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TWO-PERSON COOPERATIVE GAMES!

By Joun Nasu

In this paper, the author extends his previous treatment of “The
Bargaining Problem” to a wider class of situations in which threats can
play a role. A new approach is introduced involving the elaboration of the
threat concept.

INTRODUCTION

TuE THEORY presented here was developed to treat economic (or other)
situations involving two individuals whose interests are neither com-
pletely opposed nor completely coincident. The word cooperative is
used because the two individuals are supposed to be able to discuss the
situation and agree on a rational joint plan of action, an agreement that
should be assumed to be enforceable.

Tt is conventional to call these situations ‘“games” when they are being
studied from an abstract mathematical viewpoint. Here the original
situation is reduced to a mathematical description, or model. In the
abstract “game” formulation only the minimum quantity of information
necessary for the solution is retained. What the actual alternative courses
of action are among which the individuals must choose is not regarded
as essential information. These alternatives are treated as abstract
objects without special qualities and are called “strategies.” Only the
attitudes (like or dislike) of the two individuals towards the ultimate
results of the use of the various possible opposing pairs of strategies are
considered; but this information must be well utilized and must be
expressed quantitatively.

The theory of von Neumann and Morgenstern applies to some of the
games considered here. Their assumption that it is possible for the
players to make “side-payments” in a commodity for which each indi-
vidual (player) has a linear utility narrows the range of their theory’s
applicability. In this paper there is no assumption about side-payments.
If the situation permits side-payments then this simply affects the set
of possible final outcomes of the game; side-payments are treated just
like any other activity that may take place in the actual playing of the
game—no special consideration is necessary. The von Neumann and
Morgenstern approach also differs by giving a much less determinate
solution. Their approach leaves the final situation only determined up
to a side-payment. The side-payment is generally not determined but is
restricted to lie in a certain range.

An earlier paper by the author [3] treated a class of games which are
in one sense the diametrical opposites of the cooperative games. A game is

1 This paper was written with the support of The RAND Corporation. It ap-
peared in an earlier form as RAND P-172, August 9, 1950.
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~ non-cooperative if it is impossible for the players to communicate or
collaborate in any way. The non-cooperative theory applies without
change to any number of players, but the cooperative case, which is
analyzed in this paper, has only been worked out for two players.

We give two independent derivations of our solution of the two-person
cooperative game. In the first, the cooperative game is reduced to a non-
cooperative game. To do this, one makes the players’ steps of negotiation
in the cooperative game become moves in the non-cooperative model. Of
course, one cannot represent all possible bargaining devices as moves in
the non-cooperative game. The negotiation process must be formalized
and restricted, but in such a way that each participant is still able to
utilize all the essential strengths of his position.

The second approach is by the axiomatic method. One states as axioms
several properties that it would seem natural for the solution to have
and then one discovers that the axioms actually determine the solution
uniquely. The two approaches to the problem, via the negotiation model
or via the axioms, are complementary; each helps to justify and clarify
the other.

THE FORMAL REPRESENTATION OF THE GAME

Each of the players (one and two) has a compact convex metrizable
space S; of mixed strategies s; (those readers who are unacquainted with
the mathematical technicalities will find that they can manage quite well
by ignoring them). These mixed strategies represent the courses of action
player < can take independently of the other player. They may involve
deliberate decisions to randomize, to decide between alternative possi-
bilities by using a randomizing process involving specified probabilities.
This randomizing is an essential ingredient in the concept of a mixed
strategy. By beginning with a space of mixed strategies instead of talking
about a sequence of moves, etc., we presuppose a reduction of the stra-
tegic potentialities of each player to the normal form [4].

The possible joint courses of action by the players would form a similar
space. But the only important thing is the set of those pairs (u1, u2) of
utilities which can be realized by the players if they cooperate. We call
this set B and it should be a compact convex set in the (uy, us) plane.

For each pair (sy, s;) of strategies from S; and S,, there will be the
utility to each player of a situation where these strategies are to be em-
ployed or carried out. These utilities (pay-offs in game theoretic usage)
are denoted by pi(si, s2) and pa(sy, s;). Each p; is a linear function of
s1 and of s;, although it cannot be expected to depend linearly on the
two varying simultaneously; in other words, p; is a bilinear function of
s1 and s; . Basically this linearity is a consequence of the type of utility
we assume for the players; it is thoroughly discussed in an early chap-
ter of von Neumann and Morgenstern [4].



