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Diagnosability of Enhanced Hypercubes 
Dajin Wang, Member, IEEE 

Abstract-An enhanced hypercube is obtained by adding 2”-  ‘ 
more links to a regular hypercube of 2“ processors. It has been 
shown that enhanced hypercubes have very good improvements 
over regular hypercubes in many measurements such as mean in- 
ternode distance, diameter and traffic density. This paper proves 
that in the aspect of diagnosability, enhanced hypercubes also 
achieve improvements. Two diagnosis strategies, both using the 
well-known PMC diagnostic model, are studied: the precise (one- 
step) strategy proposed by Preparata et al. and the pessimistic 
strategy proposed by Friedman. Under the precise strategy, the 
diagnosability is shown to be increased to 12 + 1 in enhanced 
hypercubes (in regular hypercubes the diagnosability is n under 
this strategy). Under the pessimistic strategy, the diagnosability 
is shown to be increased to 211 (in regular hypercubes the 
diagnosability under this strategy is 212 - 2). Since the failure 
probability of one node is fairly low nowadays so that the increase 
of diagnosability by one or two will considerably enhance the 
system’s self-diagnostic capability, and considering the fact that 
diagnosability does not “easily” increase as the links in networks 
do, these improvements are noticeable. 

Index Terms-Diagnosability, diagnosis, fault tolerance, graph 
theory, hypercubes, multicomputer networks. 

I. INTRODUCTION AND PRELIMINARIES 

HE interconnections of a set of processors can be ad- T equately represented by a graph G = ( V , E ) ,  where 
each node w, E V represents a processor and each edge 
{uL> 1 1 , )  E E represents a link between vi and v3. Two linked 
processors can directly access each other. If { w z , w j }  E E ,  
without considering the faulty/fault-free status of v; and wj, 
we can test Iii with wj, and vice versa. Therefore, we call wi 
a tester of u J ,  and v, a tester of v i .  For a subset V’ c V ,  the 
rester-set of V’, denoted p-’V’, is defined to be {wIw E V 
and {v!7)’} E E for some w’ E V’} - V’. 

There are several strategies for interconnected processors 
to diagnose faulty processors among themselves. The two 
strategies concerned in this paper were initially proposed by 
Preparata et al. [7] and Friedman [3] .  These two strategies 
both use the diagnostic model initially introduced by Preparata, 
Metze, and Chien (known as the PMC model) [7]. In this 
model, the self-diagnosable system is represented by a directed 
graph G = (V, il), or digraph for short, in which a node wi can 
test all nodes w, if arrow ( 1 1 ;  + I ) , )  E A.  (Notice that a graph 
G = (V. E )  is just a special case of a digraph G = (V, A )  
in which (,ut + Y,) E A * (v, 4 WL) E A , )  The test- 
result is simply a conclusion that the tested node is “faulty” 
or “fault-free,” denoted as label 1 or 0 on the corresponding 
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arrow. The PMC model assumes that a fault-free node should 
always give correct test-result, whereas the test-result given 
by a faulty node is unreliable. A syndrome is defined as a 
function s: A + (0. l}. A subset F C V is consistent with a 
syndrome s if s can arise from the circumstance that all nodes 
in F are faulty and all nodes in V - F are fault-free. It is 
worth pointing out that for a given syndrome s, there may be 
more than one subset of V that are consistent with s .  If this 
happens, the system cannot diagnose for syndrome s ,  because 
the faulty-sets that can cause s are not unique. It is clear that 
under the PMC model, any diagnosis strategy must have some 
(at least one) good processors to self-diagnose. For a certain 
strategy, the diagnosability is a number t such that if IF1 2 t ,  
the diagnosis cannot be carried out effectively. 

Along with their diagnostic model, Preparata et al. proposed 
a diagnosis strategy. The strategy is called one-step diagnosis 
whose target is to identify the exact set of all faulty nodes 
before their repair or replacement. We have the following 
definition of (one-step) diagnosability under this strategy. 

Definition 1: Under the one-step diagnosis strategy, a sys- 
tem is said to be t,-diagnosable if for any syndrome s, there 
is at most one faulty-subset F C V that is consistent with 
s, given that IF1 5 t,. t, is called the diagnosability of the 
system under consideration. 

The faulty set F identified under above strategy is precise 
in the sense that all nodes in F are truly faulty and all nodes in 
V - F are fault-free. For this reason we can call this strategy a 
precise diagnosis strategy (in contrast with the other diagnosis 
strategy we study in this paper). Clearly t ,  is dependent on 
the topology of the system, Le., the way the nodes are linked. 

Later in [3] ,  another strategy was proposed in which the 
target is to locate a subset of nodes such that all faulty 
nodes are within F .  The faulty/fault-free status of a specific 
node in F can not be further identified. So the whole F has 
to be replaced to repair the system. The diagnosability of a 
system under this strategy can be formally defined as follows. 

