
A Rectilinear-Monotone Polygonal Fault Block
Model for Fault-Tolerant Minimal Routing

in Mesh
Dajin Wang, Member, IEEE

Abstract—We propose a new fault block model, Minimal-Connected-Component (MCC), for fault-tolerant adaptive routing in mesh-

connected multiprocessor systems. This model refines the widely used rectangular model by including fewer nonfaulty nodes in fault

blocks. The positions of source/destination nodes relative to faulty nodes are taken into consideration when constructing fault blocks.

The main idea behind it is that a node will be included in a fault block only if using it in a routing will definitely make the route

nonminimal. The resulting fault blocks are of the rectilinear-monotone polygonal shapes. A sufficient and necessary condition is

proposed for the existence of the minimal “Manhattan” routes in the presence of such fault blocks. Based on the condition, an algorithm

is proposed to determine the existence of Manhattan routes. Since MCC is designed to facilitate minimal route finding, if there exists no

minimal route under MCC fault model, then there will be absolutely no minimal route whatsoever. We will also present two adaptive

routing algorithms that construct a Manhattan route avoiding all fault blocks, should such routes exist.

Index Terms—Adaptive routing, fault model, fault tolerance, interconnection network, mesh.

æ

1 INTRODUCTION

THE mesh structure is one of the most important
interconnection network models. As a topology to

interconnect multiprocessor computer systems, it has been
proven to possess many attractive properties. Parallel
computers using mesh as their underlying architecture
have been around for years [5], [12], [13]. Because of its
importance to achieving high performance, fault-tolerant
computing for mesh structures has been the focus of an
extensive literature. A very important aspect of mesh fault
tolerance is its ability to route from a source node to a
destination, avoiding all faulty nodes. Routing is a process
to send messages, which can be either data or instructions,
from a source node to a destination node, passing some
intermediate nodes. There are basically two types of routing:
deterministic routing and adaptive routing. In deterministic
routing, a fixed path is used to send/receive messages for a
particular pair of source/destination. The obvious advan-
tages of this routing are its simplicity and ease of implemen-
tation. However, it suffers the shortcoming of weak fault
tolerability—when one or more nodes on the dedicated path
fail, either routing cannot be carried out or only very limited
“detours” can be taken. In adaptive routing, there is no
dedicated path for a pair of source and destination. The path
is adaptively constructed in the process of routing. A fully
adaptive routing algorithm should allow the message to take
any fault-free intermediate nodes to reach destination. As a

result, adaptive routing can tolerate more faulty nodes
than deterministic routing.

A natural goal in adaptive routing is to find a route as
short as possible in the presence of faulty nodes, preferably
the minimal route. Fault-tolerant routing has been studied
extensively [1], [2], [3], [4], [7], [8], [9], [10], [14], [15], [16],
[17]. In fault-tolerant routing on mesh, most work uses
rectangular fault block model [1], [2], [3], [11], [14], [17]. In
rectangular model, all faulty nodes are grouped in dis-
jointed, rectangular areas, called fault blocks. A fault block is
constructed in a way that includes as few nonfaulty nodes
as possible while maintaining rectangular shape. All nodes
in these fault blocks, whether they are faulty or nonfaulty,
are to be bypassed in any routes. Rectangular fault block
model is a simple and useful model, based on which many
routing algorithms were developed. However, as we will
show in Section 2, this model may not be optimal for the
purpose of finding routes as short as possible. In construct-
ing rectangular blocks, some nonfaulty nodes are unneces-
sarily included, decreasing the number of selectable nodes
for routing, thus decreasing the chance for finding minimal
routes.

In this paper, we propose a new fault block model for
fault-tolerant adaptive routing in mesh. The proposed
model is a refinement of the rectangular model. In
construction of fault blocks, the positions of source and
destination nodes are taken into consideration. A fault block
so constructed is called a Minimal-Connected-Component,
MCC for abbreviation. It has the shape of a rectilinear-
monotone polygon instead of a rectangle. As a result, fewer
nonfaulty nodes are included in fault blocks. Many
nonfaulty nodes that would have been included in a
rectangular fault block now can become candidate routing
nodes, increasing the chance of obtaining minimal route(s)
in the presence of faulty nodes. This is a noticeable overall

310 IEEE TRANSACTIONS ON COMPUTERS, VOL. 52, NO. 3, MARCH 2003

. The author is with the State Key Laboratory for Novel Software Technology
at Nanjing University, Nanjing 210093, China, and the Department of
Computer Science, Montclair State University, Upper Montclair, NJ
07043. E-mail: wang@pegasus.montclair.edu.

