
in Dairy Cow Rations,’”’ Iowa Agr. Exp. Sta. Bul. 444. Heady, Earl O., et al., ‘“Production
Functions, Gain Isoquants and Least-Cost Ration for Turkeys,” Iowa Agr. Exp. Sta.
Bul. 443.
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function, production surfaces, isoquants, isoclines, ridge lines, convergence
points, and other quantities of physical and economic interest have been com-
puted to serve as a basis for economic decisions. Popular presentations, allowing
farmers to equate derivatives or marginal quantities with price ratios, have been
worked out and are beginning to receive wide acceptance.

3. RESULTS OF EXPERIMENTS

Each type of physical phenomenon, or the practical uses to be made of it, re-
quires particular characteristics in the form of the production function. For
example, the fertilizer production surface has (a) definite ridge lines (isoclines
denoting a zero marginal rate of substitution between factors), (b) marginal
rate of substitution which change along a scale line, and (c) a point of maximum
yield per acre where the derivatives of all factors are simultaneously zero.® It
requires an algebraic form of funection which allows the production surface to
form a peak. A power function of the Cobb-Douglas type, or an exponential
equation, does not allow this combination of conditions. Slopes of isoquants for
a power function are constant along a scale line; the surface forms a ridge,
approaching the limit of total production, rather than a peak; the restrictions of
constant elasticity or constant marginal product ratios are inconsistent with the
underlying biological logic. Milk production parallels somewhat the surface of
crop fertilization. Hence, a conventional quadratic equation, or some trans-
formation of it may best describe the production surface. In contrast, however,
the production surface, expressing output of meat per bird or animal as a function
of feed inputs, logically should approach a ridge, rather than converge to a single
peak. Still, however, even for meat production, it is unlikely that the isoclines are
linear through the origin, a restriction imposed by a power function. Under linear
isoclines through the origin of the feed plane, the ratio of feeds (ration) which
allows least-cost gains for small birds or animals also would allow least-cost gains
for those approaching maturity. Past investigations show, however, that for a
small growing animal, protein requirements are high relative to carbohydrate
feeds; as the fattening or finishing stage is approached and attained, require-
ments for gains shift in the direction of carbohydrate feeds. With this obvious
change in the substitution rate between major classes of feeds, a function is
required which allows nonlinear isoclines; or at least linear isoclines which do not
pass through the origin of the feed plane. However, as is pointed out later, prac-
tical uses of data in decisions may allow functions which provide linear isoclines
over intervals of the production surface. In fitting functions to the various sets
of technical phenomena, it was found that the elasticity of production is gener-
ally less than 1.0 over all ranges of inputs for particular resources and, therefore,
terms need not be included in the regression equations to allow for increasing

3 We use the term scale line for purposes of abbreviation in this paper. We do not refer
to the conventional use where there are no fixed factors and all factors are increased by the
same proportion, but instead to the case where the variables under consideration are in-
creased in fixed proportions; but the animal, bird, or acre is held in fixed amount for the
experiment. This modified meaning is used in the remainder of this paper.
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marginal productivity. Results for various functions, with some interpretation
of their biological and economic nature, follow.

Experiments with Fertilization of Crops

One of the most successful experiments in fertilization of crops was conducted
on corn on caleareous Ida silt loam in western Iowa. In 1953, nine rates each of
elemental nitrogen (N) and phosphate (P) were applied to corn. The complete
block design originally allowed for 81 combinations of the nutrients, although
an incomplete block design was finally used with 63 combinations. Yield measure-
ments were obtained in 1953, the year of application, and also in 1954 when
additional applications were not made. The regression equation providing most
efficient predictions for the first year was that shown in (1)

(1) Y = —5682 — 316N — 417P + 6.35124/N + 8.5155+/P + .3410n/PN
(79) (104) (7.3 9.8) 8.9)

where Y refers to corn yield per acre in bushels and N and P refer respectively
to the pounds of elemental nitrogen and phosphate applied per acre. The ¢ values
(shown in parentheses below the regression coefficients) were all significant at
probability levels less than .01 while the value of B was .9582. The precision of
the estimates is very great, considering the biological nature of the crop pro-
duction process and variations which exist because of soil heterogeneity, insects,
weather, and similar variables. The partial derivatives in (2) and (3),

