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AbstractÐIn [10], Sengupta and Dahbura discussed how to characterize a

diagnosable system under the comparison diagnosis model proposed by Maeng

and Malek [7] and a polynomial algorithm was given to identify the faulty

processors provided that the system's diagnosability is known. However, for a

general system, the determination of its diagnosability is not algorithmically easy.

This paper proves that, for the important hypercube-structured multiprocessor

systems (n-cubes), the diagnosability under the comparison model is n when

n � 5. The paper also studies the diagnosability of enhanced hypercube [11],

which is obtained by adding 2nÿ1 more links to a regular hypercube of 2n

processors. It is shown that the augmented communication ability among

processors also increases the system's diagnosability under the comparison

model. We will prove that the diagnosability is n� 1 for an enhanced hypercube

when n � 6.

Index TermsÐDiagnosability, diagnosis by comparison, graph theory, hypercube,

interconnection network.
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1 INTRODUCTION

THE hypercube structure is a well-known interconnection model
for multiprocessor system. As a topology to interconnect proces-
sors, it has many attractive properties. Multicomputer systems
built with hypercube structure have already been commercially
available [2], [3] [4], [9]. Because of its importance to achieving high
performance, the fault-tolerant computing for hypercube struc-
tures has been the interest of many researchers. Generally
speaking, fault tolerance is achieved either by providing spare
processors or by computing in the presence of faulty processors.
No matter which strategy of the two is used, as the first step to deal
with faults, the system should be able to discriminate the faulty
processors from the fault-free ones. The process of determining
faulty processors is called the diagnosis of the system.

Several different approaches have been developed for inter-
connected processors to diagnose faulty processors among
themselves. One major approach, first proposed by Malek and
Maeng [6], [7], performs the diagnosis by sending the same input
to pairs of processors and comparing their responses. Based on the
collective results of comparisons, one may be able to claim the
faulty/fault-free status of the processors in the system. Since its
proposal, the diagnosis-by-comparison method has drawn exten-
sive interests of researchers. A paper by Sengupta and Dahbura
[10] gives a thorough study of this approach. It reveals important
properties of diagnosable systems under this approach; several
characterizations of diagnosable systems are given; and a poly-
nomial algorithm is presented to determine the faulty processors in
a general system provided the system is diagnosable.

In this paper, we study the diagnosability of hypercubes and one
of its variants, the so-called enhanced hypercubes [11], under the
diagnosis-by-comparison approach. Since the determination of
diagnosability for a general system is not an easy task, it would be
nice if we knew the diagnosability of some widely used systems,
such as hypercubes. We will prove that the diagnosability of
hypercubes is n under the diagnosis-by-comparison approach if

n � 5. The enhanced hypercube is obtained by adding more links to
the regular hypercube. These extra links increase the system's
diagnostic ability. We will show that the diagnosability of the
enhanced hypercubes is increased to n� 1 under the diagnosis-by-
comparison approach if n � 6. The rest of this paper is organized as
follows: In Section 2, we give necessary backgrounds and defini-
tions. In Section 3, we prove the n-diagnosability of regular
hypercubes of dimension n. In Section 4, we prove the �n� 1�-
diagnosability of enhanced hypercubes. We then give some
concluding remarks in Section 5.

2 PRELIMINARIES

In the study of multiprocessor systems, the topology of a system is
often adequately represented by a graph G � �V ;E�, where each
node vi 2 V represents a processor and each edge fvi; vjg 2 E
represents a communication channel (link) between vi and vj. In
the well-known PMC diagnostic model [8], based on the graph
representation, the two linked processors can directly test each
other. According to the system's overall test results, an assertion
about the faulty/fault-free status of processors may be made.
Numerous results using the PMC model have been derived since
its first proposal in 1967.

In the comparison-based approach, first introduced by Maeng
and Malek [7], the diagnosis is carried out by sending a certain input
to a pair of processors and comparing their outputs. The comparison
is performed by a third processor that has access to both processors
being compared. This third processor can be adequately called the
comparator of the former two. The result of the comparison is either
that the two outputs agree or that they disagree. We always assume
that two processors can access each other only if there is a link
between them. So, processor va being able to perform comparison
for vb and vc implies that fva; vbg 2 E and fva; vcg 2 E.