130 JOHN NASH

And of course each point in the (ui, us) plane of the form [pi(sy, s2),
ps(s1, $2)] must be a point in B because every pair (s1, s2) of independent
strategies corresponds to a joint policy (probably an inefficient one).
This remark completes the formal, or mathematical, description of the
game.

THE NEGOTIATION MODEL

To explain and justify the negotiation model used to obtain the solu-
tion we must say more about the general assumptions about the situa-
tion facing the two individuals, or, what it amounts to, about the con-
ditions under which the game is to be played.

Each player is assumed fully informed on the structure of the game
and on the utility function of his co-player (of course he also knows his
own utility function). (This statement must not be construed as in-
consistent with the indeterminacy of utility functions up to transforma-
tions of the form ' = au + b, @ > 0.) These information assumptions
should be noted, for they are not generally perfectly fulfilled in actual
situations. The same goes for the further assumption we need that the
players are intelligent, rational individuals.

A common device in negotiation is the threat. The threat concept is
really basic in the theory developed here. It turns out that the solution
of the game not only gives what should be the utility of the situation to
each player, but also tells the players what threats they should use in
negotiating.

If one considers the process of making a threat, one sees that its ele-
ments are as follows: A threatens B by convincing B that if B does not
act in compliance with A’s demands, then A will follow a certain policy
T. Supposing A and B to be rational beings, it is essential for the success
of the threat that A be compelled to carry out his threat T' if B fails to
comply. Otherwise it will have little meaning. For, in general, to execute
the threat will not be something A would want to do, just of itself.

The point of this discussion is that we must assume there is an ade-
quate mechanism for forcing the players to stick to their threats and
demands once made; and one to enforce the bargain, once agreed. Thus
we need a sort of umpire, who will enforce contracts or commitments.

And in order that the description of the game be complete, we must
suppose that the players have no prior commitments that might affect
the game. We must be able to think of them as completely free agents.

THE FORMAL NEGOTIATION MODEL

Stage one: Each player (¢) chooses a mixed strategy & which he will
be forced to use if the two cannot come to an agreement, that is, if their
demands are incompatible. This strategy & is player ¢’s threat.
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Stage two: The players inform each other of their threats.

Stage three: In this stage the players act independently and without
communication. The assumption of independent action is essential here,
whereas no special assumptions of this type are needed in Stage one, as
it turns out. In Stage three, each player decides upon his demand d;,
which is a point on his utility scale. The idea is that player 7 will not
cooperate unless the mode of cooperation has at least the utility d;
to him.

Stage four: The pay-offs are now determined. If thereis a point (u; , Ug)
in B such that u; > d; and u, > ds, then the pay-off to each player ¢
is di. That is, if the demands can be simultaneously satisfied, then each
player gets what he demanded. Otherwise, the pay-off to player 7 is
pi(ty, t2); i.e., the threats must be executed.

The choice of the pay-off function in the case of compatible demands
may seem unreasonable, but it has its advantages. It cannot be accused
of contributing a bias to the final solution and it gives the players a
strong incentive to increase their demands as much as is possible without
losing compatibility. But it can be embarrassingly accused of picking
points that are not in the set B. Effectively, we have enlarged B to a set
including all utility pairs dominated (weakly; u; < uy, us < us2) by a
pair in B.

What we have is actually a two move game. Stages two and four
do not involve any decisions by the players. The second move choices
are made with full information about what was done in the first move.
Therefore, the game consisting of the second move alone may be con-
sidered separately (it is a game with a variable pay-off function deter-
mined by the choices made at the first move). The effect of the choice
of threats on this game is to determine the pay-offs if the players do not
cooperate.

Let N be the point [pi(ty, £2), pa(ty, t2)] in B. This point N represents
the effect of the use of the threats. Let u;x and usy abbreviate the co-
ordinates of N. If we introduce a function g(d, ds) which is +1 for
compatible demands and 0 for incompatible demands, then we can
represent the pay-offs as follows:

to player one dyg + uiv(l — g),
to player two dag + usn(1 — g).