Dejnition 2: A system is tlltl-diagnosable if given any 
syndrome, a subset F can be identified such that IF1 5 t l  and 

The strategy is also called pessimistic diagnosis strategy 
because F may contain some fault-free nodes. The motivation 
of this strategy is to increase the diagnosability. In most cases, 
for the same system, this strategy has greater diagnosability 
than the precise strategy, i.e., the system can allow more nodes 
to be faulty to correctly identify all faulty nodes (may be 
together with some fault-free ones). The price paid for this 
increase in diagnosability is that some good nodes may be 
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unnecessarily replaced. However, it can be shown that at most 
one fault-free node will be included in F [2] ,  [ll].  

The n-hypercube is a well-known interconnection model. 
Graph theoretically, an n-hypercube can be viewed as a graph 
G = (V, E )  such that V consists of 2n nodes, numbered from 
O O . . . O  to 11...1 . {v2 , vJ}  E E if and only if v, and v j  -- 
hav"e only one bit different. Thus, every node has links with 
exactly n other nodes. There are altogether n2n-1 links. Two 
nodes vu,,u, of an n-hypercube that have d bits different are 
said to have Hamming distance d, denoted as H(v,, v,) = d. 
So in an n-hypercube, a link exists between v, and vJ if and 
only if H(v,, v J )  = 1. Notice that the nodes can be numbered 
differently as long as the above link regulation is obeyed. 
From now on we will call n-hypercube simply n-cube. n-cube 
as a topology to interconnect processors has many attractive 
properties. It has become the most popular architecture for 
multiprocessor-systems. The t,- and 11 /t 1-diagnosability of 
hypercubes were studied in [I]  and [ 5 ] ,  respectively. An n- 
cube is shown to be n-diagnosable under the precise strategy 
[l]  and (2n - 2)/(2n - 2)-diagnosable under the pessimistic 
strategy [5 ] .  

This paper studies the t,- and tl/tl-diagnosability of en- 
hanced hypercubes. In real systems using hypercube topology, 
the processors are usually manufactured with the maximum 
allowable links. Very often not all these links are used in the 
regular hypercube of the system. This gives the motivation of 
utilizing the left-over links to get extra connections between 
the nodes. These hypercubes with extra links can be called 
enhanced hypercubes. We call these extra links skips. It 
was shown that this augment in the system's communica- 
tion ability can notably improve the system performance 
as a whole [8]. In [8], Tzeng and Wei investigated the 
performance of one category of enhanced hypercubes, in 
which 2n-1 skips are added in the following way: In addi- 
tion to the n2n-1 regular links in an n-cube, a skip exists 
between a pair of nodes b,bn-l . . . b k + l b k b k - l .  . . bl and 
bnbn-l . . . b k + l T ; k b k - l  . . . 6 1 ,  where IC, ranging from 2 to 
n, is a parameter of the enhanced n-cube which is the 
Hamming distance between the two nodes linked by a skip. 
We use notation (n,k)-cube to denote an enhanced n-cube 
with parameter IC. Examples of (3,2)-cube and (3,3)-cube 
are given in Fig. 1. The proposal of having extra links is a 
very practical one because these links are equipped as the 
processors are fabricated, would be unused otherwise, and the 
implementation does pot pose difficulty. It turns out that the 
enhanced hypercubes can achieve noticeable improvements in 
many measurements such as mean internode distance, diameter 
and traffic density, compared to regular hypercubes [8]. 

In this paper, we show that for enhanced hypercubes, 
the diagnosability is also increased under both precise and 
pessimistic strategies. More specifically, under the precise 
strategy, an enhanced n-cube is (n+l)-diagnosable when 71 2 
4, whereas a regular n-cube is n-diagnosable. Under the pes- 
simistic strategy, an enhanced n-cube is 2n/2n-diagnosable 
when n 2 5 and IC 2 4, while a regular n-cube is (2n - 
2)/(2n - %)-diagnosable. The rest of this paper is organized 
as follows: In Section 11, the (n+l)-diagnosability of enhanced 
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(a) (3,2)-cube and (b) (3, J)-cube. The skips are shown with dashed 

hypercubes under the precise strategy is proved. In Section 111, 
we prove the 2n/2n-diagnosability of enhanced hypercubes 
under the pessimistic strategy. We then give some concluding 
remarks in Section IV. 

11. THE ~,-DIAGNOSABILITY OF ENHANCED HYPERCUBES 

We need some definitions and previous results for the 
discussion in this section. 

Dejinition 3: The connectivity IF.(G) of a graph G(V, E )  is 
the minimum number of nodes whose removal results in a 
disconnected or a trivial (one node) graph. 

The following fact is well-known in graph theory. 
Lemma I [lo]: K ( G )  = K ,  if and only if the least number 

of disjoint paths between any two nodes of G is K .  
The particular graph concerned in this paper is an en- 

hanced hypercube. The K of a regular n-cube can be readily 
established from the following lemma. 

Lemma 2 [6]: There exist exactly n disjoint paths between 
any two nodes in an n-cube. Furthermore, if the Hamming 
distance of the two nodes is d, then there exist d paths of 
length d, and n - d paths of length d + 2. 

Therefore, by Lemma 1 ,  an n-cube has IF. = n. On the basis 
of Lemma 2,  we can prove that for enhanced hypercubes, 
the connectivity is increased to n + 1, resulting in a better 
t,-diagnosability of the system. 

Lemma 3: There exist n + 1 disjoint paths between any two 
nodes in an enhanced (n, k)-cube. 