The comparison scheme of the whole system can be modeled
with a labeled multigraph M � �V ;C�. V represents the set of
processors. A labeled edge fvb; vcgva 2 C, with va being a label on the
edge, connects vb and vc, which means that processors vb; vc are
being compared by va. M is a multigraph because the same pair of
nodes may be compared by different comparators. We use
r�fvb; vcgva� to represent the result of comparing processors vb and
vc by va such that

r fvb; vcgva
� �

� 0 if outputs agree
1 if outputs disagree

�
Clearly, if r�fvb; vcgva� � 1, then at least one of va; vb; vc must be
faulty. If r�fvb; vcgva� � 0 and va is known to be fault-free, then vb; vc
are all fault-free. (We assume, quite reasonably, that the input is
designed in such a way that it is extremely unlikely that vb; vc with
both or one being faulty would produce the same result.) If the
comparator is faulty, then the result of comparison is unreliable so
that no conclusion can be drawn of the status of vb and vc. Fig. 1 gives
an example graph G and a comparison multigraph M in which a
pair of nodes are compared by a third one wherever it is possible.
Notice that the multigraph is not unique. Different multigraphs can
be obtained for the same G. The collective result of all comparisons,
formally defined as a function s : C ! f0; 1g, is called the syndrome
of the diagnosis. By analyzing a syndrome, we may or may not be
able to make assertions about the faulty/fault-free status of the
processors in the system. A subset F � V is said to be consistent with
a syndrome s if s can arise from the circumstance that all nodes in F
are faulty and all nodes in V ÿ F are fault-free. It is important to
point out that, for a given syndrome s, there may be more than one
faulty subset of V that are consistent with s. If this happens, the
system G with comparison scheme M cannot diagnose for
syndrome s since the faulty-sets that can cause s are not unique. A
system is called diagnosable system if, for every syndrome s, there is a
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unique F � V that is consistent with s. It is clear that, for a system to

be able to self-diagnose, there should be an upper bound for the

number of faulty processors. We define the diagnosability of a system

to be a number t such that, as long as the number of faulty processors

is less than or equal to t, the system is diagnosable. We call such a

system a t-diagnosable system.
As can be seen, different comparison schemes can be

established for a fixed system. To gain as much knowledge as

possible about the faulty status of the system, one can do as many

comparisons as one can. That is, a comparison is conducted for

every 3-tuple va; vb; vc such that fva; vbg; fva; vcg 2 E, with va being

the comparator. The multigraph representing this special compar-

ison scheme can be formally defined as follows:

M� � �V ;C�� where C� � ffvb; vcgva j fva; vbg; fva; vcg 2 Eg:
Notice that as, soon as the system G � �V ;E� is given, the M� is

known. In the rest of the paper, we will assume that this particular

comparison scheme is adopted for the given system.
The n-hypercube is a well-known interconnection model. An n-

hypercube can be viewed as a graph G � �V ;E� such that V

consists of 2n nodes, numbered from

00 . . . 0|���{z���}
n

to

11 . . . 1|���{z���}
n

:

fvi; vjg 2 E if and only if vi and vj have only one bit different. Thus,

every node has links with exactly n other nodes. There are,

altogether, n2nÿ1 links. Two nodes vi; vj of an n-hypercube that
have d bits different are said to have Hamming distance d, denoted as
H�vi; vj� � d. So, in an n-hypercube, a link exists between vi and vj if
and only if H�vi; vj� � 1. Fig. 2 gives an example of 4-hypercube.
From now on, we will call n-hypercube simply n-cube. Notice that
the nodes can be numbered differently as long as the above link
regulation is obeyed. Also notice that an �n� 1�-cube is constructed
by linking the corresponding nodes of two n-cubes. Letting Qn�1

denotes an �n� 1�-cube, we denote the two n-cubes formingQn�1 as

Q0
n � 0xx::x|��{z��}

n

and

Q1
n � 1 xx::x|��{z��}

n

;

respectively. n-cube as a topology to interconnect processors has
many attractive properties. It is a very important architecture for
multiprocessor systems, and several commercial multicomputer
systems using n-cube structure are already on the market [2], [3], [4],
[9]. The diagnosability of hypercubes under other diagnostic models
was studied [1], [5]. An n-cube under the PMC model was shown to
be n-diagnosable [1]. In Section 3 of this paper, we will prove that,
under the comparison model, an n-cube is also n-diagnosable.