The demand game defined by these pay-off functions will generally
have an infinite number of inequivalent equilibrium points [3]. Every
pair of demands which graphs as a point on the upper-right boundary of
B and which is neither lower nor to the left of N will form an equilibrium
point. Thus the equilibrium points do not lead us immediately to a
solution of the game. But if we discriminate between them by studying
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their relative stabilities we can escape from this troublesome non-
uniqueness.

To do this we “smooth” the game to obtain a continuous pay-off
function and then study the limiting behavior of the equilibrium points
of the smoothed game as the amount of smoothing approaches zero.

A certain general class of natural smoothing methods will be con-
sidered here. This class is broader than one might at first think, for
many other methods that superficially seem different are actually
equivalent.

To smooth the game we approximate the discontinuous function ¢
by a continuous function k, which has a value near to ¢’s value except
at the points near the boundary of B, where g is discontinuous. The
function h(d;, dz) should be thought of as representing the probability
of compatibility of the demands d; and d». It can be thought of as repre-
senting uncertainties in the information structure of the game, the
utility scales, etc. For convenience, let us assume that A = 1 on B and
that h tapers off very rapidly towards zero as (dy, d2) moves away from
B, without ever actually reaching zero. Another simplification can be
had by assuming the utility functions properly transformed so that
Uy = sy = 0. Then we can write the pay-off functions for the smoothed
game as P; = dih, Py = dih. For the original game h is replaced by g.

A pair of demands (d1, dz) viewed as a pair of pure strategies in the
demand game, will be an equilibrium point if ps, which is d;h, is maxi-
mized here for constant d; and if p; = dsh is maximized for constant d;.
Now suppose (d1, d2) is a point where didsh is maximized over the whole
region in which d; and d, are positive. Then dih and dyh will be maximized
for constant dz and dy, respectively, and (di, dz) must be an equilibrium
point.

If the function h decreases with increasing distance from B in a wavy
or irregular way, there may be more equilibrium points and perhaps
even more points where didzh is a maximum. But if h varies regularly
there will be only one equilibrium point coinciding with a unique maxi-
mum of didsh. However, we do not need to appeal to a regular h to
justify the solution.

Let P be any point where didsh or, what is the same thing, wush is
maximized as above described and let p be the maximum of uyus on the
part of B lying in the region u; > 0, us > 0. The value of uu; at P must
be at least p, since 0 < h < 1 and sinceh = 1 on B. Figure 1 illustrates
this situation. In it, @ is the point where ujus is maximized on B (in
the first quadrant about N) and of is the hyperbola uuz = p, which
touches B at Q.

The important observation is that P must lie above of but still be
near enough to B for h to nearly equal 1. And as less and less smoothing
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is used, h will decrease more and more rapidly on moving away from
B; hence any maximum point P of uyush will have to be nearer and
nearer to B. In the limit all such points must approach @, the only
contact point of B and the area above of. Thus @ is a necessary limit
of equilibrium points, and Q is the only one.

We take @ for the solution of the demand game, characterized as the
only mecessary limit of the equilibrium points of smoothed games. The
values of u; and u, at @ will be taken as the values of the demand game
and as the optimal demands.

u? AXIS
(-

h NecucisLE

- o o o\ = e e - - - ———— -

// UTILITY FUNCTIONS CHOSEN
SO AS TO VANISH AT N.

Figure 1

The discussion above implicitly assumed that B contained points
where u; > 0, us > 0 (after the normalization which made u; = uy = 0
at N). The other cases can be treated more simply without resource to
a smoothing process. In these “degenerate cases” there is only one point
of B which dominates the point N and is not itself dominated by some
other point of B. (A point (s, u,) is dominated by another point (u1, us)
if u; > uy and us > u,) [see Figure 3]. This gives us the natural solution
in these cases.