Proof: Arbitrarily pick two nodes V O , V ~  E V such that 
H(vo,vl)  = d. Without loss of generality we can number 
vo = OO..O OO..O and v1 = OO..O 11..1. By Lemma 2, there 

are n disjoint paths between vo and V I  without skips. The n 
disjoint paths are shown in Fig. 2. d of them have length d, 
and n - d of them have length d + 2. 

Now with additional skips in the (n, IC)-cube, there is a 
new link between every pair of nodes ( b n . . b k + l b k . . b l  - 
b n . . b k + l b k . . 6 1 ) .  If there is a skip between the picked nodes uo 
and V I ,  then trivially there are n + 1 disjoint paths between 
vo and VI.  In the rest of the proof we separately deal with 
three different cases: IC = d, IC < d and k > d. For the case of 
IC = d, we assume that no skip exists between vo and v l .  For 
the latter two cases, this property automatically holds. 

Case 1: k = d. Let vo = OO..OOO..O. Since there exists 

a skip from OO..OOO..O to OO..O11 1 we cannot number 

v + 
d d 

v 
d 

v + 
d d 
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morepath is constructed. In this example, I )  = 8. d = 6 and 1. = 3 .  

Using two skips, two originalpaths can be reconwucted and one 

Fig. 2. 
rl = 6. 

71 disjoint paths between I , , ,  and t ' j .  In this example,,) = 8 and 

P a t h 2  
i i l  as OO..O 11..1. So, without loss of generality, let 711 = 

v 
d 

d - 
v v  

di d2 

v 
d 

O..O 1..1 O..O 1..1, such that dl + d2 = d. We denote node 

OO..O 11..1 as 116. 

We renumber the nodes by repeatedly exchanging two bits 
over all nodes in such a way that under the new numbering 
(io = OO..O OO..O and w1 = OO..O 11..1. Notice that node v v 

d d 
11 

1 4  = O..O 1..1 b..O l..l. (dl + d2 = d )  under the new v v  
d i  11 2 

d - 
v w  

di  LE2 

numbering. There is a skip from I:()  to uh, and a skip from 

t i l  to O..O 1..1 1..1 O..O ( d l  + dz = d), which we denote with 

7 4 .  

We now specify the 71 + 1 disjoint paths from 110 to u1. 11 - 1 
paths are directly taken from Fig. 2. We construct the other 
2 paths using 2 \kips and the links in the remaining path in 
Fig. 2. 

P a t h 1  

110 = oo..o oo..o + O..OOl o..o+ --j o..o11 o..o v v v 
d d d 

+" ' -0 . .01 . .1  o..o +0..01..11O..00..0 vv vvv 
(1 d d l  d i  d2 

vvv vvv 
(11  ( 1 1  $2 r i ~  (11 d2 

+ o..o 1..1 11..0 o..o +. '  ---f o..o 1..1 1..1 O. .O(= 11;)  

5kip 
i oo..o 11..1 = 711 v 

d 

Notice that only the node with t (O..OOl O..O) in p a t h l  

belongs to one particular path in Fig. 2 (the \econd from the 
bottom). Denote this particular path as P. Since d = k 2 2 ,  we 
can always set cll 2 1 and d a  2 1. Then all other intermediate 
nodes in p a t h l  are disjoint with all nodes in Fig. 2. 

v 
d 

Notice that nodes with all belong to the path P. p a t h l  
uses one node from P, while path2 uses d l  + 1 of them. All 
other intermediate nodes before the first t node are disjoint 
with all nodes in Fig. 2, and disjoint with nodes of p a t h l .  
Both p a t h l  and path2 are of length 2dl + 1. 

We have specified the 71 + 1 disjoint paths from ,110 to vl: 
71 - 1 paths from Fig. 2, 2 paths constructed with dl  + 2 nodes 
in the remaining path P, two skips (emanating from 710 and 
V I ,  respectively), and some other nodes disjoint with nodes 
in Fig. 2. 

Cuse 2: k: < d .  Let vo = OO..OOO..O and 711 = OO..O 11..1 
w v. 

d d 
k 

A - 
d 

v0 has a skip to = OO..O O..O 1..1. 711 has a skip to 

k 
A - 
d 

71; = OO..O 1..1 O..O. The situation is shown in Fig. 3. 

We show that by rearranging two original paths together 
with the newly added skips, we can get one more path from ,oO 
to 111. Observe the two paths shown in Fig. 3. We reconstruct 
pathl in Fig. 3. as 

k k i l  
s k i p  n A 

110 - oo..o o..o 1..1 (= ?I;) + oo..o 0.. 11..1 - - 
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Reconstruct path2 of Fig. 3. as 
k k 

A A - - 
d d 

k 

wo + oo..oo..oo1 o..o + oo..oo..o11 o..o 

A skip 
---f . . . -+ oo..o 1..111 O..O(= 7 1 : )  - 711 - 

d 

Construct an additional path as follows: 

‘I10 -+ o..o o..ooo..o1 vvv 
n - d  d - k  k 

+ o..o o..oo1 0..01 + o..o 0..0110..01 + v+v vwv 
n - d  d - k  k n - d  d - k  k 

o..o o..1110..01 vwv 
n - d  d - k  k 

-+ . . .  

