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Elephants 

By MICHAEL KREMER AND CHARLES MORCOM* 

Many open-access resources, such as elephants, are used to produce storable 
goods. Anticipated future scarcity of these resources will increase current prices 
and poaching. This implies that, for given initial conditions, there may be rational 
expectations equilibria leading to both extinction and survival. The cheapest way 
for governments to eliminate extinction equilibria may be to commit to tough 
antipoaching measures if the population falls below a threshold. For governments 
without credibility, the cheapest way to eliminate extinction equilibria may be to 
accumulate a sufficient stockpile of the storable good and threaten to sell it should 
the population fall. (JEL Q20) 

Most models of open-access resources as- 
sume that the good is nonstorable (H. Scott 
Gordon, 1954; M. B. Schaefer, 1957; Colin 
Whitcomb Clark, 1976). While this may be a 
reasonable assumption for fish, it is inappropri- 
ate for many other species threatened by over- 
harvesting, as illustrated in Table 1. Although 
30 percent of threatened mammals are hunted 
for presumably nonstorable meat, 20 percent are 
hunted for fur or hides, which are presumably 
storable, and approximately 10 percent are 
threatened by the live trade (Brian Goombridge, 
1992).1 

African elephants are a prime example of an 
open-access resource which is used to produce a 
storable good. From 1981 to 1989, Africa's 
elephant population fell from approximately 1.2 
million to just over 600,000 (Edward B. Barbier 
et al., 1990). Dealers in Hong Kong stockpiled 

large amounts of ivory (Jane Perlez, 1990). As 
the elephant population decreased, the constant- 
dollar price of uncarved elephant tusks rose 
from $7 a pound in 1969 to $52 per pound in 
1978, and $66 a pound in 1989 (Randy T. 
Simmons and Urs. P. Kreuter, 1989). These 
higher prices presumably increased incentives 
for poaching. 

Since the late 1980's, governments have 
toughened enforcement efforts, with a ban on 
the ivory trade, shooting of poachers on sight, 
strengthened measures against corruption of 
game wardens, and the highly publicized de- 
struction of confiscated ivory.2 This crackdown 
on poaching has been accompanied by de- 
creases in the price of elephant tusks (Raymond 
Bonner, 1993), as well as a revival of the pop- 
ulation. Since these policy changes reduce 
short-run ivory supply as well as demand, it is 
not clear that the fall in price would have been 
predicted under a static model, and indeed most 
economists did not predict this decline. How- 
ever, the fall in price is consistent with the 
dynamic model set forth in this paper, under 
which improved antipoaching enforcement may 
increase long-run ivory supply by allowing the 
elephant population to recover. 

Under the model, anticipated future scarcity 
of open-access storable resources leads to 
higher current prices, and therefore to more 
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1 I'he others are threatened by factors aside from over- 
harvesting, such as loss of habitat. 

2 In September 1988, Kenya's president ordered that 
poachers be shot on sight, and in April 1989 Richard Leakey 
took over Kenya's wildlife department. 
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TABLE 1-SOME SPECIES USED FOR STORABLE GOODS, OR BY COLLECTORS 

Bears Lizards Medicinal Plants 
Giant Panda Horned Lizard species of Dioscorea 
Asiatic Black Bear L. A. Spectacled Caiman species of Ephedra 
Grizzly Bear Common Caiman Dioscorea deltoidea 
S. A. Spectacled Bear Tegus Lizard Rauvolfia serpentina 
Malayan Sun Bear Monitor Lizard Curcuma spp. 
Himalayan Sloth Bear Snakes Parkia roxburghii 
Cats Python Voacanga gradifolia 
Tiger Boa Constrictor Orthosiphon aristasus 
Cheetah Rat Snake species of Aconitum 
Lynx Dog-faced Water Snake Trees 
Canada Lynx Sea Snakes Astronium urundeuva 
Ocelot Butterflies Aspidosperma polyneuron 
Little Spotted Cat Schaus Swallowtail Ilex paraguaiensis 
Margay Homerus Swallowtail Didymopanax morotoni 
Geoffroy's Cat Queen Alexandra's Bird-wing Araucaria hunsteinii 
Leopard Cat Orchids 7ehyera tuberculose 
Other Mammals Dendrobium aphyllum Cordia milleni 
Black Rhino D. bellatulum Atriplex repanda 
Amur Leopard D. chrysotoxum Cupressus atlantica 
Caucasian Leopard D. farmeri Cupressus dupreziana 
Markhor Goat D. scabrilingue Diospyros hemiteles 
Saiga Antelope D. senile Aniba duckei 
Cape Fur Bull Seal D. thrysiflorum Ocotea porosa 
Sea Otter D. unicum Bertholetia excelsa 
African Elephant Rattan Dipterix alata 
Chimpanzees Calamus caesius Abies guatemalensis 
Toads C. manan Tectona hamiltoniana 
Colorado River Toad C. optimus Mahogany 
Turtles Other Plants 
Hawksbill Sea Turtle Himalayan Yew 
Egyptian Tortoise 
American Box Turtle 
Birds 
Red and Blue Lorry 
Parrots 
Quetzal 
Roseate Spoonbill 
Macaws 

Sources: Sean Kelly (1991, 1992); David Sanger (1991); John Balzar (1992); William Booth (1992); Goombridge (1992); 
New York Times (1992); Sharon Begley (1993); Robert Johnson (1993); Bill Keller (1993); Ian Mander (1993); Robert M. 
Press (1993); Lena Sun (1993); Paul Taylor (1993); John Ward Anderson (1994); Timothy Egan (1994); Laura Galloway 
(1994); Life Magazine (1994); Gautam Naik (1994); Bill Richards (1994); William K. Stevens (1994). 

intensive current exploitation. For example, el- 
ephant poaching can lead to expected future 
shortages of ivory, and thus raise future ivory 
prices. Since ivory is a storable good, current 
ivory prices therefore rise, and this increases 
incentives for poaching today. Because poach- 
ing creates its own incentives, there may be 
multiple rational expectations paths of ivory 
prices and the elephant population. 

In order to gain intuition for why there may 
be multiple rational expectations equilibria, it is 
useful to consider the following two-period ex- 

ample, for which we thank Martin L. Weitzman. 
Suppose that each year there is a breeding sea- 
son during which population grows by an 
amount B(x) given an initial population of x. 
Following the breeding season, an amount h is 
harvested. Denote the elephant population at the 
beginning of the harvest season in year one as x. 
Then the population at the end of the harvest in 
year one will be x - hI, and the population at 
the end of the harvest in year two will be x - 

h1 + B(x - hl) - h2. To keep the model as 
simple as possible, we assume that the world 
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TABLE 2-TIME LINE FOR TWO-PERIOD EXAMPLE 

Time Population 

Initial (year 1) X0 
After harvest, hl, in 

year I xo - h 
After breeding in year 

2 xo- h, + B(xo- hl) 
After harvest, h2, in 

year 2 (end of 
world) xo- h + B(xo - hi) -h2 

ends after two years. Table 2 shows the time 
line. 

Let c denote the cost of harvesting an animal, 
and denote the amount of the good demanded at 
a price of p as D(p). Assume D' < 0 and 
D(oo) = 0. The interest rate, which is assumed 
to be the only cost of storage, is denoted r. 

There will be an equilibrium in which the 
animal is hunted to extinction in year 1 if the 
initial population is less than enough to satisfy 
demand during the first year at a price of c, plus 
demand during the second year at a price of 
(1 + r)c. Algebraically, this extinction condi 
tion can be written as: x < D(c) + D((1 + 
r)c). 

There will be an equilibrium in which the 
species survives if the initial population, minus 
the amount required to satisfy first-year demand 
at price c, plus the births in the breeding season, 
can more than satisfy second-period demand at 
price c. This will be the case if x - D(c) + 
B(x - D(c)) > D(c). 

If both conditions hold, then there will be 
both a survival equilibrium and an equilibrium 
in which the price is high enough that the pop- 
ulation is eliminated in the first period, and the 
breeding that would have satisfied second- 
period demand never takes place. There will be 
multiple equilibria if the initial population is in 
the range [2D(c) - B(x - D(c)), D((1 + 
r)c) + B(c)]. 

Note that as storage costs, r, rise, there will 
be an extinction equilibrium for a diminishing 
range of initial population levels. For suffi- 
ciently high storage costs, there will only be a 
single equilibrium path of population for any 
initial stock, just as in standard models of non- 
storable fish. 

The model may help explain the sudden de- 

struction of bison populations in the nineteenth 
century. There had been a gradual acceleration 
in bison killings before 1870, but in the next 
four years, over four million bison were killed 
for their hides on the southern Great Plains 
alone, and by 1883, the bison were nearly ex- 
tinct. This followed an improvement in the 
tanning process for buffalo hides, which pre- 
sumably increased their storability. 