One should note that the solution point @ of the demand game varies
as a continuous function of the threat point N. Also there is a helpful
geometrical characterization of the way @ depends on N. The solution
point @ is the contact point with B of a hyperbola whose asymptotes
are the vertical and horizontal lines through N. Let T be the tangent
at @ to this hyperbola (see Figure 2).
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If linear transformations are applied to the utility functions, N can
be made the origin and @ the point (1, 1). Now T will have slope —1
and the line NQ will have slope +1. The essential point is that slope
T = minus slope NQ, because this is a property that is not destroyed
by linear transformations of the utilities. 7' will be a support line for
the set B (that is, a line such that all points of B are either on the lower
left side of T or are on T itself; for a proof, see reference [2] where the
same situation arises).

We can now state the criterion: if NQ has positive slope and a support
line T for B passes through @ with a slope equal but opposite to N Q’s
slope, then Q is the solution point for the threat point N. If
NQ is horizontal/vertical and is itself a support line for B and if Q is

FI1GURE 2

the rightmost/uppermost of the points common to B and N@Q, then again
Q is the solution point for N (see Figure 3), and one of these cases must
hold if Q is N’s solution point; the criterion is a necessary and
sufficient one.

Any support line of B with a contact point @ on the upper-right
boundary of B determines a complementary line through @ with equal
but opposite slope. All points on the line segment in which this com-
plementary line intersects B are points which, as threat points, would
have @Q as corresponding solution point. The class of all these line seg-
ments is a ruling of B by line segments which intersect, if at all, only
on the upper-right boundary of B. Given a threat point X, its solution
point is the upper-right end of the segment passing through it (unless
perhaps N is on more than one ruling and hence is on the upper-right
boundary and is its own solution point).
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We can now analyze the threat game, the game formed by the first
move and with pay-off function determined by the solution of the demand
game. This pay-off is determined by the location of N, specifically by the
ruling on which N falls. A ruling that is higher (or farther left) is more
favorable to player two (let us definitely think of u, as measured on
the vertical axis of the utility plane) and less favorable to player one.

Now if one player’s threat is held fixed, say player one’s at ¢;, then
the position of NV is a function of the other player’s threat, ¢,. The co-
ordinates of N, pi(t1, &) and ps(ts, ¢;) are linear functions of ¢,. Hence
the transformation, ¢, goes into N, defined by this situation is a linear
transformation of the space S, of player two’s threats into B. That part
of the image of S; that falls on the most favorable (for player two)
ruling will contain the images of the threats that would be best as replies
to player one’s fixed particular threat ¢;. And this set of best replies

N Q

B

Ficure 3

must be a convex compact subset of S. because of the linearity and
continuity of the transformation of S into B.

The continuity of N as a function of ¢, and ¢; and the continuity of Q
as a function of N insure that the pay-off function defined for the threat
game by solving the demand game is a continuous function of the threats.
And this suffices to make each player’s set of best replies what is called
an upper semi-continuous function of the threat being replied to. Now
consider any pair of threats (f;, ¢2). For each threat of the pair the other
player has a set of best replies. Let R(Z1, £2) be the set of all pairs which
contain one threat from each of the two sets of replies. R will be an
upper semi-continuous function of (¢;, ¢;) in the space of opposed pairs
of threats, and E(t;, £;) will always be a convex set in this space, S; X S..

We are now ready to use the Kakutani fixed point theorem, as gen-
eralized by Karlin [1, pp. 159-160]. This theorem tells us that there is
some pair (o, £20) that is contained in its set R(tw, £20), which amounts
to saying that each threat is a best reply to the other. Thus we have ob-
tained an equilibrium point in the threat game. It is worth noting that
this equilibrium point is formed by pure strategies in the threat game
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(a mixed strategy here would involve ‘randomization over several
threats).

The pair (fw, t20) also has minimax and maximin properties. Since
the final pay-off in the game is determined by the position of Q on the
upper-right boundary of B, which is a negatively sloping curve, each
player’s pay-off is a monotone decreasing function of the others. So if
player one sticks to £y, player two cannot make one worse off than he
does by using #5 without improving his own position, and he can’t do
this because (fu, t20) is an equilibrium point [3]. Thus & assures player
one the equilibrium pay-off and ¢z accomplishes the same for player two.