-+ o..o 01..110..001 + o..o 01..110..011 + -+w vww 
n - d  d-k k n - d  d - k  k 

o..o 01..110..111 vww 
n - d  d - k  k 

+ ... 
0..001..1101..11 + o..o 11..1101..11 vww v w w - l  
n - d  d - k  k n - d  d - k  k 

Refemng to Figs. 2 and 3, we can see that none of the inter- 
mediate nodes in (1)-(6) belongs to the new path1 or path2 
or any one of the remaining n - 2 paths: O..O O..OOO..Ol -vv 

n - d  d - k  k 
and O..O 11..11 Ol..ll’s disjointness with other paths is ob- 

vious. For other intermediate nodes in (1)-(6), just notice 
that in all those nodes, bits d through 1 have the pattern of 

--+ 
n - d  d - k  k 

0 01 10 01 1 i.e., a block of 0’s followed by a block of l’s, v 
d 

then another block of 0’s and another block of 1’s. None of 
the nodes in other paths has this property. 

The n + 1 disjoint paths between 710 and 211 are thus 
established. 

Case 3: IC > d. Let 710 = OO..O OO..O and 211 = OO..O 11 1 v + 
We separately deal with two different cases-k = d + 1 and 
k 2 d + 2 .  

Case 3.1: k = d + 1. Observe a path of length d + 2 in 

d d 

Fig. 2, 

110 + 0..01 o..ooo -+ 0..010..001 + 0..010..011 -+ . . . vw v+ vw 
n - d  d n -d  d a - d  d 

+ o..o11..111 -+ o..oo1..111(= 711) v+ vw 
n - d  d n - d  d 

Now since there is a skip from 710 to 0..01 1..111, and there 

is a skip from w1 to 0 01 0 000 we can construct two paths 

using only two nodes from the above path: 

vw 
n - d  d 

-w 
n - d  d 

710 2 o..o1 1..111 v-+ul 
n - d  d 

and 

710 -+ o..o1 o..ooo sklq 211. -+ 
n-d d 

The above two paths are obviously disjoint with each other 
and disjoint with any of the remaining n - 1 existing paths. 

Case 3.2: k 2 d + 2. We construct a new path from 210 to 
211, i.e., we do not use any links in the n existing paths. 

w0 skip o..oo1..111 + o..oo1..11o ---f o..oo1..100 vw vw -- 
n - k  k n - k  k n-k k 

d 

(7) 
6 skip 

+ . ‘ ’ -+ o..oo 1..1 o..oo - v1 
v- 
n - k  k 

To see that the path in (7) is disjoint with any of the n existing 
paths, just notice that all intermediate nodes have 11 at bits 
(d + 2)-(d + 1). None of the intermediate nodes in paths in 
Fig. 2. has this property. 

So far we have shown that there are least n + 1 disjoint 
paths between any pair of nodes in an enhanced (n,  k)-cube. 
Since each node has only n + 1 links emanating from it, there 
will be no more than n + 1 disjoint paths between a pair of 
nodes. We come to the conclusion that there are exactly n + 1 

0 
Lemma 4: An enhanced (n ,  k)-cube has connectivity n+ 1. 

Proof: Immediately from Lemma 1 and Lemma 3. 0 
The following two characterizations of a t,-diagnosable 

system are due to Preparata et al. [7], and H&mi w d  Amin 
[4], respectively. 

Lemma 5: [7] Two conditions are necessary for a system S 
of N processors to be t,-diagnosable: 

paths between any pajr of nodes. 

1) N 2 2t, + 1, 
2) Each processor is tested by at least t ,  other processors. 
Lemma 6: [4] Let G(V, E) be the graph representation of 

a system S,  with V representing S’s processors and E the 
interconnection among them, such that IVJ = N. The sufficient 
conditions for S to be t,-diagnosable are: 

N 2 2 t , + 1  
K(G) 2 t,. 

An enhanced (n, k)-cube has 2” nodes. And 2n 2 2(n + 
1) + 1 holds when n 2 4. Each node in a (n, k)-cube is linked 
with (therefore tested by) exactly n+l  other nodes. By Lemma 
4, ~ ( ( n ,  k)-cube) = n + 1. Combining the preceding simple 
reasoning with Lemma 5 and Lemma 6, we immediately arrive 
at the following theorem: 

Theorem I: An enhanced (n,k)-cube is (n  + 1)- 
diagnosable, where n 2 4. 

111. THE t i  / t l - D ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~  OF ENHANCED HYPERCUBES 
There are several characterizations for tl /tl-diagnosable 

systems. For our purpose, we use the one proposed by Chwa 
and Hakimi [2 ] .  

Lemma 7: [2] Let G(V, E) be the graph representation of 
a system S ,  with V representing S’s processors and E the 
interconnection among them. Let p-l V‘ be the tester-set of 
V‘, formally defined as p-’V’ = {vlv E V and { w , ~ ’ }  E E 

Authorized licensed use limited to: Rutgers University. Downloaded on May 12, 2009 at 11:41 from IEEE Xplore.  Restrictions apply.