In the example above, we assume that the 
good was destroyed when it was consumed. For 
example, rhino horn is consumed in traditional 
Asian medicines. Multiple equilibria can also 
arise for durable goods, which are not used up 
when they are consumed, as long as either the 
good depreciates, or demand for the good grows 
over time. Both conditions are often fulfilled: 
ivory yellows with age, and pieces break or are 
lost, and rapid population and income growth in 
East Asia are increasing demand for goods 
made from endangered species. In a previous, 
unpublished version of the paper, we derive 
conditions for multiple equilibria in a two- 
period model with durable goods. 

In any case, in practice, few goods are com- 
pletely durable. For example, ivory is often 
considered an example of a durable good, but 
new and old ivory are not perfect substitutes, 
since ivory yellows with age, and there is con- 
stant demand for uncarved ivory for personal- 
ized seals. To the extent that there is demand for 
new ivory, there may be multiple equilibria in 
the absence of demand growth or depreciation. 

In the remainder of the paper we use a con- 
tinuous time, infinite-horizon model, which al- 
lows us to solve for steady-state population and 
prices; to examine cases in which extinction is 
not immediate following a shift in expectations, 
or the path of population and prices is stochas- 
tic; and to examine policy. We will focus on the 
case of goods which are storable, but not dura- 
ble, such as rhino horn, but, except for the 
analysis of stockpiles in Section VI, the intu- 
ition should carry over to the case of durable 
goods as well. 

We focus on the case of a purely open-access 
resource. However, we also discuss the case in 
which it becomes profitable to protect the re- 
source as private property at a sufficiently high 
price. It is expensive to protect elephants as 
private property, since they naturally range over 
huge territories and ordinary fences cannot con- 
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tain them (Bonner, 1993). However, in a few 
parts of Africa, with proximity to tourist facil- 
ities, it has become profitable to protect ele- 
phants as private property. If a species can be 
protected as private property above a certain 
price, then there may be one equilibrium in 
which the species survives as a plentiful open- 
access resource at a low price, and another 
equilibrium in which it survives only as a scarce 
private resource at a high price. 

The model carries several policy implica- 
tions. Under the Gordon-Schaefer model, if the 
population is steady, or rising, the species will 
survive. In contrast, this model suggests that a 
species with stable or rising population could 
still be vulnerable to a switch to an extinction 
equilibrium. 

The model suggests that expectations of fu- 
ture conservation policy influence current 
poaching equilibria. Announcements that the 
government will permanently toughen anti- 
poaching enforcement in the sufficiently distant 
future may lead to a rush to poach now, and 
even the extinction of the species. Governments 
may be able to eliminate the extinction equilib- 
rium, and thus coordinate on the high popula- 
tion equilibrium, merely by credibly promising 
to implement tough antipoaching measures if 
the population falls below a threshold. This 
provides a potential justification for laws which 
mandate protection of endangered species with 
little or no regard to cost.3 If the commitment is 
credible, the government will never actually 
have to spend the resources to increase anti- 
poaching enforcement. 

Some governments, however, may not be 
able to credibly commit to protect endangered 
species. In the case of animals used to produce 
nondurable but storable goods, it may be possi- 
ble to eliminate extinction equilibria by build- 
ing sufficient stockpiles of the storable good, 
and threatening to sell the stockpile if the ani- 
mal becomes endangered or the price rises be- 
yond a threshold. This is somewhat analogous 
to central banks using foreign-exchange re- 
serves to defend an exchange rate. 

Several previous papers find multiple equi- 

libria in models of open-access resources with 
small numbers of players (Kelvin Lancaster, 
1973; David Levhari and Leonard J. Mirman, 
1980; Jennifer F. Reinganum and Nancy L. 
Stokey, 1985; Alain Haurie and Matti Pohjohla, 
1987; Jess Benhabib and Roy Radner, 1992). In 
these models, each player prefers to grab re- 
sources immediately if others are going to do 
so, but to leave resources in place, where they 
will grow more quickly if others will not con- 
sume them immediately. Aaron Tornell and An- 
dres Velasco (I1992) introduce the possibility of 
storage into this type of model. Gerard Gaudet 
et a]. (1998) examine the case of nonrenewable 
resources such as a comnmon pool of oil. This 
paper is also related to those, of Vernon L. Smith 
(1968), who sets forth a dynamic fisheries 
model, and of Peter Berck and Jeffrey M. Per- 
loff (1984), who explore rational expectations 
in an open-access fishery. 

The effects examined in the previous papers 
are unlikely to lead to mnultiple equilibria if 
there are many potential poachers, each of 
whom assumes that his or her actions have only 
an infinitesimal effect on future resource stocks, 
and on the actions chosen by other players. In 
contrast, this paper argues there may nonethe- 
less be multiple equilibria for open-access re- 
newable resources used in the production of 
storable goods, because if others poach, the 
animal will become scarce, and this will in- 
crease the price of the good, making poaching 
more attractive. 

Because poaching transforms an open-access 
renewable resource into a private exhaustible 
resource, this paper can be seen as helping unify 
the Gordon-Schaefer analysis of open-access 
renewable resources with the Harold Hotelling 
(1931) analysis of optimal extraction of private 
nonrenewable resources. 

The remainder of the paper is organized as 
follows. Section I lays out an analogue of the 
Gordon-Schaefer fisheries model which allows 
for storage. Section II uses zero-profit condi- 
tions in poaching and storage to derive local 
equilibrium condition,s on the possible rational 
expectations equilibrium paths. Section III uses 
the local equilibrium conclitions to derive dif- 
ferential equations that apply during those por- 
tions of equilibrium paths in which poaching 
takes place at a finite, but positive, rate. It then 
represents these subpaths using phase diagrams 

3 Note, however, that this would not provide a justifica- 
tion for why these laws would apply to species used to 
produce nonstorable goods, or species threatened by causes 
other than overharvesting, such as habitat destruction. 
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in population-stores space. Section IV examines 
how, given arbitrary initial population and 
stores, the system can reach these subpaths via 
an instantaneous initial cull or a period in which 
there is no poaching. Section V examines sto- 
chastic rational expectation paths. Section VI 
discusses policy implications and directions for 
future work. 

I. A "Fisheries" Model with Storage 

This section introduces the possibility of stor- 
age into a Gordon-Schaefer type model of open- 
access resources. We assume that the cost of 
storage is a pure interest cost, with rate r, and 
that there is free entry into storage, so that 
storage yields zero profits. 

A. The Animal Population 

We model the population following the stan- 
dard Gordon-Schaefer model, as set forth and 
developed by Clark (1976), 

dx 
(1) dt 

= 
B(x) -h 

where x denotes the population, h is the har- 
vesting rate, and B, the net births function, is 
the rate of population increase in the absence of 
harvesting. B(O) = 0, since if the population is 
extinct, no more animals can be born. We as- 
sume that given the available habitat, the pop- 
ulation has some natural carrying capacity, 
beyond which deaths would exceed births even 
in the absence of harvesting. We will measure 
the population in units of carrying capacity, so 
B( 1 ) = 0, and B(x) is strictly negative for x > 
1. B is strictly positive if population is positive 
and less than 1. This implies that, without har- 
vesting, the unique stable steady state for the 
population is 1. We assume that B is continu- 
ously differentiable. 

B. Poaching 

The rate of harvest will depend on the de- 
mand and the marginal cost faced by poachers. 

The marginal cost of poaching, c, is a decreas- 
ing, continuously differentiable, function of the 
populationx, so thatc = c(x), with c'(x) < 0. 
We assume that c' (x) is bounded and that there 
is a maximum poaching marginal cost of cm, so 
that c(O) = c 4 

C. Consumer Demand 

Given price, p, consumer demand is D(p), 
where D is continuous and continuously dif- 
ferentiable, decreasing in p, and zero at and 
above a maximum price Pm. We will restrict 
ourselves to the case in which Pm > Cm, so 
that some poaching will be profitable, no mat- 
ter how small the population. This condition 
is necessary for extinction to be a stable 
steady state. 

D. Private Property 

Although most of the analysis is concerned 
with the case of a purely open-access resource, 
it is also possible to examine the case in which 
it becomes profitable to protect the animal as 
private property at a high price. We will occa- 
sionally consider the case in which there are a 
few animals in zoos, which are never harvested, 
and at some price i, where Cm < u < Pm it 
becomes profitable to breed and protect these 
animals as private property.5 We assume that an 
unlimited amount of the resource can be pro- 
duced at this price. 

E. The Benchmark Model Without Storage 

It is useful to first consider the benchmark 
case in which the good cannot be stored. In 
this case, since the good is open access, its 

4 Note that we assume that the marginal cost of poaching 
is a function only of the population, and not of the instan- 
taneous rate of harvest. In a previous version of the paper, 
we showed that multiple equilibria could also arise if the 
marginal cost of poaching depended on instantaneous rate 
of poaching, rather than on the population. 