Manuscript received 28 June 2001; revised 18 Dec. 2001; accepted 4 Apr.
2002.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number 114448.

0018-9340/03/$17.00 ß 2003 IEEE Published by the IEEE Computer Society

Authorized licensed use limited to: Rutgers University. Downloaded on May 12, 2009 at 11:43 from IEEE Xplore. Restrictions apply.

improvement in the fault-tolerability of the system. Since
MCC is designed to facilitate minimal route finding, if there
exists no minimal route under the MCC fault model, then
there will be absolutely no minimal route whatsoever. What
is more, the proposed scheme is cost effective for the
benefits it provides—it is not necessary to compute a set of
fault blocks for each pair of source/destination. For a given
set of faulty nodes, we need to compute only two different
sets of fault blocks.

The rest of this paper is organized as follows: In Section 2,
we give a formal description of the Minimal-Connected-
Component (MCC) fault block model. Also in Section 2, a
sufficient and necessary condition is proposed for the
existence of minimal Manhattan routes in presence of MCC
fault blocks. In Section 3, we give an algorithm to determine
the existence of Manhattan routes using the MCC fault
block model. In Section 4, we will present two adaptive
routing algorithms that construct a Manhattan route
avoiding all fault blocks, in case such routes exist.
Section 5 gives some concluding remarks.

2 MINIMAL-CONNECTED-COMPONENT (MCC)
FAULT BLOCK MODEL

2.1 The MCC Fault Blocks

It is convenient to represent a two-dimensional (2D) mesh
with a 2D coordinate system in which we use a pair of
ordered integers ðx; yÞ to locate and identify a node.
Routing is then to send messages from a source node
ðxs; ysÞ to a destination ðxd; ydÞ, passing some intermediate
nodes. For the convenience of discussion and without loss
of generality, we can always define the coordinate system
so that ðxs; ysÞ ¼ ð0; 0Þ. The destination node ðxd; ydÞ will
then fall in one of the four quadrants. Unless pointed out
otherwise, we always assume that ðxd; ydÞ is in the first
quadrant, i.e., xd � 0 and yd � 0. The cases for the
destination falling in other quadrants need only symmetric
treatments.

A nonboundary node ðx; yÞ has four immediate neigh-
bors, located at ðxþ 1; yÞ, ðxÿ 1; yÞ, ðx; yþ 1Þ, and ðx; yÿ 1Þ,
respectively. Following the convention in the literature on

meshes, we say that node ðxþ 1; yÞ is ðx; yÞ’s neighbor in its

east direction. Similarly, ðxÿ 1; yÞ, ðx; yþ 1Þ, and ðx; yÿ 1Þ
are called ðx; yÞ’s west, north, and south neighbors. In each

step of routing, a node can take one and only one direction

to its immediate neighbor. So, a routing can be represented

as a sequence of directions. If a route uses only one

direction (e.g., all west or all north), then it is clearly a

shortest possible route. In more general terms, we can

define Manhattan routing as follows:

Definition 2.1. A routing is called Manhattan routing if, during

the routing, at most two directions are used.

Obviously, a Manhattan route can always be effected for

any pair of ðxs; ysÞ and ðxd; ydÞ if a mesh has no faulty nodes

and it is the shortest possible route from ðxs; ysÞ to ðxd; ydÞ.
However, if there are some faulty nodes in the mesh, in

the sense that these nodes are unable to receive/send

messages, a Manhattan route may or may not exist. In [17],

a sufficient condition was proposed for the existence of

Manhattan route using the commonly used disconnected

rectangular block fault model [14]. While a useful model

facilitating many routing algorithms [1], [2], [3], [11], [14], it is

not an optimal one for the purpose of finding routes as short

as possible. In forming the rectangular fault blocks, the

positions of source and destination as relative to the faults are

not taken into consideration. For example, as per the

definition of rectangular fault block, in Fig. 1, the fault block

A contains fault-free but “disabled” nodes a, g, i, and j. Since

the whole block is to be bypassed, these disabled nodes will

not be used in the process of routing, no matter where the

source and destination are. However, if source s and

destination d are as given in Fig. 1, using them in routing

can generate a Manhattan route ðs! g! a! i! j! dÞ.
The above example motivates for a finer model of fault

block so that the shortest possible routes can be found in the

presence of faulty nodes. In this paper, we propose the

Minimal-Connected-Component fault model, MCC for

abbreviation, just for that purpose. The main idea behind

this fault model is that a node will be included in a fault

WANG: A RECTILINEAR-MONOTONE POLYGONAL FAULT BLOCK MODEL FOR FAULT-TOLERANT MINIMAL ROUTING IN MESH 311

Fig. 1. An example of rectangular fault blocks. Fault-free but disabled nodes in a fault block will not be used in routing.