1058 IEEE TRANSACTIONS ON COMPUTERS, VOL. 43, NO. 9, SEFTEMBER 1994 

for some v’ E V’} - V’. Then S is tl/tl-diagnosable if 
and only if for any V’ c V, such that IV’I = 2p for any 

Based on this characterization, Kavianpour and Kim [5] es- 
tablished that the t l  /tl-diagnosability of a plain n-hypercube 
is 2n - 2,  where n 2 4. In this section, we will show that in 
an enhanced (n. k)-cube, tl/tl-diagnosability is enhanced to 
2n, where k 2 4 and n 2 5. 

Unlike the case of t,-diagnosable systems, here to get an 
increased tl/tl-diagnosability, the skip parameter k in the 
enhanced (n,  k)-cube must be 2 4, i.e., the Hamming distance 
of two nodes linked by a skip should be at least 4, or otherwise 
the tl/tl-diagnosability won’t be improved in the enhanced 
hypercube. To see the necessity of this restriction, consider p = 
1 and k = 2. Then IV’I = 2. Choose V’ = {0..000,0..011}. 
By Lemma 2,  there are 2 paths of length 2 and n - 2 paths 
of length 4, all disjoint with each other, between 0..000 and 
0..011. Therefore, V’ has 2n  - 2 testers. The skip from 0..000 
to 0..011 does not help increase nodes testing V’. Hence, 
Ip-lV’I = 271 - 2 < 2n - p + 1. Taking the same line, 
let p = 1, k = 3 and choose V’ = {0..0000,0..0011}. 
Again, without skips, V’ would have n - 2 testers, which 
include 0..0111 and 0..0100. Now notice that the skip of 
0..0000 goes to 0..0111, and the skip of 0..0011 goes to 
0..0100. So the two skips contribute no new testers for V’. 
We have Ip-lV’I = 2n  - 2 < 271 - p + 1. The necessity for 
n 2 5 is shown as follows: By Lemma 7, for a system to 
be 2n/2n-diagnosable, for an arbitrary V’ with IV’I = 2 .2n ,  
we should have Ip-’V’l 2 271 - 271 + 1 = 1. When n 5 4, 
2 .  2n 2 2” = I v I ,  resulting in I/L-’V’I < 1. Therefore n 
must be at least 5. 

For the purpose of our following discussion, we classify 
two types of V’ according to the bit pattern of its nodes. 
Denote the most significant bit ( ie. ,  the leftmost bit) of 
the binary representation of a node vi E V’ as MSB(w,).  
M S B ( v , )  E {0,1}. We classify V’ into the following two 
types. 

1 I p I tl ,  l p -9 ’1  2 t l  - p + 1. 

Type I :  There is a numbering of V such that at least 

Type 2: No matter how nodes of V are numbered, 
p + 1 nodes in V’ have their M S B  = 0; 

there will be exactly p nodes in V’ with 
M S B  = 0 and p nodes with M S B  = 1. 

It is important to point out that any V’ falls into one of 
the above two types. To see this, suppose we end up with a 
numbering such that there are more nodes of M S B  = 1 than 
nodes of M S B  = 0 in V’. Then by reversing M S B  (0 1, 
1 + 0) over all nodes of V, which clearly gives another valid 
numbering, V’ becomes of Type 1. 

Lemma 8: V’ is of Type 2, if and only if at each binary 
position i (z = 1 ,2 , .  . . , n), exactly p nodes in V’ have 1, and 
p nodes in V’ have 0. 

Proof: See Appendix. 
Example: If V’ = (00000,11011,10111,01100,11001, 

00110}, then no matter how V is renumbered subject to the 
regulation of hypercube, V’ will remain of Type 2. 

In an n-cube such that n 2 4, if V’ is of Type 2, 
then for  any u, E V’,  there is a 7i1 E V’ such that H ( v ,  , vJ ) 2 3. 

Lemma 9: 

Proof: See [9]. 

We are now ready to state and prove the tl/tl-diagnosability 
for enhanced hypercubes. 

Theorem 2: The tl/tl-diagnosability of an enhanced 
(n,k)-cube is 2n,  where n 2 5 and k 2 4. 

Proof: Let G(V, E )  be the graph representation of an 
enhanced (n ,  k)-cube, with V representing its processors and 
E the interconnection among them that follows the rule of 
enhanced (n,  k)-cube. We prove the theorem by showing that 
when n 2 5 and k 2 4, G(V, E )  satisfies the condition in 
Lemma 7, i.e., for any subset V’ c V such that 1V’l = 2p, 
where 1 5 p 5 272, I,L-~V’I 2 2n - p + 1. 