5 We assume that any privately grown animals are bred 
from a stock in zoos in order to avoid considering how 
demand for live animals to save for breeding stock would 
affect the equilibrium in the model. 
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FIGURE 1. DYNAMICS OF THE GORDON-SCHAEFER MODEL 

WiTH No STORAGE 

price must be equal to the marginal poaching 
cost. Algebraically, p = c(x), where x is the 
open-access population. Moreover, the har- 
vest must be exactly equal to consumer de- 
mand, so h = D(c(x)). The evolution of the 
system in which storage is impossible is thus 
described by: 

dx 
(2) dt = B(x) - D(c(x)) F(x). 

Since B(O) 0 O, and Pm > Cm, D(c(O)) > 0, so 
that F(O) < 0, as illustrated in Figure 1. Thus, zero 
is a stable steady state of equation 2. F(1) < 0 
since B(1) = 0, and D(c(l)) > 0. (If 'n is greater 
than Pm, the species will become extinct, whereas 
if Pm > S > cm, then the animal will become 
extinct as an open-access resource but a small 
stock of the resource will be preserved as private 
property.) We will consider the case in which F is 

positive at some point in (0, 1), so that extinction 
is not inevitable. Assuming that F is single 
peaked, there will generically be points Xs and Xu 
so that F is negative and increasing on (0, Xu), 
positive on (Xe, XS), and negative and decreas- 
ing on (Xs, 1 ]. Hence, if population is between 
0 and XU, it will go to zero, whereas if it starts 
above Xu, it will tend to the high steady state, 
XS, Thus, if storage is impossible, there will be 
multiple steady states, but a unique equilibrium 
given initial population. 

11. Local Equilibrium and Feasability 
Conditions 

We will look for rational expectations equi- 
libria, or paths of population, stores, and 
price. (We focus on perfect foresight equilib- 
ria, but briefly consider stochastic rational 
expectations equilibria in Section V.) We 
show that although the possibility of storage 
does not affect the steady states of the sys- 
tem,7 it dramatically alters the equilibrium 
transition paths to those steady states, some- 
times creating multiple equilibria leading to 
different steady states. 

Any rational expectations equilibrium path 
must satisfy the following local equilibria and 
feasibility conditions set forth below. 

A. The Storage Condition 

As in Hotelling (1931), free entry into storage 
implies that 

dp =rp if s > O, 

dt l ?rp if s=O, 

where s denotes the amount of the good that is 
stored. People will not hold stores if the price 
rises less quickly, and if the price were rising 

6 Single-peakedness implies a unique positive stable 
steady state. Our propositions can be generalized to cover 
much more general models in which there are many stable 
steady states, or extinction is not stable. 

7 The stable steady states actually comprise the entire 
stable limit set of the system with storage (i.e., there are no 
cycles or chaotic attractors). 
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more quickly, people would hold on to their 
stores, or poach more. 

B. The Poaching Condition 

Free entry into poaching implies that the price 
of the good must be less than or equal to the 
marginal cost of poaching another unit of the 
good. The "poaching condition" is therefore: 

J c(x), if there is poaching 
p' < c(x), if thereisnopoaching 

where x is the open-access population. We will 
call the storage and poaching conditions slack if 
stores and poaching respectively equal zero. 

In addition to the local equilibrium condi- 
tions above, there are some feasibility condi- 
tions, as described below. 

C. "Conservation of Animals" 

At all times, the increase in stores plus the 
increase in population must equal net births 
minus the amount consumed, or 

(3) s + x-=B (x) -D(p). 

Note that this condition applies to nondurable 
goods, such as rhino horn, which are destroyed 
when they are consumed, rather than durable 
goods, such as ivory. Note also that we assume 
that animals which die naturally cannot be 
turned into the storable good.8 

Finally, both population, x, and stores, s, must 
be nonnegative at all times on a feasible path. 

The above conditions imply that, once on a 
rational expectations equilibrium path, popula- 
tion, stores, and price must be a continuous 
function of time, as demonstrated in the Appen- 
dix, Proposition Al. To see the intuition, note 
that jumps up in price would be anticipated and 
arbitraged. This implies that population cannot 

be anticipated to jump down. As we discuss 
below, there may be an initial jump down to get 
to the equilibrium path. The underlying biology 
does not allow population to jump up. 

Since the storage and poaching conditions 
can each either be satisfied with equality, or 
with inequality, there are four possible ways 
that the equilibrium conditions can be satisfied. 
We call each of these a subpath. The four sub- 
paths are: Poaching Without Storage, Poaching 
and Storage, Storage Without Poaching, and 
Neither Storage nor Poaching. 

D. The Poaching Without Storage Subpath 

In this subpath, the zero-profit condition for 
poaching implies that p = c(x). The storage 
condition restricts the rate at which the price can 
rise and not induce storage (p5 ' rp). Because 
the price is inversely related to the population, it 
is possible to translate this condition that prices 
may not rise too fast into a condition that the 
population may not fall too fast: taking loga- 
rithms of p = c(x) and differentiating with 
respect to time implies that if p < rp, then 

dx c (x) 
(4) dt?rC(X) 

In the Poaching Without Storage Subpath, the 
dynamics are the same as in the standard Gordon- 
Schaefer model, in which storage is impossible: 

(5) x = (x) - D(c(x)) 

s = O 

p c(x). 

E. The Poaching and Storage Subpath 

Since in this subpath, stores are positive and 
there is poaching, dpldt = rp, and p -c(x). 
Here, the exponential path of the price translates 
into a differential equation for population: tak- 
ing logarithms of p = c(x) and differentiating 
with respect to time implies that if p = rp, then 
x = rc(x)/c'(x). Given the path of population 
and, hence, price and consumption, the dynam- 

8 We write the conservation condition as an equality. 
Because the price is positive, no one would throw the good 
away voluntarily. 
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ics of stores are determined by "conservation of 
animals," s = B(x) - D(p) - x, and we can 
express all the local equilibrium dynamics in 
terms of the population, x: 

c(x) 
(6) = r (x) 

= B(x) -D(c(x)) - 

p= rc(x). 

As discussed in Section IV, we will also need 
to determine starting values for x, s, and p, but 
for now we will focus on laws of motion, rather 
than boundary conditions. 

F. The Storage Without Poaching Subpath 

In this subpath, the rate of change of popu- 
lation is just the net birth rate, since there is no 
poaching. All demand is being satisfied from 
stores, so stores must be falling at a rate equal to 
instantaneous demand. For stores to be positive, 
price must be rising exponentially at rate r. The 
dynamics can thus be summarized by: 

(7) = B(x) 

s -D(p) 

p= rp. 

Note that since there is no poaching, p ' 
c(x). 

G. Neither Storage nor Poaching 

If the open-access population is positive, 
there must be either storage or poaching, since 
if demand is being satisfied neither by stores nor 
poaching, the price will be greater than cm, the 
maximum marginal cost of poaching. If the 
open-access population is zero, demand may be 
satisfied from private farms if 7T < P, 

H. Steady States 

To be in steady state, defined as a situation in 
which population, stores, and prices are all con- 

stant, stores must be zero because, if stores are 
positive, price must be rising exponentially. If 
stores are zero, then the system will have the same 
steady states as in the case in which storage is 
impossible, i.e., x = 0 and Xs. This implies that 
there are only two stable steady states: what we 
will call the "high steady state," in which the 
open-access population is Xs, stores are zero, and 
price is c(Xs); and extinction as an open-access 
resource (which for convenience, we will refer to 
as the extinction equilibrium), in which population 
and stores are zero. 

III. Dynamics Within Subpaths with Poaching 

In order to solve for the equilibrium paths, we 
will first look at equilibrium subpaths, and then 
examine the circumstances under which an 
equilibrium path can move from one subpath to 
another subpath. We will begin by looking at 
the two subpaths in which there is poaching: 
Poaching Without Storage and Poaching and 
Storage. 

A. The Poaching Without Storage Subpath 
and the Poaching and Storage Subpath 

For the system to be in the Poaching Without 
Storage Subpath, people must not want to hold 
positive stores, so the price must not be rising 
faster than rp. Since the price is determined by 
the population, p = c(x), the storage condition 
implies that the population cannot fall too fast. 
Specifically, from equations (4) and (5), 

(8) B(x) - D(c(x)) -r c(x)' 

when s = 0. 
As is clear from Figure 2, equation (8) will 

hold if and only if x E [X , X*s], where Xs and 
X* are the two critical points at which the 
storage condition is just binding, i.e., B - D = 
rclc' (or X* = 0 if it never binds). Moreover, 
0 ?X* < Xu < Xs < Xl. We will only 
consider the case X* > 0 in what follows. 