2 Y /N = — 316 + 3.1756N° + .1705N °P*,
(3) dY/oN = — 417 + 42578P~"° 4 .1705N°P°,

have been used in simultaneously specifying the optimum level of fertilization
and the optimum combination of fertilizer nutrients. The latter show (a) the
marginal product of N to become zero at 101.0 pounds when this nutrient alone
is used, (b) the marginal product of P to become zero at 104.3 pounds when it
alone is used, and (c) that the marginal products of the two nutrients do not
simultaneously drop to zero until 397.6 pounds of N and 336.6 pounds of P are
used in combination. However, equation of the partial derivatives with the re-
spective resource to product price ratios shows the optimum inputs of N and P
to be considerably less than the latter quantities. Equations (4) and (5),

(4) N = [1005+ 539/P £+ \/—4115P + 15.0996+/p —1.2645Y +33.153]",

®) AN — 417 4 42576P " 4 1705N°P°
9P —.316 + 3.1756N— % + .1705N—*P*’

have been derived to provide estimates respectively of the isoquants and iso-
clines (with a modification of the latter used for predicting marginal rates of
nutrient substitution along an isoquant of given yield level). Figures 1 and 2
have been derived respectively from equations (4) and (5). These figures, and the
magnitude of the coefficients in their underlying equations, indicate particular
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characteristics of the biological phenomena and the economic recommendations
which might be based on them. As Figure 2 shows, the isoclines are generally
curved, converging at the point of maximum yield per acre. The ridge lines (i.e.,
isoclines of dN/dP = 0 and dP/dN = 0) fall approximately at the end of the
isoquants shown in Figure 1. The two isoclines (i.e., expansion paths or lines
denoting equal substitution rates) are the extremes of all N/P price ratios which
might be reasonably expected ; the upper and lower ones representing respectively
dN/dP values of 1.5 and .67. The isoclines neither curve sharply nor bend far
apart between the magnitudes shown. Neither do the isoquants change greatly
in slope between the two isoclines (i.e., changes in marginal rates of substitution
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are relatively small between these limits). Hence, it is true that (a) while least-cost
nutrient combinations do differ with price ratios, profit sacrifices for deviations
from the equality dN/dP = price P + price N are not great for a particular
yield, and (b) while slight changes should be made if the least-cost factor com-
bination is to be used as yields progress to higher levels, profit sacrifice is not
great if the same nutrient ratio (factor combination) is used for alternative levels
of yield. To find that numerous combinations exist, even though some of them
represent deviations from economic optima, which give insignificant differences
in profit per acre is of value. As a matter of practicality, agriculturists often
suggest a single nutrient combination, regardless of the level of yield to be at-
tained, since farmers have varying amounts of capital and many cannot push
fertilization to a level where the ratios of added product per unit of factor are
equated to price ratios. Hence, knowledge that isoquant and isocline configura-
tions allow considerable swings in nutrient price ratios or yield levels without
causing more than a few cents deviation from economic optima, if a single nu-
trient ratio is used, is itself positive and useful knowledge. (While these condi-
tions do in fact exist for the data explained above, experiments for other years,
crops, and location show that the mathematical nature of other production
functions may call for considerable differences in the nutrient combination as
price ratios and capital availability change.)

The partial derivatives in (2) and (3) were equated to the nitrogen to corn and
the potash to corn price ratios existing at the time of the experiment. (Prices
were $1.40 for corn, $0.18 for N, and $0.12 for P.) Solving for N and P, it is
shown that optimum fertilization includes 142.5 pounds of N and 156.5 pounds
of P, with a predicted yield of 117.2 bushels of corn. With the prices of N and P
reversed, optimum fertilization includes 208.7 pounds of N and 175.5 pounds of
P and a yield of 124.9 bushels. With the first mentioned prices for N and P,
optimum corn yield is 105 and 124.9 bushels respectively when corn is priced at
$0.90 and $2.00 per bushel.