Authorized licensed use limited to: Rutgers University. Downloaded on May 12, 2009 at 11:43 from IEEE Xplore. Restrictions apply.

block only if using it in a routing will definitely make the

resulting route non-Manhattan.
The construction of MCC blocks is a recursive procedure

and is dependent on the relative positions of source and

destination. The following construction procedure assumes

ðxs; ysÞ ¼ ð0; 0Þ and xd; yd � 0, i.e., the destination is north-

east of source.

1. Initially, label all faulty nodes as “faulty;”
2. If a node ðx; yÞ is fault-free, but its north neighbor
ðx; yþ 1Þ and east neighbor ðxþ 1; yÞ are faulty,
ðx; yÞ is labeled “useless;”

3. If a node ðx; yÞ is fault-free, but its north and east
neighbors are either faulty or useless, ðx; yÞ is labeled
“useless;”

4. If a node ðx; yÞ is fault-free, but its south neighbor
ðx; yÿ 1Þ and west neighbor ðxÿ 1; yÞ are faulty,
ðx; yÞ is labeled “can’t-reach;”

5. If a node ðx; yÞ is fault-free, but its south and west
neighbors are either faulty or can’t-reach, ðx; yÞ is
labeled “can’t-reach;”

6. The nodes are recursively labeled until there are no
new useless or can’t-reach nodes;

7. Finally, if two adjacent nodes are faulty, useless, or
can’t-reach, then they are linked by an imaginary edge.

A node labeled “useless” is such a node that, once it is

entered in a routing, the next move must take either west or

south direction, making a Manhattan routing impossible. A

node labeled “can’t-reach” is such a node that, to enter it in

a routing, a west or south move must be taken, making a

Manhattan routing impossible.
We call the final set of nodes so connected an MCC fault

block. Fig. 2a shows what useless and can’t-reach nodes are;

Fig. 2b shows five example MCC fault blocks. It can be seen

that an MCC block in general covers a rectilinear-monotone

polygonal area, of which the rectangle is a special case.

Actually, an MCC block is obtained by removing the

unnecessarily included fault-free nodes in the southeast and

northwest corner sections of a rectangular block.

The MCCs for quadrant III destination (i.e., the destina-

tion is southwest of source) can be obtained just by

exchanging the roles of useless and can’t-reach nodes in

the labeling procedure for quadrant I destination. In fact,

MCCs generated from quadrant I labeling procedure and

from quadrant III labeling procedure are of the same shape.
The labeling procedure for quadrant II destination (i.e.,

the destination is in northwest) can be derived from that for

quadrant I by exchanging the roles of east and west

neighbors:

2. If a node ðx; yÞ is fault-free, but its north neighbor
ðx; yþ 1Þ and west neighbor ðxÿ 1; yÞ are faulty,
ðx; yÞ is labeled “useless;”

3. If a node ðx; yÞ is fault-free, but its north and west
neighbors are either faulty or useless, ðx; yÞ is labeled
“useless;”

4. If a node ðx; yÞ is fault-free, but its south neighbor
ðx; yÿ 1Þ and east neighbor ðxþ 1; yÞ are faulty, ðx; yÞ
is labeled “can’t-reach;”

5. If a node ðx; yÞ is fault-free, but its south and east
neighbors are either faulty or can’t-reach, ðx; yÞ is
labeled “can’t-reach.”

Fig. 3 shows the quadrant II MCC blocks for the same

faulty nodes in Fig. 2b.
Again, the labeling procedure for MCCs for quadrant IV

destination is derived from the one for quadrant II by

exchanging the roles of useless and can’t-reach nodes.

MCCs generated for quadrants II and IV are the same. Fig. 4

gives the general shapes of MCCs for routing in all four

quadrants.
It can be seen that MCCs for d falling in quadrants I and

III are of the same general shape, while MCCs for d falling

in quadrants II and IV have the same shape. Therefore, it is

not necessary to compute a set of fault blocks for each pair of

source/destination. Instead, for given faulty nodes, only

two different sets of fault blocks are computed: The

destination d falling in quadrant I or III uses one set for

routing and d falling in quadrant II or IV uses the other set.