We first show that the preceding claim is true for p = 1, 
Le., IV’I = 2. Let V’ = {71o,v1}. If H(vo,vl) = 1, then, 
without loss of generality, we can number 710 = 0..00 and 
w1 = 0..01. By Lemma 2 ,  there is 1 path of length 1 
(the direct link) and n - 1 paths of length 3, all disjoint 
with each other, between 0..00 and 0..01. So without skips 
there would be 2n - 2 nodes testing V’. Now 0..00 has a 
skip to 0..01..11 and 0..01 has a skip to 0..01 10 where v v 
k 2 4. It can be easily seen that neither 0..0 1..11 nor 

0..0 1..10 belongs to the original testers of V’. So V‘ has 2 

more testers. Hence, Ip-’V’l = 2n,  justifying l /~-~V’ l  2 
2n - p +  1. If H(vo,  111) = 2, we can number vg = 0..000 and 
v1 = 0..011. By Lemma 2 again, V’ would have 2 n  - 2 
testers without skips. The two skips of 0..000 and 0..011 
go to O..O 1. .111 and 0. .O 1 ..loo, respectively. Since k 2 4, 

0..0 1..111 and 0..0 1..100 contribute as new testers of V’, 

resulting in Ip-’V’l = 2n. When H(vo ,v l )  2 3,  by Lemma 
2 there would be already 2n testers for V’ without skips. So 
Ip-lV’I 2 2n  readily holds. 

For 2 5 p 5 2n, we will show separately for V’ of Type 1 
and Type 2,  that any V’ (IV’l = 2p and 2 5 p 5 2n)  satisfies 
the condition of Lemma 7. 

k k 

v 
k 

v 
k 

* * 
k k 

* * 
k k 

A. Type I 
At least p + 1 nodes in V’ have their M S B  = 0. Without 

loss of generality, let MSB(TI , )  = 0, i = 0. l:..,p. 
Case I :  k < n. We have shown that l/L-’(vo.v1}1 2 2n. 

For { 2 r ~ , 2 r 3 , . . ~ . 1 i p } ,  let U = {7~2,7~3....,7~~} such that v3 
differs with uJ only at M S B ,  j = 2 , 3 ,  . . . , p.  Then u, tests 
v3,  j = 2 , 3 , .  . . ? p .  Notice that all nodes in p- l {vo ,  v1} have 
(Hamming) distance 1 or k (skips) to either 710 or 711. Since 
k < n, the two nodes in p-’{v0,t11} linked by skips have 
M S B  = 0. Meanwhile, nodes in U have at least distance 2 to 
710 or v1. We can conclude from the preceding argument that 

(8) p - l { ~ ~ o ,  1 1 ~ )  n u = 4. 

Another two facts are: 

’uo,v1 6 /~-~{vo,vl} and vo3v1 6 U. (9) 

By the definition of p-’ ,  combining (8) and (9), we have 
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00. .00011.. 110 
00..00011.. 101 

00. .00001.. 11 1 
00..00111..111 

00..01011..111 

01. .00011.. 11 1 

...... 

7 

10. .ooo _11..111_ 

...... 

d f l  

1059 

+ n  testers of vl (11) 

(p-lv’l 2 Ip-l{vo,vl}l + IUI - ( 2 p  - 2 )  
2 2n + ( p  - 1) - ( 2 p  - 2 )  
= 2n - p + 1. 

Case 2: k = n. When k = n, (8) does not necessarily 
hold. (If (8) holds, the argument for Case 1 can be directly 
used here.) Now suppose p-’{wo,vl} n U # 4. Without 
loss of generality, suppose vo’s tester V O ~  E U and number 
vo = O O . . . O  . Then vok = 11...1 . Since vok is also a 
tester of some v j  E {WZ, 213, . . . , vp}, v j  = 01 . . l  according 
to the definition of U .  Now repartition (00, VI, , up} into 
two parts: {WO, vj} and {VI, . . . , ~ j - ~ ,  q+l,  . . . , vp}, for the 
latter of which a U’ is similarly defined as in Case 1. Notice 
that Ip-’(vo,vj}l = 2n and the two skips (i.e., 1 1 - a . 1  and 
IO...O) of vo, wj just fd l  in p-l{vO,vj}. Therefore 

and we have the same conclusion as in Case 1. This completes 
the proof for V’ of Type 1. 

B. Type 2 

Under any numbering of V, there will be exactly p nodes 
in V’ with MSB = 0 and p nodes with MSB = 1. Without 
loss of generality let V’ = {u0,vl,.~~,v~~--1} such that 
MSB(v i )  = 0, i = 0,1, .. . , p  - 1, and M S B ( v j )  = 1, 
j = p , p  + 1 , . . . , 2 p  - 1. 

Without loss of generality, let vo = OO.-.O E V’. Then by 
Lemma 9, there exists a u1 E V’ such that H(v0,vl) 2 3. 
We can always renumber nodes of V by repeatedly either 
reversing (0 4 1, 1 -+ 0) a particular bit over all nodes or 
exchanging two bits over all nodes. (See Appendix, the proof 
of Lemma 8.) Therefore by doing several bit-exchanges we 
can get a numbering of V under which vug = 00. e e 0  and 
v1 = 0 .  . . Ow, where d 2 3. We will show in the rest of 

the proof that even without using the skips, V’ of Type 2 will 
have a p-’V’ such that Ip-’V’l 2 2n - p + 1. (With skips 
added, I,u-~V’( could only be greater or same.) 