In this paper, the diagnosability of enhanced hypercubes under
the comparison model is also studied. In real multiprocessor
systems using hypercube structure, the processors are often
manufactured with the maximum allowable links. In most cases,
not all these links are used to implement the regular hypercube of
the system. This gives the motivation for utilizing the leftover links
to get extra connections between the nodes. These hypercubes with
extra links can be called enhanced hypercubes. We call these extra
links skips. It was shown that this augment in the system's
communication ability can notably improve the system perfor-
mance as a whole [11]. In [11], Tzeng and Wei investigated the
performance of one category of enhanced hypercubes, in which
2nÿ1 skips are added in the following way: In addition to the n2nÿ1

regular links in an n-cube, a skip exists between a pair of nodes
bnbnÿ1 . . . bk�1bkbkÿ1 . . . b1 and bnbnÿ1 . . . bk�1

�bk�bkÿ1 . . . �b1, where k 2
�2; . . . ; n� is the Hamming distance between the two nodes linked
by a skip. We use notation �n; k�-cube to denote an enhanced n-
cube with parameter k. Examples of �3; 2�-cube and �4; 3�-cube are
given in Fig. 3. The proposal of having extra links is a very
practical one because these links are equipped as the processors
are fabricated, would be unused otherwise, and the implementa-
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Fig. 1. A graph G and its one possible comparison multigraph M.

Fig. 2. A 4-dimensional hypercube, or 4-cube for short.

Fig. 3. �3; 2�-cube and �4; 3�-cube. The skips are shown with dashed links.



tion does not pose difficulty. It turns out that the enhanced
hypercubes can achieve noticeable improvements in many
measurements, such as mean internode distance, diameter, and
traffic density, compared to regular hypercubes [11]. In Section 4,
we will show that, for enhanced hypercubes, the diagnosability is
also increased under the comparison model. More specifically,
under the comparison model, the diagnosability of an enhanced n-
cube is increased to n� 1 when n � 6.

3 DIAGNOSABILITY OF HYPERCUBES UNDER THE

COMPARISON MODEL

We need some more definitions for the discussions that follow. Let
N�v� � fu j fv; ug 2 Eg, the set of all nodes that are linked to v. For
a subset V 0 � V ,

N�V 0� �
[
v2V 0

N�v�
 !

ÿ V 0;

the set of nodes in V ÿ V 0 that are linked to nodes of V 0.
Given a system G � �V ;E� with comparison scheme repre-

sented by labeled multigraph M � �V ;C�, for a node vi 2 V , let Xvi

be the set of nodes that are connected to vi by an edge either in E or
in C. That is, a node in Xvi is either linked to vi or compared with vi
by some other node. Formally,

Xvi � fvj j either fvi; vjg 2 E or fvi; vjgvh 2 C for some vhg:
Let Yvi be the set of edges among nodes of Xvi such that

Yvi � ffvj; vhg j vj; vh 2 Xvi and fvi; vjgvh 2 Cg:
Define Gvi � �Xvi ; Yvi �.

A vertex cover of a graph G � �V ;E� is a subset K � V such that
every edge of E has at least one end in K. Obviously, there could
be vertex covers of different cardinalities. A vertex cover of
minimum cardinality is called minimum vertex cover. For a node
vi 2 V , define the order of vi to be the cardinality of a minimum
vertex cover of Gvi .

Given system G and the comparison scheme M, for a subset of
nodes V 0 � V , let T �V 0� denote the set of nodes that are outside of
V 0 and are compared to some node of V 0 by some node of V 0.
Formally,

T �V 0� � fvj j fvi; vjgvh 2 C and vi; vh 2 V 0 and vj 62 V 0g:
Fig. 4 illustrates a simple example of T �V 0�.

There are several different ways to characterize a t-diagnosable
system under the comparison approach [10]. For a general graph,
none of these characterizations is algorithmically easy. The
determination of diagnosability for a general graph is actually
intractable. For our purpose, we will use one particular character-
ization given by Sengupta and Dahbura which gives a sufficient
condition for a system to be t-diagnosable.