A fertilizer-crop production function which gives a quite different isocline map
is that of (6),

(6) Y = 1874 — .0014K — 0050P + .0617+/K + .17354/P — 001441/KP,
(2.0) 68)  (3.9) (10.8) (2.3)

for alfalfa hay where Y is hay yield in ton per acre, K is potash in pounds per
acre, and P is phosphate in pounds per acre. The experiment upon which these
predictions are based was conducted in 1953 in north Iowa and included an ex-
perimental layout like that explained above for corn. All ¢ values (in parentheses)
are significant at probability levels of less than .05, and the value of R is .8793.
As for corn, the best fitting algebraic form was a quadratic equation with square
root transformations. This function gives rise to the isoquants and isoclines
shown in Figure 3. When isoclines have sharp curvature such as these, and are
“sprung apart widely”’ over ranges of relevant price ratios for nutrients, consid-
erable changes may need to be made (or profit sacrifices may be large in failure)
to adjust nutrient ratios as their price ratio changes, or as alternative levels of
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yield become profitable through changes in the product price. As the isoclines
and isoquants indicate, the soil was more deficient in P than K (i.e., smaller
amounts of the former were already available in the soil). As yield level is pushed
upward, however, K becomes more nearly a limiting resource and the input of it
must be increased sharply, if a given yield is to be attained with minimum cost.
Setting the partial derivatives of (6) to equal the product to resource price ratios
existing at the time of the experiment in (7) and (8),

7 Y /0K = —.00139 + .03085K"° — .00072K°P° = .15/16.00,
(8) Y /dP = 0.00502 4+ .08676P° — 00072K°P~° = .12/16.00,

the optimum quantities of P and K are predicted to be respectively 63.4 pounds
and 8 pounds, with a yield of 3.07 tons. For yields this low, however, the profit
sacrifice is not great if only P is used. Of course, the functions can be used to
predict economic optima for other price situations.

A fertilizer production funetion which gives quite different relationships is (9),

(9) Y = 60.83 + .7126N — .00435N*

(5.7) (2.9)
+ 5255P — .003103P° + 2546K — .001624K° — 002255PK,
(2.0) (1.9) (2.1) 2.1)

for corn on Haynie soil in 1954 with nitrogen, phosphate, and potash as variable
nutrients and stand fixed at 16,000 plants per acre. The ¢ values for this3 X 3 X 3
randomized block design with replication and 54 observations were all significant
at a probability level of .04 or less. While the interaction terms for N with the
nutrients were not significant, and consequently were dropped from the regres-
sion equations, the P-K interaction term was significant. Production surfaces
for P and K, with nitrogen fixed at three levels, are shown in Figures 4, 5, and
6. Isoquants and isoclines for N and K as variables, with P fixed at zero, are
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shown in Figure 7. The slope of the isoquants changes materially for successively
higher yield levels, with N as well as K becoming limitational resources on
higher isoquants. Since no N-K interaction terms are included in the particular
form of equation, the isoclines denoting dP/dN = 0 and dN/dP = 0 (i.e., ridge
lines) are horizontal and vertical respectively. Isoquants and isoclines for N
and P, with K fixed at zero, are similar to those in Figure 7; while those for
P and K, with N fixed at different levels, differ somewhat in general configura-
tion. The conventional quadratic equation of (9) results in linear isoclines; in
contrast to the square root transformations in (1) and (6) where they are non-
linear. This is partly obvious in the derivatives of (9) provided in (10), (11),
and (12),

(10) oP _ _ 7126 — 0087ON

aN ~ 5255 — .00621P — .00226K’
a1 oK _ 7126 — 00870N

oN ~ 2546 — 00325K — .00226P°
(12) 9P _ _ 2546 — .00325K — 00226P

dK = .5255 — .00621P — .00226K "
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These equations, which define the marginal rates of substitution between the
three pairs of the nutrients have only linear terms for the nutrients included.
Linearity of expansion paths is even more evident in (13) and (14)

_ (525« — .713) 009

006, + 006 = N — 364K

(14) N = (81.87 — 6037 <) + (713« )P + (260 «)K,

(13) P

which are isocline equations, computed by setting the derivatives in (10), (11),
and (12) to equal a constant substitution ratio of «, and expressing the amount
of one nutrient as a function of the other (i.e., predicting all nutrient combina-
tions which give the specified marginal rate of substitution or price ratio).
Since (13) and (14) have only linear terms for K and P, the isoclines are linear,
intersecting the nutrient axes at the levels specified by the constant first terms in
the equations.

From the several experiments, and from comparison of functions which pro-
vide linear and curved isoclines converging at the point of maximum yield per
acre, this tentative conclusion appears to hold true: If nutrient levels (and the
yield without fertilizer) are very low, the best fitting function will be the one
with square root transformations and curved isoclines. This conclusion appears
logical since, starting from zero inputs of either nutrient and a zero yield (i.e.,
isoclines which must pass through the origin and cannot ‘“fan out” but must
converge to a point of maximum yield), the isocline family would otherwise
reduce to a single straight line, a condition which biologically is illogical. How-
ever, where yields without added fertilizer nutrients are quite high, and incre-
ments can be made to yield by addition of either nutrient alone within reasonable
production levels, the best estimating equation is one with isoclines which are
linear and intersect the axes. While there may be very slight curvature in these
isoclines, the curvature is insufficient to cause square root terms to be more
efficient than squared terms as estimators in the overall production function.