312 IEEE TRANSACTIONS ON COMPUTERS, VOL. 52, NO. 3, MARCH 2003

Fig. 2. (a) Definition of useless and can’t-reach nodes. (b) Five example MCC fault blocks.

Authorized licensed use limited to: Rutgers University. Downloaded on May 12, 2009 at 11:43 from IEEE Xplore. Restrictions apply.

The following two obvious observations of MCC are
important:

Proposition 2.1. All MCCs in a mesh are disjoint to each other.

Proposition 2.2. Any two MCCs are separated by at least two
Hamming distance, i.e., one can always find a route going “in-
between” two MCCs.

The construction of MCCs can be implemented by
exchanging/setting the status (“good”/“faulty”/“use-
less”/“can’t-reach”) among neighboring nodes until no
nodes change their status. This kind of approach is called
localized algorithm [6], [16], in which a set of processors
perform simple operations (such as exchange of status of
neighboring nodes) distributively and independently, in
such a way that the collective outcome renders a result of
global nature (such as construction of fault blocks).
Adopting localized algorithm, it is not difficult to see that
the complexity of MCC construction, i.e., the number of
rounds needed to produce the set of MCCs, is linearly
proportional to the diameter of the largest block.

2.2 Experiment Results

As we claimed earlier, the MCC model includes fewer
nonfaulty nodes in fault blocks. Many nonfaulty nodes that
would have been included in rectangular fault blocks now
can become candidate routing nodes. Experiments were

conducted to compare the two models in terms of 1) the
total number of nodes included in fault blocks and 2) the
total number of fault blocks. The experiment results are
shown in Fig. 5. In experiment (a), faulty nodes are
randomly generated on a 50� 50 mesh. The rate of faulty
nodes ranges from 1 percent to 15 percent. Data used in the
table is the average of 1,000 runs. As can be seen in Fig. 5a,
nodes (faulty and nonfaulty) included in rectangular blocks
always outnumber nodes in MCC blocks. The outnumber-
ing becomes sharper and sharper as fault rate grows. In
experiment (b), the number of blocks in the two models is
compared. The rate of faulty nodes is fixed at 10 percent.
The size of mesh ranges from 10� 10 to 100� 100. The
result in Fig. 5b shows that the number of MCC blocks is
always higher than that of rectangular blocks. That means
MCC is a much “finer” grouping of faulty nodes than that
of rectangular blocks. Fig. 5c does a similar comparison
with fault rate 15 percent. It can be seen that, in the
rectangular model, the number of blocks first grows as
mesh size grows. However, when mesh size grows further,
the number of blocks decreases. That is, the distribution of
faults has the tendency to make the whole mesh one “big
block.” On the other hand, the number of MCC blocks
grows nicely as mesh size increases.

To measure how well MCC facilitates finding minimum
routes among faults, another set of simulations was con-
ducted in which the availability of Manhattan routes using
MCC is examined. Using different fault rates as the para-
meter, the simulation showed that Manhattan routes always
have 100 percent availability when the fault rate is up to
23 percent. Sub-100 percent availability is first observed when
the fault rate reaches 25 percent, at which rate the availability
is about 98.9 percent. Note that, given today’s technology, the
node fault rate of 23 percent is highly unlikely. In comparison
with the rectangular model, recall that, in Fig. 5c at fault rate of
15 percent, the distribution of faults has already shown the
tendency to make the whole mesh one big block, blocking all
feasible routes.

2.3 The Existence of Manhattan Routes
in a Faulty Mesh

As has been mentioned, MCC is designed to facilitate
minimal route finding. An MCC block is a minimum
connected block so that a node v of the MCC is either faulty
or, if fault-free, then entering vwould need a step that violates
the requirement for a Manhattan route (i.e., a third direction
would be used in the route). In other words, the MCC is a fault

WANG: A RECTILINEAR-MONOTONE POLYGONAL FAULT BLOCK MODEL FOR FAULT-TOLERANT MINIMAL ROUTING IN MESH 313

Fig. 3. Example quadrant II MCC blocks for the same faulty nodes in

Fig. 2b.