Theorem 1 [10]. A system with N nodes is t-diagnosable if 1)
N � 2t� 1, 2) each node has order at least t, 3) for each V 0 � V such

that jV 0j � N ÿ 2t� p and 0 � p � tÿ 1, jT �V 0�j > p.

We will prove that an n-cube is n-diagnosable by proving that it
satisfies the sufficient condition of Theorem 1.

Lemma 1 [5]. For any two nodes u; v in n-cube, jN�fu; vg�j � 2nÿ 2.

L e m m a 2 . F o r a n y t h r e e n o d e s u; v; w i n n- c u b e ,
jN�fu; v; wg�j � 3nÿ 5.

Proof. We prove the lemma by induction on n, the dimension of
hypercube.

Basis. When n is small, the claim can be checked by
inspection.

Hypothesis. The claim holds for n-cube.
Induction. Consider an �n� 1�-cube, Qn�1. Qn�1 is composed

of two n-cubes

Q0
n � 0xx::x|���{z���}

n�1

and

Q1
n � 1xx::x|���{z���}

n�1

such that each node 0bn . . . b1 in Q0
n is linked to 1bn . . . b1 in Q1

n.
If u; v; w all fall in Q0

n, then, by hypothesis, u; v; w have at
least 3nÿ 5 neighbors, all in Q0

n. But, u; v; w have three more
neighbors in Q1

n. Therefore,

jN�fu; v; wg�j � �3nÿ 5� � 3 � 3�n� 1� ÿ 5:

Suppose now u; v fall in Q0
n, w falls in Q1

n. By Lemma 1, u; v
have at least 2nÿ 2 neighbors, all in Q0

n. w will bring in at least
n new neighbors in Q1

n. Therefore,

jN�fu; v; wg�j � �2nÿ 2� � n � 3�n� 1� ÿ 5:

ut

Lemma 3. For any four nodes u; v; w; x in n-cube,

jN�fu; v; w; xg�j � 4nÿ 9:

Proof. Again the lemma is proven by induction on n.
Induction. If u; v; w; x all fall in Q0

n, then, by hypothesis,
u; v; w; x have at least 4nÿ 9 neighbors in Q0

n. But, u; v; w; x have
four more neighbors in Q1

n. Therefore,

jN�fu; v; w; xg�j � �4nÿ 9� � 4 � 4�n� 1� ÿ 9:

If u; v; w fall in Q0
n, x falls in Q1

n, then, by Lemma 2, u; v; w
have at least 3nÿ 5 neighbors in Q0

n. w will bring in at least n
new neighbors in Q1

n. Therefore,
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Fig. 4. An example of V 0 and its T �V 0�.

Fig. 5. (a) A 4-cube drawn in layered manner and (b) its G0000.



jN�fu; v; w; xg�j � �3nÿ 5� � n � 4�n� 1� ÿ 9:

If u; v fall in Q0
n, w; x fall in Q1

n, then, by Lemma 1, u; v have at
least 2nÿ 2 neighbors in Q0

n, w; x have at least 2nÿ 2 neighbors
in Q1

n. Therefore,

jN�fu; v; w; xg�j � �2nÿ 2� � �2nÿ 2� > 4�n� 1� ÿ 9:

ut

Lemma 4. A node of an n-cube has order n.

Proof. Since all the nodes of an n-cube link to others in exactly the

same way, it suffices to check the order only for node
vi � 0 . . . 00. By the definition of Gvi � �Xvi ; Yvi �, Xvi consists

of those nodes that are either linked to vi or being compared
with vi. So, Xvi is the union of two sets:

Xvi � fall nodes with one 1g �linked to vi�
[ fall nodes with two 1sg �being compared with vi�:

Yvi consists of all edges fvj; vhg such that vh is a comparator of vi
and vj, i.e., vh is linked to vi and vj is linked to vh. That is,

Yvi � ffvj; vhg j vh has one 1; vj has two 1sg:
For the convenience of observation, we depict, in Fig. 5, an
example n-cube in a ªlayeredº manner and the corresponding

Gvi . It can be seen that Gvi is a symmetric-structured, so-called
bipartite graph (a graph whose vertices can be partitioned into

two sets V1 and V2 such that every edge has one end in V1 and
the other in V2). The minimum vertex cover of Gvi can be

determined simply by inspection, which is the set of the nodes
having one 1. It has cardinality n, which is the order of vi by

definition. tu
We are now ready to state and prove the theorem about the

diagnosability of n-cubes under the comparison model.