Ezxperiment in Milk Production

Milk production parallels somewhat the technological conditions of crops.
Apparently, there are ridge lines with (1) dG/dH = 0, where G refers to grain
consumed and H refers to forage consumed per cow, defined by the limit of the
cow’s stomach capacity to consume the more bulky hay and still allow attain-
ment of a given milk yield, and (2) dH/dG = 0 defined by the physiological
minimum of forage which is necessary for health of a ruminant animal. Within
the limit of these ridge lines, the isoclines must converge to a single point where
(a) maximum milk production per cow is attained and (b) the two classes of
feeds are both limitational (i.e., are technical complements where the maximum
output isoquant reduces to a single point). With these conditions in mind,
appropriate algebraic equations were fitted to observations from 36 Holstein
dairy cows on an experiment where the 36 treatments included cows of three
levels of inherent ability, 4 rations (ratios of concentrates and forage) with three
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levels of feeding each. The production function selected as most appropriate for
predictions is included in (15),

(15) M = 1.6302H + 3.1309G + .1479A — 14.2243T — .000388H" — .001192G"

(1.94) (2.60) (9.86) (.34) (1.14) (1.67)
— 43792T" — 001056HG — .1570GT — .0865HT — 731.76,
(1.62) (1.10) (2.82) (349)

where M refers to milk production per month per cow, H refers to the pounds of
forage (in the form of legume hay), C refers to the pounds of concentrate (grain)
mix consumed per cow, A refers to the ability of cows measured as output per
cow in a preliminary production period of one month when all cows were on the
same ration, and T refers to time in terms of months during the six-month ex-
perimental period. The value of R for these variables was .9016. While the stand-
ard errors were relatively high (the figures in parentheses are ¢ values) for some
of the variables included in the predicting equation, they were left in the equation.
This is because they gave estimates corresponding more nearly to biological logic
and previous nutrition knowledge than (a) modified equations which did not
include these terms or (b) alternative equations where all standard errors were
relatively low and all ¢ values were significant at probability levels of .05 or .01.

From equation (15) it is possible to predict (a) least-cost feed combinations for
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particular levels of milk output and (b) the most profitable level of feeding for
any point in time of the lactation period for cows of various levels of inherent
ability. Figure 8 includes a production surface with milk as a function of hay and
concentrate consumption for the midpoint in time of the experiment (7 = 3.5)
with cow production ability fixed at the mean of the group of animals. A parallel
map of milk isoquants and isoclines or expansion paths is included in Figure 9.
Maximum milk production in the “mean month” of the experiment approximates
1200 pounds per cow with a ration of 600 pounds of hay and 750 pounds of
grain fed throughout the month. An indication of how marginal rates of substi-
tution differ between milk isoquants and between months of the lactation period
are given in Tables I and II. The feed combinations shown provide the basis
for the milk isoquants and are derived from

(16) H = 1989.36 — 1.3608C
=+ (—1288.66)/1.8553 + .0014G — .0000007G* — .00161/.

The marginal rates of substitution (derivatives) are for “exactly’’ the feed
combinations indicated and are from

oH _ 29740 — .0024G — .0011H

(7 3G ~ 1.5437 — .00078H — .00106G"

Within any month of the experiment, feed combinations included for each milk
isoquant are limited to those which are consistent with biological possibilities.
For higher levels of milk production, the grain minimum is lower and the hay
maximum is higher; the limited capacity of the cow’s stomach would not allow

TABLE I

FEED COMBINATIONS AND MARGINAL RATES OF SUBSTITUTION FOR SPECIFIED MILk Iso-
QUANTS AND FIrsT MonTH IN TiME (7-1). Cow ABILiTY AT MEAN OF GROUP

Lbs. of hay, with grain listed at left, for milk Marginal rates of substitution dH/dG for feed
Level of grain isoquant of: combinations shown and milk isoquant of:
S.
1000 Ibs. 1200 Ibs. 1400 Ibs. 1000 lbs. 1200 lbs. 1400 1Ibs.

