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(1.) 
dx

dt
= rx 1−

x

K
 
 
  

 
 = rx −

rx2

K
= f (x) , where:

r = the intrinsic rate of growth
x = the stock of the renewable resource

K = the asymptotic limit, or carrying capacity, of the resource

(2.) 
d2x
dt

→ x =
K
2

, that is, the maximum sustainable yield will be where the stock

of

the renewable resource is at one-half of the carrying-capacity level.

(3.)  

dx

x K − x( )
=

r

K
d t , or

1

x
+

1

K − x
 
 
  

 
 dx = rdt

Integrating (3.) yields:

(4.) ln
x

K − x
 
 
  

 
 = rt + ln

x0

K − x0

 

 
 

 

 
 ,  where xo = x(0).

Equation (4.) can now be written as:

(5.) x( t )=
K

1 +ce− rt , where c =
K − x0

x0
, the basic logistic equation for the renewable

resource.

(6.) NPV = e− tR(x,E)dt
0

∞

∫ = e− t p − c x(t)[ ]{ }h(t)dt
0

∞

∫  subject to x(t)≥0 and

h(t)≥0.

Since this integral has the form φ t , x ,˙ x ( )dt∫ , the necessary condition for a maximum will

be:

(7.) 
x

=
d

dt x
=

x
e− t p − c(x)[ ] F(x) − ˙ x [ ]{ }

(8.) = e− t −c'( x) F(x) − ˙ x [ ] + p − c(x)F(x)[ ]{ }

(9.) 
t x

=
d

dt
e− t p − c(x)[ ]{ } = e− t p − c(x)[ ] + c'( x) ˙ x { }

(10.)  −c' (x )F(x)+ p − c(x)[ ]F' (x) = δ p − c(x)[ ] → F' (x) −
c' ( x ) F ( x )

p − c(x)
= δ .
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(11.)   L = t F(X) + t +1 Rt − qt − Rt +1[ ]{ }
t = o

n

∑ , where:

F(X) = the harvesting rate of the resource, depends on the intrinsic rate of
growth and the harvest rate, where:

ρt  = the discount factor at time t, and

λ 0  = the shadow price of the resource.

(12.) X* =
K(r − δ)

2r
.  From this expression, with Y*=rX*(1-X*/K), we derive the

optimal harvest rate as:

(13.)     Y* =
K r2 − δ2( )

4r
.  With ρλ =π’(Y), we get λ = (1+δ)(a-bY*), or

(14).     λ* = 1+ δ( ) a − bK r2 − δ2( ) / ( 4 r )[ ] .

(15.) 
dx

dt
= rx 1 −

X

K
 
 

 
 − q1Ex

(16.) 
dy

dt
= sy 1−

Y

L
 
 

 
 − q2Ey , where:

r, s = intrinsic rates of growth of species X and Y, respectively,

K,L = the environmental carrying capacity of species X and Y, respectively,
q1, q2 = the catchability coefficients of the two populations, and
E = the harvesting effort for each species

We can further stipulate that the basic market prices of each species are constant at p1

and p2, in which case, the net benefit function can be defined as:

(17.) π( x , y , E )= p1q1xE + p2q2yE − cE

In equilibrium dx/dt and dy/dt must be equal to zero.  As long as 0≤x≤K and 0≤y≤L,

then the bionomic equilibrium will be defined by:

(18.) 
r

q1

1−
x

K
 
 
  

 
 =

s

q2

1−
y

L
 
 
  

 
 .  If r/q1<s/q2, then the equilibrium will be given as

(19.) ˜ y =: 1−
rq2

sq1

 

 
 

 

 
 , where ˜ y  is the minimum stock of y consistent with a positive

stock of x.

(20.) PV = d−δ t p1q1x + p2q2y − c[ ]E(t)dt
0

∞

∫ , subject to the constraints defined above
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and, the control constraint 0≤E(t)≤Emax.  The corresponding Hamiltonian thus

is:

(21.) 
H = e− t p1q1 x + p2q2y − c[ ]E + 1(t) F(x) − q1Ex[ ] + 2 (t) G(y) − q2 Ey[ ]

= (t)E + 1F(x) + 2G(y)

where the respective lambda expressions are adjoint variables.  The

corresponding equations are:

(22.) 
d 1

dt
= −

H

x
= −e− t p1q1E − 1 F'( x) − q1E[ ],  and

(23.) 
d 2

dt
= −

H

y
= −e− t p2q2E − 2 G'( y) − q2E[ ].

Equilibrium requires that:

(24.) E =
F(x)

q1x
=

G(y)

q2 y
.  Under this condition, equations (24.) and (25.) reduce to:

(25.) 
d 1

dt
− 1 1 = −p1q1Ee − t

(26.) 
d 2

dt
− 2 2 = −p2 q2 Ee− t .

Since − 1 = F'( x) −
F(x)

x
=

rx

K
 and - 2 =

sy

L
, the solutions are:

(27.) e t
1(t) =

p1q1E

1 +
 =  constant , and

(28.) e t
2(t ) =

p2q2 E

2 +
 =  constant .

As long as shadow prices are bounded at t approaches infinity, and as long as optimal

equilibrium satisfies 0≤E≤Emax, then a closed form solution can be derived such that:

(29.) 
H

E
= e− t p1q1x + p2q2 y − c( ) − 1q1x − 2q2 y = 0.

From equation (26.), equations (28.) and (29.),

     (30.)   p1q1 x −
F(x)

1 +
 

  
 

  + p2q2 y −
G(y)

2 +
 

  
 

  = c