Theorem 2. An n-cube-structured system, represented by graph

G � �V ;E�, with V being the node set and E the link set, is n-

diagnosable under the comparison model if n � 5 and the comparison

scheme is M� � �V ;C��.
Proof. We prove that an n-cube satisfies the sufficient condition for

n-diagnosability in Theorem 1.
The first condition, 2n � 2n� 1, is trivially true when n � 3.

The second condition is satisfied by Lemma 4. It remains to
show that an n-cube satisfies the third condition, i.e., for an
arbitrary V 0 � V such that jV 0j � 2n ÿ 2n� p, 0 � p � nÿ 1, we
want to show jT �V 0�j > p. We give the definition of T �V 0� here
again for the reader's convenience:

T �V 0� � fvj j fvi; vjgvh 2 C and vi; vh 2 V 0 and vj 62 V 0g:
We first show that the claim is true for p � nÿ 1. We then prove

that the claim also holds for p � 0; 1; . . . ; nÿ 2.

If p � nÿ 1, then jV 0j � 2n ÿ nÿ 1, giving

jV ÿ V 0j � n� 1: �1�
For the sake of contradiction, assume jT �V 0�j � nÿ 1, meaning

that V ÿ V 0 contains at least two nodes which are not inT �V 0�. Let

u; v 2 V ÿ V 0 such that u; v 62 T �V 0�. From the definition of T �V 0�,
if u 62 T �V 0�, then u must have the following property: Either

N�u� \ V 0 � �, or if u0 2 N�u� \ V 0, then N�u0� \ V 0 � �. For

u; v 62 T �V 0�, one of the four cases illustrated in Fig. 6 must hold.
Notice that, in every case of the four, V ÿ V 0 will contain

at least all neighbors of two nodesÐin the first case, u and
v; in the second case, u0 and v; in the third case, u and v0; in
the fourth case, u0 and v0 (u0 6� v0 because if u0 � v0, we are
in the second case). By Lemma 1, two nodes have at least
2nÿ 2 neighboring nodes. But, 2nÿ 2 > n� 1 � jV ÿ V 0j if
n � 4, a contradiction to (1).

For p � 0; . . . ; nÿ 2, let jV 0j � 2n ÿ 2n� p, giving

jV ÿ V 0j � 2nÿ p: �2�
Again, for the sake of contradiction, assume jT �V 0�j � p. That

means V ÿ V 0 contains at least �2nÿ p� ÿ p � 2�nÿ p� nodes

that are not in T �V 0�. Since p � nÿ 2, we have 2�nÿ p� � 4. Let

u; v; w; x 2 V ÿ V 0 be four nodes such that u; v; w; x 62 T �V 0�. For

these four nodes, we can have a figure similar to Fig. 6, with 16

different cases, in each of which V ÿ V 0 would contain at least

all neighbors of four nodes. By Lemma 3, four nodes have at

least 4nÿ 9 neighboring nodes. But, 4nÿ 9 > 2nÿ p � jV ÿ V 0j
if n � 5. Again, a contradiction to (2). tu
We point out that 5-cube is the least hypercube satisfying the

sufficient condition. Fig. 7 gives an example 4-cube that does not

satisfy condition 3) of Theorem 1.
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Fig. 6. For u; v 62 T �V 0�, one of the above four cases must hold.

Fig. 7. A 4-cube. V 0 consists of all the square nodes. jV 0 j � 24 ÿ 2� 4� 0 � 8

(p � 0). Since none of the circle nodes belongs to T �V 0�, jT �V 0�j > p does not hold.



Knowing the n-diagnosability of an n-cube under the compar-
ison model, we can directly apply the diagnosis algorithm
proposed in [10] to find the faulty processors of the n-cube,
provided the number of faulty processors does not exceed n.