150 883 2.41

200 765 1093 2.29 2.77

250 654 960 2.18 2.55

300 547 837 2.09 2.38

350 445 722 2.01 2.24

400 346 613 1024 1.94 2.13 2.87

450 250 509 889 1.87 2.02 2.54

500 158 410 768 1.81 1.93 2.31

550 315 657 1.85 2.14

600 225 554 1.78 2.00

650 457 1.87

700 366 1.76

750 280 1.67

800 199 1.57
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TABLE II

FEEpD COMBINATIONS AND MARGINAL RATES OF SUBSTITUTION FOR SPECIFIED MILK Iso-
QUANTS AND SixTH MonTH IN TiME (T-6). Cow ABiLiTY AT MEAN OF GROUP

Lbs. of hay with grain listed at left, for milk Marginal rates of substitution dH/dG for feed
Leve(ln(;; )gra.in isoquant of: combinations shown and milk isoquants of:
700 lbs. 800 lbs. 900 Ibs. 700 lbs. 800 lbs. 900 lbs.

150 801 2.98

200 661 2.62

250 537 867 2.38 3.88

300 422 701 2.20 2.93

350 316 566 2.06 2.50

400 216 448 1.93 2.23

450 341 2.04

500 244 732 1.88 14.76

550 530 2.67

600 414 2.06

650 320 1.71

700 242 1.44

750 176 1.18

the higher levels of milk production to be produced with “bulky’ hay inputs.
As is expected the marginal rates of substitution of grain for hay are generally
greatest for higher milk isoquants, as well as for rations denoting a low proportion
of grain to hay along a given isoquant. Between months of the lactation period,
the marginal rate of substitution of grain for hay increases, although the marginal
productivities of both feeds decline with time as the cow approaches the end of
her “annual production period.” (The isoquant levels are lower for the 6th than
for the 1st month because of the same reason: The 1st month levels cannot be
attained in the 6th month.) Dairy specialists are impressed by the slow rate at
which the marginal rates of substitution change (the relatively small degree of
curvature in the isoquants) for the feed combinations which are relevant to each
milk level. Given usual prices for hay and grain and the cost of labor for con-
trolled feeding of hay, the least-cost ration may often be attained, because of the
isoquant slopes, by selecting an economic optimum grain quantity, and letting
the cow eat hay to the limits of her stomach capacity. However, as an aid to
farmers in their decision making, optimum rations have been calculated for
numerous factor-factor and factor-product price ratios.

Experiment in Hog Production

Results for only one of the several experiments in hog feeding will be reported
here. This experiment included 302 hogs and was conducted with corn, a feed high
in carbohydrate content, and soybean oilmeal, a feed high in protein content,
fed in drylot. Hogs were carried on the experiment from the weaning age of 34
pounds to a marketing weight of 200 pounds.

Certain modifications of the approaches outlined above were used for hogs.
The main problem in hog production is to find the least-cost ration for different
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weights and to feed the hogs to the final weight which gives the highest market
grade and prices. In other words, hogs reach a more or less distinet market
weight, with a substantially lower price for hogs either lighter or heavier. The
time required for attainment of a given weight also depends on the ratio of
carbohydrates and protein fed. Thus, the optimum total feed inputs per hog
cannot be solved simply by equating (a) the partial derivatives of animal gain
in respect to feeds with (b) the feed to pork price ratios. Then, too, the problem
is different from the fertilization phenomena in the following respect. For crops,
the farmer can determine the optimum fertilization program, apply this amount
and, aside from random fluctuations due to weather, etc., harvest a particular
level of crop. However, for a meat animal, feed representing the entire path of
inputs and outputs must be poured into the animal. (In contrast, for fertilization
the farmer does not apply a small amount of fertilizer and obtain a small yield,
then add a little more fertilizer to carry yield a little higher and repeat the
process until the optimum yield is obtained.)