If the system starts with population in (Xu, 
X*] and no stores, then it is an equilibrium to 
follow the Poaching Without Storage Subpath 
dynamics to Xs, the stable steady state. If the 
system starts with no stores and a population of 
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exactly Xu, the unstable steady state, the system 
will stay there. Here, as elsewhere, for the sake 
of clarity, we shall not discuss measure zero 
cases like this in any detail. 

If the system starts with no stores and with 
population in (X*, Xu), then the Poaching 
Without Storage dynamics will eventually take 
population to a point less than X*. At some 
point, therefore, the system must leave the 
Poaching Without Storage Subpath and enter 
the Poaching and Storage Subpath. We discuss 
this after we have found the equilibrium Poach- 
ing and Storage Subpath. 

B. The Poaching and Storage Subpath 

In the Poaching and Storage Subpath, the 
dynamics of population are determined by the 
price, which is rising exponentially. The dy- 
namics of stores are determined by "conserva- 
tion of animals": what is harvested and not 
consumed must be stored. We may rewrite 
equation (6) as an equation for the phase trajec- 
tory of stores, s, in terms of x: 

X'1, , x1 if SI S_ 

p\ opulaion - . X_ 

X,,, finite if s < s, 

.Y, Xn _ Popuilationl 

FIGURE 3. STORAGE REGIME EQUILIBRIIJM PATHS, XMAX 

ds 

(9) dx 

c' W- { (x) ((x) )-r- , ( c ) - 
rc (x) { X 

dxcldt is still just rc(x)lc'(x), which is strictly 
negative, and bounded above. 

Equation (9) implies that rational expecta- 
tions trajectories in population-stores space 
must have stores increasing as a function of 
population, x, if x < Xu, or x > X*. Stores 
must be a decreasing function of population if 
x E (X*, Xx). There is a maximum of stores 
at Xu, and a minimum at XV. Thus there will 
be a Poaching and Storage Subpath of the type 
depicted in Figure 3, in which for populations 
greater than X*, population and stores de- 
cline; for population Ez (X , Xs) population 
rises and stores decline; and for population 
less than X* , population and stores decline. 
To see the intuition for this, note that if pop-- 
ulation is very high or very low, population 
would tend to fall rapidly without stores, and 
as may be seen from Figure 2, in the absence 
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of stores, population would fall rapidly 
enough that price would be rising faster than 
rate r. In order to prevent population from 
falling too rapidly to satisfy the storage con- 
dition, part of demand must be satisfied out of 
stores, which implies that there must be stores 
and that stores must decrease with time. Xu 
and Xs are the points at which, in the absence 
of stores, the population would fall just fast 
enough that price would rise at rate r. Be- 
tween Xu and X*, the price would rise more 
slowly than rate r with no storage. Therefore, 
on a subpath with stores in this population 
range, more than current demand must be 
being harvested and stores must increase to 
make the population fall fast enough so that 
price rises at exactly rate r. 

Equation (9) is the differential equation for 
the trajectories of equilibria in population-stores 
space while in the Poaching and Storage Sub- 
path. To tie down the equilibria, we need 
boundary conditions. One possibility is that 
stores run out while population is still positive, 
and the system enters the Poaching Without 
Storage Subpath. The only place at which this 
can possibly happen is where population is ex- 
actly X*. To see why, consider the following: to 
be in the Poaching Without Storage Subpath, 
x E [x*, Xs]. Because population, stores, and 
price are continuous in equilibrium, the system 
must leave the Poaching and Storage Subpath at 
the same point at which it enters the Poaching 
Without Storage Subpath. As explained above, 
stores are decreasing as a function of x, so 
strictly increasing as a function of time (x is 
falling) if x E (Xv, Xs), and at a maximum at 
x = X . But stores have to run out at the point 
of transition from the Poaching and Storage 
Subpath to the Poaching Without Storage Sub- 
path, so stores must have been falling, (or at 
least not increasing or at a maximum) immedi- 
ately before the transition. The only point re- 
maining at which stores could run out is, 
therefore, X*. 

The other possible boundary condition is that 
open-access population becomes extinct before 
stores run out. Since x is decreasing at a rate 
which is bounded below while stores are posi- 
tive, the population must become extinct in fi- 
nite time if stores do not run out. After that, 
stores will be consumed until they reach zero as 
well. 

PROPOSITION 1: If the initial population is 
at least U(cm), (defined below) then along a 
rational expectations path in which the popula- 
tion becomes extinct, the quantity of stores re- 
maining when the population becomes extinct is 

r(1/,r,1n(minjpm ,,jcm,n 
(10) D D(cn er dt, 

where IT is the price at which it becomes 
profitable to protect the resource as private 
property. 

PROOF: 
If Pm < 7T, then the price charged for the last 

unit of stores must be Pm, or a storer would 
profit by waiting momentarily to sell his or her 
stock. Zero profits in poaching imply that along 
a rational expectations path leading to extinc- 
tion, the price when the population becomes 
extinct must be c(0) = cm. Price is rising 
exponentially while stores are positive, so the 
amount consumed from the time when price is 
cm until price reaches Pm is: 

r(11rAl1n(p.1c.) 

U(cm) 1 D(cmer") dt. 

If cm < 1 < Pm' so tfiat in the absence of 
poaching there would still be demand for the good 
from private sources, then, if the open-access pop- 
ulation becomes extinct, eventually the price for 
the good must be equal to the cost of private 
production, Ir. Since the price would then be con- 
stant, it cannot be worthwhile to store the good. As 
above, stores must run out precisely at the point 
where p = 'n. Therefore stores at the time the 
open-access good becomes extinct must be 
f(l/r)ln(Tr/c-) D(cmer)dt < U(cm). 

As we show below, the smaller U(cm), the 
harder it is to sustain an extinction equilibrium. 
Thus the possibility of cultivating the animal as 
private property makes extinction less likely. If, 
however, the cost of producing the good privately 
is high enough, there will still be an equilibrium in 
which the open-access population is extinct. 

We have shown that there can only be two 
equilibrium Poaching and Storage Subpaths 
(see Figure 3). 
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1. High Steady-State Storage Equilibrium 
-In this equilibrium, population starts at x > 
X*. The system evolves until stores run out 
when population is X*, and then enters the 
Poaching Without Storage Subpath. The equa- 
tions p = c(x), and dpldt = rp determine the 
path of population and price. Stores are given 
by s =s(x), where: 

(11) s?(x) c {B(q) - D( (q)) 

c(q) A - r > r7}dq 
c'(q) J 

2. Extinction Storage Equilibrium.-In this 
equilibrium, population becomes extinct, and at 
that moment, stores - U(cm). The equations 
p = c(x) and dpldt = rp determine the path of 
population and price. Stores are given by s = 
Se(X), where: 

(12) Se(X) = U(C..1) + - c(q (q) rc (q) Bq 

- D(c(q)) - r 
(q) 

dq 
c'(q)j 

For this to be an equilibrium, stores must stay 
positive at all times along this path. If stores would 
have to become negative at some point in the 
future, this path is not an equilibrium. If Se(X) iS 
ever negative, we define Xmax to be the smallest 
positive root of Se(X). If there is none such, we say 
that Xmax = oo. To be an equilibrium, the starting 
population must be less than Xmax. 

Se(X) and s+(x) are parallel. Both have a 
minimum at Xs. It is clear from Figure 3 that 
Xmax is finite if and only if Se(X) lies below 
s+(x). If Xmax is finite, it must lie between X* 
and X*. 

C. Transitions from the Poaching Without 
Storage Subpath to the Poaching 

and Storage Subpath 

We now examine under which circumstances 
an equilibrium path can move from the Poaching 

Without Storage Subpath to the Poaching and 
Storage Subpath. If the initial population is small 
enough, an equilibrium path can move to the 
Poaching and Storage Subpath and thence to ex- 
tinction. If Xu > 0 and the system starts in the 
Poaching Without Storage Subpath with popula- 
tion less than Xu, then the system must eventually 
move to the Poaching and Storage Subpath be- 
cause if it did not, the population would fall fast 
enough to violate the storage condition once pop- 
ulation was less than Xu. If the system starts with 
zero stores and population greater than Xu but less 
than Xmax, then it can go to the high steady state 
via the Poaching Without Storage Subpath, or to 
extinction with stores. By continuity of stores, the 
system can only make the transition from the 
Poaching Without Storage to the Poaching and 
Storage Subpath where Se(X) = 0, i.e., at Xmax?9 If 

Xinax E [XMU, Xs], then the system can move to the 
Poaching and Storage Subpath Se leading to ex- 
tinction. At such a transition, the rates of change 
of population, stores, and price will jump, but the 
storage and poaching conditions are not violated, 
because the levels will not jump. 