4 DIAGNOSABILITY OF ENHANCED HYPERCUBES

UNDER THE COMPARISON MODEL

Enhanced hypercubes can achieve noticeable improvements in
many measurements, such as mean internode distance, diameter,
and traffic density, compared to regular hypercubes [11]. In [12], it
was proven that enhanced hypercubes can also achieve increased
diagnosability over regular hypercubes under the PMC model. In
this section, we will show that, for enhanced hypercubes, the
diagnosability is also increased (to n� 1) under the comparison
model.

Lemma 5. A node of an enhanced n-cube has order n� 1, where n � 4.

Proof. The proof takes a similar line to that of Lemma 4. We first
construct Gvi � �Xvi ; Yvi � for node vi � 0 . . . 00, taking into
account that vi has a skip to node v0i � 0::0 1::1|{z}

k

,

Xvi � fall nodes with one 1g �linked to vi�
[ fall nodes with two 1sg �being compared with vi�
[ fv0ig �linked to vi�
[ fall nodes linked to v0ig �being compared with vi�

Yvi � ffvh; vjg j vh has one 1; vj has two 1sg
[ ffv0i; v0jg j v0i � 0::0 1::1|{z}

k

; fv0i; v0jg 2 E and v0j 6� vig:

An example enhanced n-cube and its corresponding G0::00 are
depicted in Fig. 8. It can be observed that the minimum vertex
cover of Gvi consists of all the nodes having one 1 plus the node

v0i � 0::0 1::1|{z}
k

:

Notice that, if n � 3 and k � 2, a minimum vertex cover could
be obtained by taking all the nodes having two 1s (node v0i
already included). Since the numbers of two-1-nodes and one-1-
nodes are both n when n � 3, the minimum vertex cover has

cardinality n. For n � 4, the number of two-1-nodes is always
greater than that of one-1-nodes, so it is impossible to have a
vertex cover of cardinality n. Hence, the cardinality of the
minimum vertex cover is n� 1 when n � 4. tu

Theorem 3. An enhanced n-cube-structured system, represented by
graph G � �V ;E�, with V being the node set and E the link set, is
�n� 1�-diagnosable under the comparison model if n � 6 and the
comparison scheme is M� � �V ;C��.

Proof. The proof is similar to that of Theorem 2. We prove by
showing that an enhanced n-cube satisfies the sufficient
condition for �n� 1�-diagnosability.

The first condition is true when n � 3. The second condition,
that every node has at least order n� 1 (here, n � 6), is satisfied
by Lemma 5. We will show in the rest of the proof that an
enhanced n-cube satisfies the third condition of Theorem 1.
That is, we want to show that, for an arbitrary V 0 � V such that
jV 0j � 2n ÿ 2�n� 1� � p, 0 � p � n, we have jT �V 0�j > p. We
first show that the claim is true for p � n. We then show that the
claim also holds for p � 0; 1; . . . ; nÿ 1.

When p � n, jV 0j � 2n ÿ 2�n� 1� � n � 2n ÿ nÿ 2, resulting
in

jV ÿ V 0j � n� 2: �3�
For the sake of contradiction, assume jT �V 0�j � n, meaning that
V ÿ V 0 contains at least two nodes which are not in T �V 0�. Let
u; v 2 V ÿ V 0 such that u; v 62 T �V 0�. From the definition of
T �V 0�, i f u 62 T �V 0�, t h en e i t her N�u� \ V 0 � �, o r i f
u0 2 N�u� \ V 0, then N�u0� \ V 0 � �. For u; v 62 T �V 0�, one of
the four cases illustrated in Fig. 6 (in the last section) must hold.
In either of the four cases, V ÿ V 0 will contain at least all
neighbors of two nodes. By Lemma 1, two nodes have at least
2nÿ 2 neighboring nodes. But, 2nÿ 2 > n� 2 � jV ÿ V 0j if
n � 5, a contradiction to (3). Therefore, jT �V 0�j > n must hold.