For crop production the least-cost combination of nutrients can be predicted
for the “final” yield level; but for hogs, a least-cost ration should be determined
for each weight which the hog will attain in progressing to market weight.
However, as a practical matter, and in consideration of labor costs, the farmer
ordinarily changes the ration about three times. He decides on a least-cost
ration for small weights, feeds this ration over a range of gains, then repeats the
process for a couple of other weight ranges, up to market weight. Obviously,
this process does not give the least-cost use of feeds for each ounce of gain. In
practical terms, however, a ration which averages least-cost over a weight range
is needed. This consideration was included in the fitting and selection of func-
tions. Several quadratic types of equations were fitted which appeared statis-
tically efficient. However, all of these had either linear isoclines which did not
intersect the origin of the feed plane, or nonlinear isoclines which did intersect
the origin. Physiologically, these conditions relating to the isoclines are desirable,
since they specify that the marginal rates of substitution change as the hog is
taken to higher weights. This biological condition holds true since at lower
weights the pig is in the growing stage and needs protein relative to carbohy-
drates; but near marketing age, the hog is in the fattening stage and requires
carbohydrates relative to protein. Yet quadratic-based isoclines which give con-
stant changes in feed ratios do not correspond to the practical considerations
outlined above. For example, the farmer may wish to feed a single ration (propor-
tion of feeds) over the weight range 50-100 pounds. However, selection of the
optimum ration at the point of intersection of an isocline (based on a quadratic
equation) with the 100 pound weight isoquant would not give the single ration
which averages least in cost over the entire 50-100 pound weight range. A power
function would allow selection of such an “average least-cost ration” for all
pounds in the weight range (although it need not give the least-cost ration for
any particular pound in the range). This is true since its isoclines are linear and
pass through the origin of the feed plane. The difficulty of a single power function
fitted to the entire set of observations revolves around the characteristics of the
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isoclines, however. They specify feeding a single ration over the entire production
period, regardless of changes in nutritional requirements between growing and
fattening stages, and consequently in the marginal rates of substitution between
feeds. Hence, an alternative was employed to meet the conditions and require-
ments set out above. This was to fit a power function to the observations of three
weight ranges in the growth-to-fattening period. This procedure allowed selec-
tion of an “average” least-cost ration to be specified within a weight range, but
allowed selection, by equating derivatives along an isoquant with feed price
ratios, of a different ration for heavier weight intervals. In effect, this procedure
breaks the isocline into three linear segments, much in the nature of linear pro-
gramming concepts. The resulting three “interval” power production functions
are those listed in (18), (19), and (20).

(18) 34-75 Ib. weight interval: @ = 1.605P*" C**®,
(14.3) (19.1)

(19) 75-150 Ib. weight interval: @ = .714P™ ¢,
(8.7) (314)

(20) 150-250 Ib. weight interval: G = 459P**C*.
(5.3) (26.9)

In these equations, G refers to gain in pounds per pig within the weight interval,
P refers to pounds of soybean oilmeal, and C refers to pounds of corn consumed
per pig within the weight interval. As indicated by the ¢ values (included in
parentheses below the relevant coefficient), regressions were all significant at
probability levels of less than .01

Some interesting technological phenomena are apparent in the coeflicients: 1
The elasticities for protein (soybean oilmeal) decline over the weight intervals, in
line with the nutritional considerations outlined above. (2) The elasticities for
corn increase over the weight ranges, corresponding to the need for carbohy-
drates in the finishing process. These differences are illustrated more vividly in
the corresponding isoquant equations of (21), (22), and (23), respectively,

G 1.876
21) ¢= <1.605P'297> ’

G 1.213
(22) C = <7—M—1W2> ,

G 1.167
©3) ¢ = (z55p)

and the corresponding marginal rate of substitution equations derived from them
in (24), (25), and (26), respectively:

(24) aC/oP = 557 C/P,
(25) aC/oP = 185 C/P,
(26) aC/oP = 108 C/P,
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Again, the magnitudes of these equations change consistently over the weight
intervals and, as the latter set of equations shows, the marginal rate of substitu-
tion of soybean oilmeal for corn declines as the hog becomes heavier in weight.
While there are limitations in the use of a single power function (over all
ranges of observations) for estimating marginal production for a given ration
(mainly because the equation overestimates the surface for large feed inputs)
this difficulty is lessened in (a) use of the interval functions which allows each
segment of the function to fit closely with the observations or (b) use of another
function which does not encounter these difficulties. Both methods were used
and added precision to predictions. While numerous tabular data have been
derived for the use of farmers and feed manufacturers, an “econometric device”
has been worked out and put into production for farmers. A picture of it is
shown in Figure 10. It includes data on both sides of a disc for determining the
least-cost ration in the different weight intervals and in predicting optimum
market weights. In effect, it allows the farmer to equate the derivative of corn
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with respect to soybean oilmeal with the soybean oilmeal to corn price ratio.
This is accomplished by turning the disc until the current prices of corn and
protein supplement are in mesh at the edge of the wheel. Within the slots are
data showing the amount of feed which meet the mathematical conditions for
optima. The data also indicate the amount of time required for marketing under
each ration, since the rate of growth varies with rations. If the farmer expects a
price break, he may wish to feed protein in excess of that for least-cost gains, in
order to take advantage of higher prices before the market break. Time functions
were computed as the basis for these predictions but are not included here be-
cause of space limitations.