D. Summary 

We may thus define two sets of points in the 
Poaching and Storage Subpath and the Poach- 
ing Without Storage Subpath, Ae, the set of 
points leading to extinction, and A+, the set of 
points leading to the high steady state, as illus- 
trated in Figure 4. The top panel shows the case 
when Xmax o. In this case, there will be a set 
of points Ae leading to extinction, along a 
Poaching and Storage Subpath, from any initial 
population level. For populations between Xi 
and X* there will be a Poaching Without Stor- 
age Subpath leading to the steady state Xs, and 
for populations greater than X*, there will be a 
Poaching and Storage Subpath leading to this 
Poaching Without Storage Subpath, and from 
there on to the stable steady state Xs. 

The second panel illustrates the case when 
Xu ? Xmax ? Xs. In this case the set of points 
leading to survival, A , is the same as in the top 

9 The transition cannot happen at X*, because the pop- 
ulation would be falling there in the Poaching Without 
Storage Subpath, so the system could never reach that point. 
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panel, but for high enough initial populations, 
there will be no set of points leading to extinc- 
tion. 

For the case in which Xs < Xmax? X the 
situation is similar to the top panel (X =ax c), 
but the A e and A+ paths are coincident above 
Xmax. Much as in the Xu c Xmax - XX case, the 
point (Xmax, 0) is a branch point, where the 
system can continue on Ae or A +. 

The bottom panel of Figure 4 illustrates the 
case when Xmax < xu. As before, the survival 
set, A+, is unchanged. The set leading to ex- 
tinction consists of the Poaching and Storage 
Subpaths beginning with population Xmax and 
zero stores, and the Poaching Without Storage 
Subpaths leading up to it. 

The system must end up on one of these 
subpaths, A+ or A e. The next section explains 
how the system will reach these paths from an 
initial point with arbitrary values of population 
and stores (xo, so). 

IV. Moving to a Subpath with Finite 
and Positive Poaching 

If the initial population and stores are not on 
either the A + or Ae paths identified above, then 
one of two things will happen. If the initial point 
in population-stores space is below an Ae or A + 
path, then the system may jump instantaneously 
to the corresponding equilibrium path via a cull. 
If the initial point is above an Ae or A + trajec- 
tory, demand may be temporarily satisfied from 
stores with no poaching until the path meets Ae 
or A. 

A. Culling 

If the system starts below an Ae or A+ path, 
there may be an instantaneous harvest, which 
we will call a "cull."10 Although anticipated 
jumps up in price are inconsistent with rational 
expectations, such jumps are possible at the 
"beginning of time," as in this case. We will 
distinguish between "initial" values of popula- 
tion and stores and "starting" values, which are 
the values just after the initial cull. When we 
need to indicate this, we will write (xo, so) for 
initial population and stores, and (x(O), s(O)) to 
denote starting (i.e., at time 0 on the equilibrium 
path) values. 

In a cull, live animals are killed and turned 
into dead animals one to one. This means that, 
in population-stores space, the system moves up 
a downward-sloping diagonal, and the total 
quantity of animals, dead or alive, is conserved. 
We call this quantity Q = x + s. For a cull to 
be rational, it must take the system to a point on 
one of the subpaths we identified above, A e or 
A+. 

It is possible to cull to reach the Ae subpath 
from points below Se(x).11 There mnay also be 

") Realistically, of course, poaching could not kill ani- 
mals at an infinite rate. If the marginal cost of poaching rose 
sufficiently with the instantaneous rate of poaching, the 
harvest would take place over time, rather than instanta- 
neously. Structurally, though, there is little real difference in 
the two approaches: the rational expectations equilibria are 
determined by the boundary conditions (where people an- 
ticipate the system must end up), and these are essentially 
the same in both cases. 

"' Technically, if Q < U(Cm), then the system can move 
immediately to extinction via a cull; it does not go to 
extinction via the Ae subpath. 
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other points from which this is feasible. In par- 
ticular, if the curve s = se(x) has a tangent of 
gradient -1, then, as illustrated in Figure 5, it is 
possible to reach the subpath from points above 
the curve, but below the tangent, by culling. A 
quick look at equation (9) shows that the points 
at which Se(X) has gradient -1 are Xu and Xs, 
but only the tangent at Xu can lie above the 
curve, if Xmax > XU. The value of Q at this 
tangency, Qmax, is the maximum value Q may 
have (while xo > X") so that the Ae subpath 
may be reached via culling. If Xmax < Xu1 then 
this tangency does not exist, and the Ae subpath 
can be reached by culling only from points 
below Se. Note that if Qmax > XS, then even 
starting from the high steady state with no 
stores, the population will be vulnerable to co- 
ordination on the extinction equilibrium. To get 
to the high steady-state equilibrium path by 
culling, the point corresponding to initial pop- 
ulation and stores must lie below the curve s 
s+(x), and xo > Xs. 

B. Storage Without Poaching 

If there are sufficient initial stores, there will 
be equilibria in which the starting price is below 
c(x), and there is no poaching for a time while 
demand is satisfied out of stores. Eventually 
poaching must resume, at a point on Ae or A - 

While there is no poaching, population will be 
rising, and stores falling as they are consumed. 
The price will rise exponentially, at rate r. In 
population-stores space, trajectories with no 
poaching must be downward sloping and pop- 
ulation must be increasing so long as population 
is less than one, the carrying capacity. 

When poaching resumes at a point on one of 
the Ai paths, price, population, and stores are all 
determined. Given the end point, there is a 
unique, downward-sloping no-poaching trajec- 
tory leading to it. 2 In order for storing without 
poaching to be rational, and for an initial point 
to end up on one of the Ai, the initial point must 
lie on one of these trajectories (Figure 6). To get 
to the path leading to the high steady state, the 
initial point must lie to the right of the boundary 
of the set of points on trajectories leading to 
A+, which we denote L +, and above the curve 
s = s (x). To get to the path leading to ex- 
tinction, the initial point must lie to the left of 
the boundary of the set of points on trajectories 
leading to points on Ae, which we denote Le 
We include a more formal treatment of this in 
the Appendix, Proposition A3. 

C. Summary of Perfect Foresight Equilibria 

We have now found all the possible perfect 
foresight equilibria of the model. As illustrated 
in Figure 7, population-stores space may be 
divided into at most three regions depending on 
whether there exist equilibria leading to extinc- 
tion, the high steady state, or both. The middle 
panel in Figure 7, corresponding to the case 
Xu < Qmax < o, illustrates a situation in which 
all three regions exist. In the first, unshaded, 
region, initial population and stores are high 
enough that there is no equilibrium path leading 
to extinction. In this region, speculators who 
killed animals and stored their parts until the 
species became extinct would have to hold the 
parts long enough that they would lose money. 
In the second, darkly shaded, region, population 

12 However, from a single initial level of population and 
stores, there may be equilibrium paths leading to different 
parts of the Ai trajectory. This is because the no-poaching 
trajectories leading to different endpoints on the Ai trajec- 
tory may cross. At the points where the trajectories cross, 
there will be multiple equilibria. For more technical details, 
we refer to Kremer and Morcom, 1996. 
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and stores are low enough that, even if poaching 
temporarily ceased and demand were satisfied 
from stores until the stores were exhausted, the 
population could not recover enough for the 
species to survive. Thus there is no equilibrium 
path leading to the high steady state. In the 
third, lightly shaded, region, there are multiple 
possible equilibria, some to extinction, and 
some to the high steady state. In this region, 
expectations about which equilibrium will be 
chosen are self-fulfilling. 

Depending on parameter values, some of 
these regions may be empty. It is possible that 
there will be no region in which survival is 
assured. If Xmax is infinite, as depicted in the top 
panel of Figure 7, a trajectory beginning at any 
point can get to the extinction set Ae either 
through a cull if it lies below se or by an 
interlude with no poaching if it lies above Se. 

If, on the other hand, Xmax is small enough 
(less than Xu), as depicted in the bottom panel 
of Figure 7, then there will be no region of 
multiple equilibria, and the fate of the system 

will be entirely determined by its initial point, 
and not by expectations. 

It turns out that Xmax and Qmax are both 
decreasing in r, the storage cost. For proofs, see 
the Appendix, Proposition A2. This should not 
come as a surprise. Qmax tells us the largest 
population can be and still reach extinction via 
culling and a storage equilibrium path. The 
larger the population, the longer stores have to 
be held before extinction. This is less desirable 
with higher storage costs. Increasing the storage 
cost thus always reduces the region of phase 
space from which extinction is possible. Gov- 
ernments could increase storage costs by threat- 
ening prosecution of anybody found to be 
storing the good. The international ban on ivory 
trade may have had this effect. 