Case1: d 5 n - 2 .  Let v1 = 0...01-..1 . Since d 2 3, 

d 

v 
d 

{vo,u1} has 2n testers without skips. For (02, w3,. . . , 
let U = { ~ 2 , ~ 3 , ~ ~ . , ~ ~ - 1 }  such that v j  differs with uj  
only at M S B ,  j = 2 , 3 , . . .  , p  - 1. Then uj tests vj, j = 
2,3,  “ . , p  - 1. Notice that p-l{v~,vl} n U = 9. Therefore 
Ip-l{vo, vl} u UI = 2n + ( p  - 2 ) .  

As pointed out earlier, vo, u1 $ p-’{vo, vl} U U .  If there 
is another wj E ( ~ 2 , -  1 . , vP-1, wp, . . . , v ~ ~ - 1 }  such that v j  $ 
p-’{vo, VI} U U ,  then we have 

Ip-lv’I 2 Ip-l{vo,.l} u UI - (223 - 3) 
= 2n + ( p  - 2 )  - ( 2 p  - 3) 
= 2n - p + 1, 

and the theorem is proved. 
If there does not exist such a vj ,  however, we will show 

that there must be a wq E { u p ,  , vgp-l} such that at least 
one tester of vq doesn’t belong to p-l{w~, vl} U U .  For this 

sake, suppose such a v j  doesn’t exist. Then, we have 

The nodes of V’ therefore have the following pattern: 

210 = oo..ooooo..ooo 
211 = 00..00011..111 

vg = 
062 M S B  = 0 

...... 
~ ~ - 1  = Obp-l 

I up = 162 
. . . . . .  

M S B  = 1 I vzP-3 lbp-l 
W Z p - Z  = 10..00000..000 
WZp-1 = 10..000 11..111 -J d 

By Lemma 8, the nodes of V’ should have the same number 
of 0’s and 1’s at all dimensions. Therefore this should hold 
at dimension n - 1 (the binary position next to MSB). 
From the pattern shown-above, _there ?e at le5st four 0’s 
at dimension n - 1. So Obz, . . . , Obp-l, l b z ,  . . . , lbp-l should 
contribute at least four 1’s at dimension n - 1. By (11) and 
(!2), there- are at most two 1’s at dimension n - 1 of nodes 
Obg,  . . . , Obp-l. Therefore there will be at most four nodes in 
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0 b 2 , ~ ~ ~ 1 0 ~ p ~ l , 1 b ~ , ~ ~ ~ 1 1 b p ~ ~  thathave 1 atdimensionn-1. Case2 .4:  162 = 111..1101..111. Choose 30; = 
So the only possible valid pattern of V’ is 111..1101..110. uh belongs to neither ~ L - ~ { I J O , T J I }  nor 

r r  
U .  

Summarizing the above four cases, we can always find a 
tester of vq that does not belong to p - l { * u ~ , v l }  U U .  So we 
have the same inequality as Case 1: 

M S B  = 0 

00. .00000. .ooo 
00.. 11111..111 
01 ..00000..000( = o b 2  j 
01.. 11 11 1..111(= Ob3) 
11..00000..000(= 1 6 2 )  ’I 
11..11111..111(= 1b3) M S B  = 

10..00000..000 I 
10..11111..111 I 

Now pick up = 11..00000..000 E { u p , .  . .  , V ~ ~ - I } .  Choose 
its tester v; = 11..00000..001. Obviously 71; $! p - l { u ~ . v l }  U 
[I. We have 

\/LC1V’I 2 (~L-l{wOrwl} u U (  + I{l,;>l - ( 2 p  - 2 )  
= 2r1+ ( p -  2 )  + 1 - ( 2 p -  2) = 2n - p +  1, 

and the theorem is proved. 
Case 2: d = n - 1. Similarly as in Case 1, suppose 

{V,, . . ‘ ~ UL>- l .  Up, . . ‘ . 212p-1) p-’ {?k~. vl} u U. 

And the nodes of p - l { u ~ . v l }  are of the following: 

000..0000. ,001 
000. .0000. ,010 

010. .0000. .000 
100. .oooo. .ooo 
011 ..1111..110 
01 1.. 1111..101 

001..1111.. 11 1 
111..1111..111 

. . . . . .  

. . . . . .  

) n  testers of ‘uo 

kn testers of ‘til 

Taking the same line as Case 1, we end up with the pattern 
of If’: 

M S B  = 0 
. . . . . .  

M S B  = 1 

1 
1 

000. .0000..000 
011..1111..111 
Ob, 

Ob,-1 
l b ,  

1bp-1 

. . . . . .  

100..0000..000 
111..1111..111 

where {Ob~,...,Obp-l} is a subset of p-l{w~lwl} - 

Pick up = 1b2 E { u p , .  . .  , t 1 2 ~ - 1 }  and consider its testers. 
uq will have four different general forms. 

Case 2.1: 162 = 100..0000..001. Then choose its tester 
vh = 100..0000..011. vi belongs to neither p - l { v ~ l  VI} nor U .  

Case 2.2: l b z  = 100..0010..000. Choose = 
100..0010..001. ub belongs to neither p - l { u ~ l  v1} nor 
U .  

Cuse2.3:  l b 2  = 111..1111..110. Choose v i  = 
111..1111..100. vi belongs to neither p - l { v ~ , v ~ }  nor 
U .  

{ 100..0000. ,000. 111.. 11 11 ..111}. 