Ezperiment with Broilers

The broiler production problem is similar to that for hogs. Producers usually
change the ration twice over the entire production period. Hence, they wish to
find a ration which “averages least-cost” over a weight range, rather than to
minimize cost of feed for each successive ounce of gain. Equations

(27) Overall: G =033+ .4823C + .6415P — .0183C" — .0497P" — 0232CS,
(39.8) (267) (74)  (744)  (328)

(28) Overall: @G = .992P* "™,
(26.8) (43.7)
(29) Interval up to 1.3 1bs.: G = 1.075P ™ C*,
(46.5) (33.1)
(30) Interval over 1.3 1bs.: G = 702P ™

(18.0) (38.1)

include four production functions derived from an experiment with 600 chickens
where the feeds or symbols have the same meaning as for hogs. (Somewhat dif-
ferent vitamins and mineral supplements were used in fortifying the soybean
oilmeal, the main source of protein, and gain quantities are on a per bird basis.)
The first and second equations below are overall functions fitted to the observa-
tions over the entire growth period, while the third and fourth equations are
interval functions similar to those for hogs. Generally the ¢ values (in paren-
theses) are significant at probability levels of less than .01. All values of B were
large, with those for equations (29) and (30) being .9956 and .9885 respectively.
Another interesting illustration of the effect of nutritional requirements on the
marginal productivity of feeds is given in Figure 11. Rations high in protein con-
tain a large proportion of soybean oilmeal relative to corn; the oilmeal contains
about 42 per cent protein while the corn contains only around 8 per cent. A
ration of given percentage protein represents a fixed ratio of the two feed re-
sources, soybean oilmeal and corn. As the marginal productivity lines again
indicate, rations (a fixed ratio of two feeds) high in protein have a higher mar-
ginal productivity than those low in protein for small feed inputs (and hence
over low bird weights). However, as the growing period progresses to maturity,
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F1Gurg 11.—Marginal Gains Per Pound for Broiler on Various Protein Rations. De-
rived from Equation (27). Figures Indicate Per Cent Protein in Ration.

rations relatively higher in carbohydrates have higher marginal productivities
than those high in protein. An interesting technical phenomenon is illustrated
in the convergence point of the marginal product lines at a total feed input of
about 4.2 pounds. While the predictions are based on the quadratic function
(27), predictions from the other equations show similar relationships.
Predictions of isoquants from the overall power function (28) are provided in
Figure 12. They show that predictions for the two variable functions give feed
estimates corresponding closely to outcomes for the individual rations. (The dots
show quantities from observations along single ration lines as they were fed in
the experiment.) The isoquants in Figure 13 are from interval equations (29)
and (30) and were used to predict least-cost rations as “averages for practical
use’’ over the two weight ranges. Each of these isoquants is plotted with respect
to the origin for the particular weight interval and not the feed quantities at the
origin of both weight intervals (and thus are not successive contours on a pro-
duction surface corresponding to accumulated feed inputs along the feed plane).
This system of plotting also illustrates the declining marginal productivity of
feed, since a larger amount of a given ration is required to produce a one-pound
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gain for heavier birds. The data illustrated, and other derived quantities, have
been used in providing various types of guides for the economic decisions of
broiler producers but are not included here because of space limitations.

4. SUMMARY

The data provided in this paper provide insights into (a) the nature of tech-
nical production functions and (b) economic decisions which rest on the algebraic
form of the relationships. They illustrate the mutual gain to technologists and
economists when funds which would otherwise be committed to less inclusive
experiments are devoted to cooperative studies. They illustrate that econometric
models stand to provide better information for economic decision-making than
conventional biological models which assume discrete phenomena. Production
functions estimated for fertilization, hog production, milk production, and
poultry production have allowed derivation of relevant production surfaces,
isoclines, isoquants, and the general set of marginal quantities which can be used
with price ratios in specifying economic optima. While additional research is
necessary to provide final knowledge of the exact biological nature of production
functions, the data provided in this paper represent a large-scale start.

ITowa State College