For sufficiently large r, Xmax will be less than 
Xu, and there will be no region of multiple 
equilibria at all; the ultimate fate of the species 
is the same as in the model in which storage is 
impossible, given the same initial conditions. In 
this sense, our model converges to the standard 
Gordon-Schaefer model as storage cost rises. 

V. Nondeterministic Equilibria 

So far, we have focused on perfect foresight 
equilibria, in which all agents believe that the 
economy will follow a deterministic path. In 
this section, we discuss a broader class of ratio- 
nal expectations equilibria in which agents may 
attach positive probability to a number of future 
possible paths of the economy. One reason to 
consider this broader class of equilibria is that 
the perfect foresight equilibrium concept has 
the uncomfortable property that there may be a 
path from A to B, and from B to C, but not from 
A to C. For example, if Qmax is greater than Xs, 
then for sufficient initial population, the only 
equilibrium will lead to the high steady state. 
For a system that starts in the high steady state, 
however, an extinction storage equilibrium be- 
ginning with a cull would also be possible. 

Note also that the concept of a Storage With- 
out Poaching Subpath is also much more rele- 
vant when stochastic paths are admissible, since 
in order to have a subpath with no poaching, 
there must be stores, and the only way stores 
can be generated within the model is through a 
Poaching and Storage Subpath. However, 
within the limited class of perfect foresight 
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equilibria, people must assign zero weight to the 
possibility that there might be a switch from a 
Poaching and Storage Subpath to a Storage 
Without Poaching Subpath. 

While we have not fully categorized the ex- 
tremely broad class of equilibria with stochastic 
rational expectations paths, we have been able 
to describe a subclass of such equilibria, which 
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we conjecture illustrates some more general as- 
pects of behavior. 

We consider equilibria in which agents be- 
lieve there is a constant hazard that a sunspot 
will appear and that, when this happens, the 
economy will switch to the extinction storage 
equilibrium, with no possibility of any further 
switches. 

Here, we present some results without proof. 
Those interested should refer to Section III, and 
Appendix B of National Bureau of Economic 
Research Working Paper No. 5674 (Kremer and 
Morcom, 1996), an earlier version of this paper, 
in which we discuss equilibria with uncertainty 
in greater detail. 

If the constant hazard of a switch to an ex- 
tinction equilibrium is below a certain thresh- 
old, 'nh, an analogue of the high steady-state 
equilibrium exists before the sunspot. If the 
switching hazard is above this level, then a high 
steady-state equilibrium is not sustainable. 

For low values of the switching hazard, there 
will be no stores held in steady state before the 
sunspot, and the steady state looks exactly like 
that without uncertainty: stores are zero, and 
population, x Xs. 

For moderate values of the switching hazard, 
positive stores will be held in the pre-sunspot 
steady state, as the switching hazard is high 
enough that it is worth holding stores to specu- 
late on the price jump which occurs when there 
is a switch to the extinction equilibrium. The 
pre-sunspot steady-state population is still Xs. 
The quantity of stores held in the pre-sunspot 
steady state increases with the switching hazard 
up to Th. 

VI. Policy Implications and Directions 
for Future Work 

Previous sections examined the equilibrium 
path of population and prices given the cost of 
poaching, and thus implicitly given the pattern 
of antipoaching enforcement. Section VI, sub- 
section A, argues that expectations of future 
government antipoaching enforcement will af- 
fect current poaching. In most models of opti- 
mal management of open-access resources, the 
government maximizes the sum of producer and 
consumer surplus. This assumption may be ap- 
propriate for fish, but it is less appropriate for 
elephants or rhinos. We will assume that gov- 

ernments do not value the welfare of consumers 
or poachers, but instead seek to avoid extinction 
at minimum cost in expenditures on game war- 
dens, helicopters, and other antipoaching ef- 
forts. Section VI, subsection B, argues that 
credible governments may be able to most 
cheaply eliminate extinction equilibria by com- 
mitting to impose strong antipoaching policies 
if the species becomes endangered. Some gov- 
ernments may not be able to credibly commit to 
strong antipoaching policies. The cheapest way 
for these governments to eliminate extinction 
equilibria may be to maintain stockpiles, and 
threaten to sell them if the population falls be- 
low a threshold. 

A. Expectations of Antipoaching Policy 

Suppose that the cost of poaching is c(x, E), 
where E is antipoaching expenditure, c(x, 
??) > Pm' and D[c(x, 0)] > B(x) for all x. 
(These assumptions imply that with sufficiently 
weak enforcement, the species will be driven to 
extinction, and that with sufficiently strong en- 
forcement, nothing will be harvested.) The dy- 
namic analysis in this paper implies that 
expected future adoption of either very tough or 
very weak antipoaching measures may reduce 
long-run supply and therefore increase current 
poaching and storage, as demonstrated in the 
following propositions. 

PROPOSITION 2: Suppose c(X, E) 
c1 (X) + c2(E). Suppose also that at date 0, the 
population is at the high steady state, and both 
a survival and extinction equilibrium exist. Fi- 
nally, suppose that the government announces 
that at some date T, it will eliminate antipoach- 
ing enforcement. If T is small enough, there will 
be an immediate cull. 

PROOF: 
See the Appendix. 

PROPOSITION 3: Suppose that at date 0, an- 
tipoaching expenditure is E, the population is at 
the high steady state, and both a survival and 
extinction equilibrium exist. Suppose also that 
the government announces that at date T it will 
increase the cost of poaching above Pm, thus 
eliminating poaching. Then (i) if T is small 
enough, the announcement will lead to an 
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instantaneous cull, which will make the species 
extinct if Xs < U(cm) and (ii) if T is great 
enough, then the survival equilibrium may be 
eliminated even if Xs > U(cm). 

PROOF: 
See the Appendix. 

B. Policies to Eliminate the 
Extinction Equilibrium 

Just as an expected shift to an antipoaching 
policy which reduces the long-run harvest may 
lead to an immediate cull, an expected shift 
towards an antipoaching policy which increases 
the long-run harvest may lead to a temporary 
cessation of poaching as the economy switches 
to a storage without poaching subpath. In par- 
ticular, governments may be able to coordinate 
on survival equilibria by committing to follow 
certain policies. It is beyond the scope of this 
paper to fully specify optimal antipoaching ex- 
penditure and stockpile purchases and sales as 
functions of x, or more generally, the history of 
x. However, it is possible to show that for low 
enough interest rates, the optimal long-run pol- 
icy involves committing to implement draco- 
nian antipoaching policies if the population falls 
below a threshold, or if this commitment would 
not be credible, building up stockpiles and 
threatening to sell them if the population falls 
below the threshold. 

As is clear from Figure 1, if one takes the 
available habitat as given, the minimum anti- 
poaching expenditure such that there is a steady 
state with positive population is EMIN such that 
D(c(x, EMIN)) is tangent to B(x). Let XMIN 
denote the steady-state poptulation associated 
with antipoaching expenditures of EMIN. Con- 
sider the case in which XMIN > U(Cm)- 

The steady-state cost of eliminating the ex- 
tinction equilibrium is minimized by spending 
EMIN on antipoaching efforts and committing 
that if x falls below some threshold, the gov- 
ernment will temporarily implement tough an- 
tipoaching measures that raise c above Pm until 
the population recovers to XMIN. This threshold 
can be any level of population less than XMIN. 
(In this model, the population is not subject to 
stochastic shocks, and hence the exact threshold 
is irrelevant, since in equilibrium, the popula- 

tion never falls below xMIN.13) To see that this 
policy minimizes the steady-state cost of elim- 
inating the extinction equilibrium note first that 
there is no extinction equilibrium under this 
policy, since the cost of poaching is above Pm 
when x is below the threshold. The population 
cannot be eliminated instantaneously in a cull 
before the government has an opportunity to 
raise the cost of poaching above Pm since 

XMIN > U(cm). Note also that no policy with 
lower expenditure is consistent with survival, 
since the population cannot survive indefinitely 
with antipoaching expenditures of less than 
EMIN- 

In general, optimal long-run policy may not 
minimize steady-state costs because moving to 
this policy would entail transition costs. To take 
an extreme example, if the initial population is 
small enough, assuring species survival will be 
so costly that the government will allow extinc- 
tion. However, as the discount rate approaches 
zero, the optimal long-run policy will approach 
the policy which minimizes steady-state costs 
(assuming that these costs are less than the flow 
value the government attaches to eliminating 
extinction equilibria). 

The model suggests that if a government or 
international organization could credibly com- 
mit to spend a large amount on elephant protec- 
tion if the herd fell below a certain critical size, 
it would never actually have to spend the 
money. This provides a potential rationale for 
endangered species laws that extend little pro- 
tection to a species until it is endangered, and 
then provide extensive protection with little re- 
gard to cost. 

Note that the policy which minimizes the 
steady-state cost of eliminating the extinction 
equilibrium may leave the population very close 
to extinction. Some additional margin of safety 
would likely be optimal in a more realistic 
model in which the population was subject to 
stochastic shocks. 