The threat game is now revealed to be very much like a zero-sum game,
and one can readily see that if one player were to choose his threat first
and inform the other, rather than their simultaneously choosing threats,
this would not make any difference because there is a ‘“‘saddle-point”
in pure strategies. It is rather different with the demand game. The
right to make the first demand would be quite valuable, so the simul-
taneity here is essential.

To summarize, we have now solved the negotiation model, found the
values of the game to the two players, and shown that there are optimal
threats and optimal demands (the optimal demands are the values).

THE AXIOMATIC APPROACH

Rather than solve the two-person cooperative game by analyzing the
bargaining process, one can attack the problem axiomatically by stating
general properties that “any reasonable solution” should possess. By
specifying enough such properties one excludes all but one solution.

The axioms below lead to the same solution that the negotiation
model gave us; yet the concepts of demand or threat do not appear in
them. Their concern is solely with the relationship between the solution
(interpreted here as the value) of the game and the basic spaces and
functions which give the mathematical description of the game.

Tt is rather significant that this quite different approach yields the
same solution. This indicates that the solution is appropriate for a wider
variety of situations than those which satisfy the assumptions we made
in the approach via the model.

The notation used below is the same as before, except for a few addi-
tions. A triad (S;, S:, B) stands for a game and v:(S;, Sz, B)
and v2(Sy, Sz, B) are its values to the two players. Of course the triadic
representation, (Sy, Sz, B), leaves implicit the payoff functions pi(si, s2)
and ps(s;, s;) which must be given to determine a game.

Axiom I: For each game (Sy, Sz, B) there is a unique solution (v1, )
which is a point in B.
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AxioM IT: If (u1, u2) isin B and u; > v; and uz > v, then (uy, us) =
(v1, v2); that is, the solution is not weakly dominated by any point in
B except itself.

Axiom III: Order preserving linear transformations of the utilities
(i = au, + by, us = asus + bs with a; and a, positive) do not change
the solution. It is understood that the numerical values will be changed
by the direct action of the utility transformations, but the relative posi-
tion of (v, v2) in B should stay the same.

Axtom IV: The solution does not depend on which player is called
player one. In other words, it is a symmetrical function of the game.

Axiom V: If a game is changed by restricting the set B of attainable
pairs of utilities and the new set B’ still contains the solution point of
the original game, then this point will also be the solution point of the
new game. Of course the new set B’ must still contain all points of the
form [p1(s1, 82), P2(s1, 82)], where s; and s, range over S; and Ss, to make
(S1, Sz, B’) a legitimate game.

Axrom VI: A restriction of the set of strategies available to a player
cannot increase the value to him of the game. Symbolically, if S; is con-
tained in Sy, then v:(S1, Sz, B) < v1(S1, Sa, B).

Axiom VII: There is some way of restricting both players to single
strategies without increasing the value to player one of the game. In
symbols, there exist s; and s, such that vy(s;, ss, B) < v1(Sy, Ss, B).
Similarly, there is a way to do the same for player two.

There is little need to comment on Axiom I; it is just a statement
on the type of solution desired. Axiom II expresses the idea that the
players should succeed in cooperating with optimal efficiency. The
principle of noncomparability of utilities is expressed in Axiom III.
Each player’s utility function is regarded as determined only up to order
preserving linear transformations. This indeterminacy is a natural con-
sequence of the definition of utility [4, chapter 1, part 3]. To reject
Axiom III is to assume that some additional factor besides each indi-
vidual’s relative preferences for alternatives is considered to make the
utility functions more determinate and to assume that this factor is
significant in determining the outcome of the game.

The symmetry axiom, Axiom IV, says that the only significant (in
determining the value of the game) differences between the players
are those which are included in the mathematical description of the
game, which includes their different sets of strategies and utility func-
tions. One may think of Axiom IV as requiring the players to be in-
telligent and rational beings. But we think it is a mistake to regard this
as expressing ‘‘equal bargaining ability” of the players, in spite of a



138 JOHN NASH

statement to this effect in “The Bargaining Problem” [2]. With people
who are sufficiently intelligent and rational there should not be any
question of “bargaining ability,” a term which suggests something like
skill in duping the other fellow. The usual haggling process is based on
imperfect information, the hagglers trying to propagandize each other
into misconceptions of the utilities involved. Our assumption of com-
plete information makes such an attempt meaningless.