For p � 0; . . . ; nÿ 1, let jV 0j � 2n ÿ 2�n� 1� � p, giving

jV ÿ V 0j � 2n� 2ÿ p: �4�
Again, for the sake of contradiction, assume jT �V 0�j � p. That
means V ÿ V 0 contains at least �2n� 2ÿ p� ÿ p � 2�n� 1ÿ p�
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Fig. 8. (a) Part of an enhanced n-cube (n � 8; k � 3) drawn in layered manner and (b) its G0::00.
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nodes that are not in T �V 0�. Since p � nÿ 1, we have
2�n� 1ÿ p� � 4. Let u; v; w; x 2 V ÿ V 0 be four nodes such that
u; v; w; x 62 T �V 0�. For these four nodes, we can have a figure
similar to Fig. 6, with 16 different cases, in each of which V ÿ V 0
would contain at least all neighbors of four nodes. By Lemma 3,
four nodes have at least 4nÿ 9 neighboring nodes. But, 4nÿ 9 >
2n� 2ÿ p � jV ÿ V 0j for n � 6. Again, a contradiction to (4).
Therefore, jT �V 0�j > pmust hold. tu
We have just shown that an enhanced n-cube-structured system

has improved diagnosability over a regular n-cube system when
n � 6. Having known the �n� 1�-diagnosability under the compar-
ison model, one can apply the diagnosis algorithm proposed in [10] to
find the faulty processors of the enhanced n-cube. This time, the
system can allow up to n� 1 faulty processors to perform the
diagnosis. As the manufacturing technology advances rapidly, the
failure probability of each processor drops considerably. Therefore,
the increase of diagnosability by even one, so achieved in enhancedn-
cube, will greatly extend the system's overall self-diagnostic ability.

5 CONCLUSION

The diagnosability of hypercubes and one of its variants, the
enhanced hypercubes, under the comparison diagnosis model is
studied in this paper. It has been shown that the n-dimensional
hypercube is n-diagnosable under the comparison model. For the
enhanced hypercube, which is obtained by adding 2nÿ1 more links to
a regular hypercube, the diagnosability is n� 1. Since it is usually a
hard task to determine the diagnosability for a general system under
the comparison model, it is hoped that we know the diagnosability of
some widely-used systems, the hypercube being one of them.
Knowing the diagnosability of a hypercube-structured system, we
can directly apply the algorithm proposed in [10] to diagnose an n-
cube, provided that there will be at most n faulty processors, or
diagnose an enhanced n-cube, provided that there will be at most
n� 1 faulty processors.
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Statistical Prediction of Task Execution Times
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AbstractÐIn this paper, a method for estimating task execution times is

presented in order to facilitate dynamic scheduling in a heterogeneous

metacomputing environment. Execution time is treated as a random variable and

is statistically estimated from past observations. This method predicts the

execution time as a function of several parameters of the input data and does not

require any direct information about the algorithms used by the tasks or the

architecture of the machines. Techniques based upon the concept of analytic

benchmarking/code profiling [1] are used to characterize the performance

differences between machines, allowing observations from dissimilar machines to

be used when making a prediction. Experimental results are presented which use

actual execution time data gathered from 16 heterogeneous machines.

Index TermsÐHeterogeneous distributed computing, execution time estimation,

analytic benchmarking, nonparametric regression, distance matrices.

æ

1 INTRODUCTION

HETEROGENEOUS metacomputing is a type of parallel computing
where a large, distributed network of heterogeneous machines is
used as a single computational entity [2]. Applications executing in
this environment consist of a set of coarse-grained, precedence-
constrained tasks, where the precedence structure can be repre-
sented using a directed acyclic graph (DAG). The performance of
an application in this environment is largely determined by the
manner in which these tasks are assigned to the machines; the
construction of such an assignment is called the matching and
scheduling problem [3]. To perform well, matching and scheduling
algorithms need to know the execution time of each task on each
machine and most matching and scheduling algorithms for DAGs
assume that the execution time of a given task is a known quantity.
However, the execution time of a task on a given machine depends
upon many factors, including the problem size and the input data
and is not trivial to determine a priori. In a heterogeneous
environment, the wide variety of machine architectures further
complicates the process of determining the execution time since
the execution time is also machine dependent. Methods are
clearly needed which can accurately predict the execution time
of a task on a variety of machines as a function of the features
of the data set. This problem is called the execution time
estimation problem [1].

In the literature, there are two major classes of solutions to
the execution time estimation problem: analytic benchmarking/
code profiling [1], [4], [5], [6], [7], [8] and statistical prediction [9],
[10], [11].

There are two aspects to analytic benchmarking/code profiling.
The first, analytic benchmarking, defines a number of primitive
code types, and obtains benchmark data which determines the
performance of each machine for each code type. The second
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