Some governments with open-access re- 
sources may not be able to credibly commit to 
spend heavily on antipoaching enforcement if 
the population falls below a threshold, since this 

13 Note that XMIN would be an unstable steady state if the 
government maintained constant expenditure of EMIN, in- 
stead of letting expenditure depend on x. 
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policy will be time inconsistent if the cost of 
imposing tough antipoaching enforcement is 
sufficiently high. In the case of goods used to 
produce storable, nondurable goods, we argue 
below that the cheapest way for such govern- 
ments to eliminate the extinction equilibrium 
may involve maintaining a stockpile and threat- 
ening to sell it if the population falls below a 
threshold or becomes extinct. Promises to sell 
stockpiles, unlike promises to increase anti- 
poaching expenditure, are likely to be time con- 
sistent, since there is no reason not to sell stores 
if a species is becoming extinct anyway. (It is 
important to note that while stockpiles can help 
protect animals which are killed for goods 
which are storable but not durable, such as rhino 
horn, stockpiles will not help protect species 
which are used to produce durable goods, i.e., 
goods which are not destroyed when they are 
consumed. 14) 

To see why stockpiles may be useful in elim- 
inating extinction equilibria, note that the 
smaller the initial population level, the greater 
the transition costs of antipoaching enforcement 
needed to make the population survive. For a 
small enough initial population, the government 
will find it optimal to allow extinction. Denote 
this minimum population as x. There will be a 
set of population levels at which poachers will 
find it profitable to cull immediately to x. or a 
lower level, knowing that the government will 
then allow the species to go extinct.15 The upper 
boundary of this set will be a level at which 
poachers will be just indifferent between culling 
and not culling, if they believe other poachers 
will cull. Denote this level of population as XNC 

for the no-commitment level of population. XNC 

is analogous to Qmax, but whereas Qmax is cal- 

culated taking the c(x) function as exogenous, 
XNC is calculated based on c(x, E*(x)) where 
E*(x) is the government's optimal antipoach- 
ing expenditure, given a population x. 

Suppose that XNC is greater than XMIN, so the 
possibility of a switch to the extinction equilib- 
rium will exist in steady state if x5 = XMIN and 
the government does not hold stockpiles. In 
order to prevent an extinction equilibrium, the 
government could either maintain a live popu- 
lation of XNC or maintain a steady-state live 
population of XMIN and a stockpile of XNC - 

XMIN, which it promises to sell if the population 
falls below a threshold. To see why holding 
XNC - XMIN either as live population or stores 
will eliminate the extinction equilibrium, note 
that a cull could only move the system along a 
45-degree line extending "northwest" from the 
initial point in population-stores space. If it is 
impossible to reach an extinction path along this 
line, then there will be no extinction equilib- 
rium. 

To compare the cost of holding XNC - XMIN 

as live population and stores, denote the steady- 
state cost of antipoaching enforcement and 
other conservation activity needed to maintain 
the population at XNC as E(XNC). Note that if 
XNCis beyond the carrying capacity, 1, even the 
complete elimination of poaching will be insuf- 
ficient to maintain the population at XNC. Food 
will have to be brought in for the animals, and 
as overcrowding increases, disease may become 
more and more of a problem. We assume that, at 
least for large enough x, the expenditure needed 
to maintain a population of x, denoted E(x), 
increases at least linearly in x, i.e., E"(x) > 0. 

Suppose that there are initially XNC animals. 
The discounted cost of supporting the animal 
population at XNC indefinitely is E(XNC)/r. De- 
note the cost of culling from a population of 
XNC to a population of XMIN as c*(XNC, XMIN). 
We assume that c* increases less than linearly 
with XNC, since it is presumably easier to cull 
animals when there are more of them. The dis- 
counted cost of sustaining a population of XMIN 
and a stockpile of XNC - XMIN is thus C*(XNC, 

XMIN) + EMIN/r. The cost advantage of stock- 
piling is thus (W(XNC) -- EMIN)/r - C*(XNC, 

XMIN). This is positive if rc*(XNC, XMIN) < 
E(XNC) - EMIN. For small enough r, this will 
be the case. To see this, note that XMIN (and 
hence EMIN) do not depend on r, since XMIN 

14 The government has no reason to store durable goods, 
since private agents will store any durable goods sold on the 
market. As noted in the introduction, however, few goods 
are completely durable. 

15 This discussion assumes that the poachers can conduct 
an instantaneous cull before the government can react. 
However, a similar phenomenon would occur even if the 
government could raise E as soon as the population hit a 
threshold. If poachers believed that the government would 
eventually give up protecting the animal, they would keep 
forcing the population back to the threshold, and this could 
cause the government to spend so much on antipoaching 
enforcement that the government would in fact prefer to let 
the species go extinct. 
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depends only on the D(p) and B(x) functions, 
each of which depends on current and not future 
variables. As r approaches zero, XNC [and hence 
E(XNC)] grow without bound, since x is 
bounded below by 0, and XNC - will grow 
without bound as r falls, because as r ap- 
proaches zero poachers will become willing to 
hold stockpiles for arbitrarily long periods prior 
to selling at Pm. Under the assumptions that for 
large enough x, E"(x) ' 0, and a2c*/aX2C < 

0, L'Hopital's rule implies that in the limit as r 
approaches zero, rc*(xNC, XMIN) will grow less 
quickly than E(XNC) - EMIN and, hence, stock- 
piling will be cheaper than maintaining the an- 
imal population at XNC indefinitely. 

Note that if it is optimal to hold stockpiles if the 
initial population is XNC, then the cheapest policy 
that eliminates the risk of extinction must involve 
holding stockpiles in the long run, no matter what 
the initial level of population. To see this, note that 
the cheapest long-run policy that eliminates the 
risk of extinction without stockpiles is to maintain 
a population of XNC, but that once population had 
reached XNC, it would be cheaper to cull to create 
a stockpile of XNC - XMIN and to maintain a 
population of XMIN than to maintain the population 
at XNC. Hence the cheapest long-run policy that 
eliminates the risk of extinction must involve 
holding stockpiles. 

While holding sufficient stockpiles will elim- 
inate the extinction equilibrium, the process of 
building the stockpiles changes the survival 
equilibrium path. In the perfect foresight model 
of Sections I-IV,16 merely holding stockpiles 
does not affect the survival steady state, since it 
changes neither demand nor supply. 

Whereas under the perfect foresight model 
the survival steady state is the same with and 
without stores, under the stochastic model of 
Section V, government stockpiles affect the sur- 
vival steady state, as well as the equilibrium 
transition path. In the absence of government 
stockpiles, private agents will hold sufficient 
stores in the pre-sunspot steady state that the 

expected profits in case of a switch to the ex- 
tinction equilibria just offset the storage costs if 
no sunspot appears. Government accumulation 
of stores will crowd out private stores, until 
private agents no longer hold any stores. Once 
the government accumulates sufficient stores, 
the extinction equilibrium will disappear. 

Ted Bergstrom (1990) has suggested that con- 
fiscated contraband should be sold onto the mar- 
ket. Many conservationists oppose selling 
confiscated animal products on the market, fearing 
that it would legitimize the animal products trade. 
Using confiscated contraband to build stores helps 
avoid this problem. Stores could potentially be 
held until scientists develop ways of marking or 
identifying "legitimately" sold animal products so 
they can be distinguished from illegitimate prod- 
ucts. We have assumed that the only cost of hold- 
ing stores is the interest cost, but if governments 
confiscate contraband, they will increase the cost 
of holding stores, and this will reduce the scope 
for extinction equilibria. 

Our model does not allow for stochastic 
shocks to population, nor does it differentiate 
animals by health, age, or sex, but in more 
realistic models there may be ways of building 
stores that do not reduce the live population one 
for one. Stores could be built up by harvesting 
sick animals, or harvesting animals during pe- 
riods when population is temporarily above its 
steady state, due for example to a run of good 
weather. In future work, we plan to explicitly 
model the potential of stockpiles to smooth sto- 
chastic shocks to population, for example due to 
weather and disease. 

It is worth noting that stockpiles could be built 
up not only by the government of the country 
where the species lives, but also by conservation 
organizations or foreign governments. A further 
analysis of this case would have to consider stra- 
tegic interaction between the conservation organi- 
zation and the government. 