Case 3: d - - n. Then {uO,vl}  = 
{000..0000..000, 111..1111..111}. If there is a 
‘u, = 000..0~11..111 E V’ such that d 2 3, then we could 

choose it as v l  and we are back to Case 1 or Case 2. 
Suppose such a 71, does not exist. Then all other nodes in 
V’ have either one or two 1’s. Now flip-flop all bits for 
all nodes of I/. 000..0000..000 becomes 111..1111..111 
and 111..1111..111 becomes 000..0000..000. Since 71 2 5 ,  
V’ now contains some nodes which have at least three 1’s. 
We are back to either Case 1 or Case 2. 

We are almost done except for one note: Thus far for 
the proof of Type 2, we have been assuming p > 2, Le., 
{u2. . . . .  u p - l }  # 4. When p = 2, V’ = ( 7 1 0 , ‘ ~ ‘ ~ .  712> u 3 } ,  
which implies U = 4. One can easily check that the only 
valid V’ of Type 2 in keeping with { v ~ , v 3 }  G ~ - ‘ { ? J o , ~ J I }  

can be numbered to have the following pattern: 

- 
d 

{ 000..0000..000, 011..1111.. 11 1. 
100..0000..000, 111..1111..111}. 

Picking 100..0000. .OOO’s tester 100. .0000. .001 $! 
/ L - ~ { w , , ,  V I } ,  we arrive at the required inequality. 

This completes the proof for V’ of Type 2, thus completing 
the proof of Theorem 2. 

IV. CONCLUSION 

Enhanced hypercubes have been shown to achieve improve- 
ments over the regular hypercubes in many aspects, and can 
be implemented with spare link-ports which are otherwise 
unused [8]. The diagnosability of enhanced hypercubes is 
studied in this paper. It is shown that the enhanced hypercubes 
have improved diagnosability under both precise (one-step) 
and pessimistic diagnosis strategies compared to the regular 
hypercubes, in addition to the already known improvements in 
many other measurements. It is proved that under the precise 
strategy, the diagnosability of an enhanced hypercube of 2” 
nodes is increased to n + 1, while in a regular hypercube 
the diagnosability is n. Under the pessimistic strategy, the 
diagnosability of an enhanced hypercube is increased to 2n, 
whereas in a regular hypercube the pessimistic diagnosability 
is 2n - 2 .  As the technology progresses rapidly, the failure 
probability of each processor drops considerably. Therefore 
the increase of diagnosability by one or two will greatly 
extend the system’s ability of self-diagnosis. Furthermore, 
the diagnosability of a network is usually a small number 
compared to the numbers of nodes and links, and does not 
“easily” increase as links increase. For all those reasons, 
the improvements in diagnosability achieved by enhanced 
hypercubes are noticeable. 
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The fault torlerance of hypercubes with respect to their self- 
diagnosis capabilities is a very interesting research field, in 
which many problems remain open. In this paper we studied 
the diagnosability of enhanced hypercubes, in which extra 
links are added in a systematic, symmetric manner. In [5 ] ,  
the diagnosability of a hypercube with some symmetrically 
reduced links was determined. However, the diagnosability of 
a hypercube with arbitrarily absent links is not known yet. 
To solve problems of these kinds, we may need some method 
to classify the distributions of links, and more properties of 
hypercubes are to be revealed. 

APPENDIX 

Proof of Lemma 8: We first show that given a valid 

Reversal (0 + 1, 1 + 0) of any bit b,, 1 5 i 5 n, over 

Exchange of any two bits b,, b, over all nodes of V 

numbering of V ,  a sequence of the following operations, 

all nodes of V or 

will give another valid numbering of V .  To see this, consider 
any edge { u z ,  u,} E E. Then under a valid numbering we 
have v, = b ,  . ‘ ’ bk  . . ‘ bl and v, = b, . . . bk . . . bl for some I C .  
It is then obvious to see that after any number of operations 
of reversallexchange, v, and v, will have one and only one 
bit different. Since the operation is performed over all nodes 
of V, this results another valid numbering. We now prove the 
sufficiency and necessity of the Lemma. 

(+): Suppose V’ is of Type 2.  For the sake of contradiction 
suppose there is a j such that of all nodes in V’, at binary 
position j there are more 1’s than 0’s (or more 0’s than 1’s). 
If j = n, then V‘ is not of Type 2. A contradiction to the 
assumption. If j # n, then exchanging binary positions n and 
j over all nodes of V ,  which gives another valid numbering, 
will violate V”S being Type 2. Again a contradiction to the 
assumption. 
(e): Suppose that of all nodes in V’, at every binary 

position exactly p nodes in V’ have 1, and p nodes in V’ 
have 0. Clearly, after any number of either reversal and/or 
exchange, M S B  of V’ will have equal number of 1’s and 
0’s. It remains to show that any valid numbering of V can be 
obtained by a sequence of reversals and/or exchanges. By a 
simple induction on n we can show that there are altogether 
n!2, different numberings for an n-cube. But that is exactly the 
number of numberings one can get by exhausting all possible 

- 

reversals and/or exchanges: There are n! permutations for the 
n bit-positions, which can be obtained by exchanges, and 
each permutation can have 2, different values, which can be 
obtained by reversals. 0 
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