It is probably harder to give a good plausibility argument for Axiom
V than for any of the others. There is some discussion of it in “The
Bargaining Problem” [2]. This axiom is equivalent to an axiom of
“localization” of the dependence of the solution point on the shape of
the set B. The location of the solution point on the upper-right boundary
of B is determined only by the shape of any small segment of the bound-
ary that extends to both sides of it. It does not depend on the rest of the
boundary curve.

Thus there is no “action at a distance” in the influence of the shape
of B on the location of the solution point. Thinking in terms of bar-
gaining, it is as if a proposed deal is to compete with small modifications
of itself and that ultimately the negotiation will be understood to be
restricted to a narrow range of alternative deals and to be unconcerned
with more remote alternatives.

The last two axioms are the only ones that are primarily concerned
with the strategy spaces S; and S, and the only ones that are really new.
The other axioms are simply appropriate modifications of the axioms
used in “The Bargaining Problem.” Axiom VI says that a player’s
position in the game is not improved by restricting the class of threats
available to him. This is surely reasonable.

The need for Axiom VII is not immediately obvious. Its effect is to
remove the possibility that the value to a player of his space of threats
should be dependent on collective or mutual reinforcement properties
of the threats. The way Axiom VII is used in the demonstration of the
adequacy of the axioms probably reveals its real content better than
any heuristic discussion we might give here.

We can shortcut some of the arguments needed to show that the
axioms accomplish their purpose and characterize the same solution we
obtained with the model by appealing to the results of “The Bargaining
Problem.” We first consider games where each player has but one pos-
sible threat. Such a game is essentially a “bargaining problem,” and
for that sort of game our Axioms I, II, III, IV, and V are the same as
the axioms of “The Bargaining Problem.”

This determines the solution in the case where each player has but
one strategy available. It must be the same solution obtained in “The
Bargaining Problem,” which was the same as the solution we got for
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the demand game (which is played after each player has chosen a threat)
in the preceding approach. This solution is characterized by the maxi-
mization of the product, [v; — pi(ty, £2)] [v2 — pa(éy, t2)], of the differences
between the values of the game and the utilities of the situation where
the players do not cooperate.

However, we are obliged to remark that the situation to be treated
here is more general than that in “The Bargaining Problem” because
it was assumed in that paper that there was some way for the players
to cooperate with mutual benefit. Here it may be the case that only one,
or neither, of the players can actually gain by cooperation. To show
that the axioms handle this case seems to require a more complicated
argument using Axioms VI and VII. But this is a minor point and we
shall not include that argument, which is long out of proportion to its
significance.

The primary function of Axioms VI and VII is to enable us to reduce
the problem of games where each player may have a non-trivial space
of strategies (threats) to the case we have just dealt with, where each
has but one possible threat. Suppose player one is restricted to a strategy
¢10 which would be an optimal threat in the threat game discussed before
in the non-axiomatic approach. Then from Axiom VI, we have

i)1(t10, Sz, B) < 1)1(81, Sz, B)-

Now we apply Axiom VII to restrict S, to a single strategy (S; is already
restricted) without increasing the value of the game to player one. Let
&; stand for the single strategy that S, is restricted to, then

v1(t10, t;k, B) < v1(tao, Se, B).

Now we know that the value of a game where each player has but one
threat is the same value obtained in the first part of this paper. Hence
we know that against the threat #;, there is no better threat for player
two, and no threat more unfavorable for player one, than ¢ (i.e., an
optimal threat for player two). So we may write

vi(tro, t20, B) < vi(tao, &, B).
Combining the three inequalities we have

v1(t10, £20, B) < v1(Sy, S, B).
Similarly, we have

v2(t10, t20, B) < v2(Sy, Sa, B).

And now we observe, by Axiom II, that the last two inequalities may be
replaced by equalities, because v1(tw , tw, B) and va(ty, tn, B) are the
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coordinateé of a point on the upper-right boundary of B. Thus the
axiomatic approach gives the same values as the other approach.

Massachusetts Institute of Technology
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