We have assumed that the government knows 
the parameters of the model, but of course this 
is unlikely to be the case in practice. It is worth 
noting that inferences about parameters based 
on the Gordon-Schaefer model may lead to a 
false optimism if the good is storable. Under the 
Gordon-Schaefer model of nonstorable open- 
access resources, stability of the population 
could be interpreted as indicating that parame- 
ters are such that the species will survive. In 

16 Perfect foresight is a somewhat strange context to 
examine stockpiles, because under perfect foresight, all 
agents either assign probability one to extinction, in which 
case it is too late for government stockpiles to prevent 
extinction, or they assign probability zero to extinction, in 
which case it is not clear why government stockpiles would 
be necessary. 
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contrast, under the model outlined here, species 
with constant population may be vulnerable to a 
switch to an extinction equilibrium. One should 
not become complacent even if the population is 
increasing, since along Storage Without Poach- 
ing Subpaths, the population may temporarily 
increase above its steady-state level, even if the 
ultimate steady state is extinction. 

Although we have focused on how govern- 
ments could coordinate on the survival equilib- 
rium, and assumed that poachers are atomistic 
and take prices as given, it is worth noting that 
a "George Soros" of poaching who held large 
stores and had access to sufficient capital could 
try to coordinate on the extinction equilibrium 
simply by offering to buy enough of the good at 
a high enough price. (In practice such an offer 
could provoke a government reaction.) 

Stepping further outside the model, we spec- 
ulate that if the population of live animals were 
very small, poachers and storers might not take 
prices as given, and would instead take into 
account that killing animals could raise prices. 
This may help explain why rhinos in Zimbabwe 
which had been de-horned by game wardens to 
protect them from poachers were nonetheless 
killed by poachers. The New York Times (1994), 
quotes a wildlife official as explaining the 
poachers' behavior by saying: "If Zimbabwe is 
to lose its entire rhino population, such news 
would increase the values of stockpiles interna- 
tionally." 17 It is plausible that traders holding 
even modest stores would order poachers to kill 
de-horned rhinos, since rhino populations are 
small, and once poachers have found a rhino 
and realized that its horn has been removed, 
killing the rhino only costs a bullet. 

APPENDIX 

PROOF OF PROPOSITION 2: 
After period T there will be no steady state 

with positive population and hence the system 
must follow an extinction equilibrium path. The 
date-T extinction path will have a higher start- 
ing price and lower starting population for any 
initial Q than the date-0 extinction path, be- 

cause poaching will be greater for any popula- 
tion level, and hence the species will become 
extinct faster, so the price will reach Pm more 
quickly. [Both the date-T and date-0 extinction 
trajectories will pass through [0, U(cm)], but 
otherwise the date-T extinction trajectory will 
lie above the date-0 extinction trajectory in s-x 
space.] Since no jumps in price can be antici- 
pated, if T is small enough, poachers will cull 
immediately. 

PROOF OF PROPOSITION 3: 
(i) Consider first the extreme case in which T 

is infinitesimal. Following a cull of (F < Xs at 
time 0, stores will be (F and the price will be 
c[ (Xs - (), E]. Along a rational expectations 
equilibrium path in which some animals sur- 
vive, stores at time T must be U(c[(Xs - (F), 
E]) so that the stores will be exactly consumed 
during the time it takes the price to rise to Pm. 
Thus the equilibrium (F = U(c[(Xs -(), El). 
If XS < U(c,,), there is no (F satisfying this 
equation. To see this, note that c(x) is decreas- 
ing in x and U(c) is increasing in c. Therefore, 
for Xs - (F 0, c(Xa - (I) ? cm, and 
U(c(Xs- (F)) ? U(Cm) > Xs (F. Since (F 
cannot be less than Xs there will be a unique 
equilibrium in which the entire population is 
culled at time 0 and the price rises above cm. 

(ii) Now consider the case in which T is greater 
than the time until popul-ation and stores equal 
zero on any path with a cull. In this case, no 
equilibrium with a cull is consistent with survival. 
If there is no immediate cull, then the price must 
be continuous. If the price is continuous, then if 
maximum stores along the path satisfying the dif- 
ferential equation for equilibrium trajectories, (9), 
and passing through the point (Xs, 0) are less than 
U(cm), there can be no survival equilibrium. To 
see this, note that for the animal to survive, the 
price at time T must be less than cm. If the price at 
time T is less than cm, then on a rational expecta- 
tions path, stores at timne T must be greater than 
U(Cm). 

PROPOSITION Al: The path of population, x, 
stores, s, and price, p, is continuous on an 
equilibrium path. 

PROOF: 
Together, the storage and poaching condi- 

tions imply that the equilibrium price path must 

17 It is also possible that the poachers killed the rhinos to 
obtain the stumps of their horns, or to make rhino poaching 
easier in the future. 
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be continuous in time. A jump up in price would 
violate the storage condition, and a jump down 
in price would imply an instantaneous infinite 
growth rate of the population, which is impos- 
sible. 

While there is poaching, p c(x), which is 
continuous and monotonic, so population, x, 
must be continuous. In the no-poaching sub- 
path, population develops as equation (7), so is 
continuous. Population cannot jump suddenly 
across subpath changes, either, as that would 
require a jump in price so there is an instanta- 
neous harvest. Population is thus continuous. 
Stores are differentiable within subpaths, and so 
are continuous. For there to be a jump in stores 
across subpaths, there would have to be an 
instantaneous harvest, which would require a 
jump in price, which is impossible. Hence stores 
are continuous. 

PROPOSITION A2: (i) The maximum initial 
value of population plus stores the system may 
have and still get to the Poaching and Storage 
Equilibrium Subpath Ae(X) via culling is Qmax, 

where 

(A1) Qmax = max{xmax, Se(XU) + XU. 

(ii) Iffinite, Qmax is decreasing in storage cost, r. 

PROOF: 
(i) Qmax must either be Xmax, if se(XU) < 0, 

or the point lying on the x axis and the tangent 
to se(x) of gradient -1. These tangencies occur 
at Xu or Xs. se(X) is convex at XS, so Qmax 
cannot be associated with Xs. 

(ii) If Qmax - Xmax, then se(Qmax(r), r) 
0, where we make explicit the dependence of 
both the function se(x) and the point Xmax on r. 
By the implicit function theorem, 

dQmax aselar 

dr ase/aQQmax X=Qrax 

aselar 

s e (x) X-Qa 

Note that the application of the theorem is al- 
lowed because, at Xmax, se(x) is strictly nega- 
tive. To determine the sign of the numerator of 
(Al), recall that 

Se (x) = U(Cm) 

+ 
x 

(c(j) F(q) - I) dq, and 
0 

C (l/r)ln(p/1c,,) 

Uf(C.) -|D (c .. e dt 
0 

JP ID(z)d. 

Since cm, pm do not depend on r, 

dU(cm) Pm' 1 D(z) 
=I -dz. U(Cm) d r r2 z r 

C,,t 

Likewise, 

__[fx~q 
F(q) dq xl 

ar rc(q) dq- 

1 J c'(q) F(q) dq. 
rj rc (q) 

Summing up, 

aSe 1 

X r - -- (Se (Xmax) + Xmax) 
arX =Xmax 

r 

Xmax 
r 

< 0. 

If Qmax = Se(XU) + Xu, then, because Xu is 
independent of r, the result also follows 
straightforwardly, as 

dQmaxldr =se(x)Iarjx=xu 

- (Se(XU) + Xu) r 

< 0. 
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PROPOSITION A3: Consider the system of 
differential equations (7) for the no-poaching 
phase: 

(A2) = B(x) 

= D(poe't) 

with a set of border conditions of a Cauchy 
problem for some po: 

(A3) x(O) =x 

s(O)-so. 

If there exist po and tp such that for the solution 
of (A2), (A3), s(tp) = si(x(tp)), i E {e, + 1, 
this will be a no-poaching interlude leading to 
the equilibrium path Ai with the initial price po. 
The duration of this interlude will be exactly tp. 
We will denote the sets of initial conditions for 
which such po exists by El: 

(A4) 
Ei = {(xo, so)| po, tp : s(tp) =Si (x(t)) 

for s(t), x(t)-solutions to (A2), (A3)}. 

The equilibrium subpath on which the system 
may end up is not, in general, unique. There 
may be equilibria leading to Ae and A +. There 
may also be cases where E+ f Ee # 0. If 
there are multiple equilibria from the same 
point (xo, so), then the one with the lower 
starting price must have a steeper trajectory in 
(x,- s) space, since stores will be consumed 
faster with a lower price. 

In other words, there is a no Storage Without 
Poaching Subpath ultimately leading to the 
steady state Xs if and only if L?(xo) < so and 
sO > s+(xo), where L+ is the left boundary of 
the set E+ defined in equation (A4). Likewise, 
there is a Storage Without Poaching Subpath 
leading to extinction if and only if Le(XO) < sO, 
and so > Se(XO) (see Figure 6). Li are down- 
ward sloping. Le and L+ will be the same line 
if Xmax ? Xu 

PROOF: 
By Figure 6, Li are downward sloping, be- 

cause they are possible no-poaching paths, and 
so stores are decreasing, while population is 
increasing. 
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