Fig. 4. The shape of MCC for d falling in (a) first quadrant, (b) second quadrant, (c) third quadrant, (d) fourth quadrant.

Authorized licensed use limited to: Rutgers University. Downloaded on May 12, 2009 at 11:43 from IEEE Xplore. Restrictions apply.

block model that provides the maximum possibility of finding

a Manhattan route among faults. Therefore, if there exists no

Manhattan route under the MCC fault model, there will be

absolutely no Manhattan route.
We now propose a sufficient and necessary condition for

the existence of Manhattan routes in a mesh with faulty

nodes. To check the existence of Manhattan routes in a

faulty mesh, MCCs in the mesh are constructed first. All the

nodes in MCCs are not to be entered or a Manhattan route

cannot be effected. The sufficient and necessary condition

for the existence of Manhattan routes is given in the

following theorem. An obvious assumption is that neither

source nor destination node belongs to any MCC.

Theorem 2.1. A Manhattan route can be found if and only if

neither of the following two statements holds:

314 IEEE TRANSACTIONS ON COMPUTERS, VOL. 52, NO. 3, MARCH 2003

Fig. 5. Simulation results.

Authorized licensed use limited to: Rutgers University. Downloaded on May 12, 2009 at 11:43 from IEEE Xplore. Restrictions apply.

1. There exists a sequence of MCCs ðM1;M2; . . . ;MnÞ
such that

. M1 contains a node ð0; z1Þ such that 0 < z1 < yd;

. Mn contains a node ðxd; znÞ such that
0 < zn < yd;

. For all Mi;Miþ1, 1 � i � nÿ 1,

minfa : ða; bÞ 2Miþ1g ÿ 1 � maxfu : ðu; vÞ 2Mig
� maxfx : ðx; yÞ 2Miþ1g ÿ 1

and

maxfv : ðu; vÞ 2Mig < maxfy : ðx; yÞ 2Miþ1g:

We call this type of sequence a Type-I sequence.
2. There exists a sequence of MCCs ðM1;M2; . . . ;MnÞ

such that

. M1 contains a node ðz1; 0Þ such that 0 < z1 < xd;

. Mn contains a node ðzn; ydÞ such that
0 < zn < xd;

. For all Mi;Miþ1, 1 � i � nÿ 1,

minfb : ða; bÞ 2Miþ1g ÿ 1 � maxfv : ðu; vÞ 2Mig
� maxfy : ðx; yÞ 2Miþ1g ÿ 1

and

maxfu : ðu; vÞ 2Mig < maxfx : ðx; yÞ 2Miþ1g:

We call this type of sequence Type-II sequence.

Fig. 6 gives an illustration of the two types of MCC
sequences to help convey the idea. A proof of the theorem is
provided below.

Proof. The proof is in two parts. The first part will show
that, if a Manhattan route exists at all, then there cannot
exist any MCC sequence of the types described in
Theorem 2.1. In the second part, we show that, if there
does not exist any MCC sequence of the kinds described
in Theorem 2.1, then we can always find a Manhattan
route from source to destination.

Part I. Suppose a Manhattan route R exists from
source to destination, in the presence of MCCs of the

mesh. By the definition of Manhattan route, its general
shape should look like “stairs,” as shown in Fig. 7.
Observe from Fig. 7 that R divides the rectangular region
defined by s and d into two parts, denoted as U and L,
respectively. Note that any MCC should be in either the
U part or the L part, not intersecting with R. For the
Type-I MCC sequence to exist, M1 must fall in U , and Mn

in L. From the description of the first type sequence,
there must be an Mj in the sequence intersecting with R,
contradicting the assumption.

Similarly, for the Type-II MCC sequence to exist, M1

must fall in L and Mn in U . There must be an Mj in
the sequence intersecting with R, contradicting the
assumption.

Part II. Suppose there does not exist any type of MCC
sequences described in Theorem 2.1. We will show that a
Manhattan route from source s to destination d can
always be constructed.

By the above assumption, there does not exist any
Type-I MCC sequence (shown in Fig. 6a). Then, there
will be a stair-case-like gap, shown in Fig. 8a, which is
composed of a sequence of alternative, connected south,
west, south, west, ... directions, originating from node d,
and ending somewhere east of node s at the x-axis. We
call this gap a Type-I gap. Note that, if there were a Type-I

WANG: A RECTILINEAR-MONOTONE POLYGONAL FAULT BLOCK MODEL FOR FAULT-TOLERANT MINIMAL ROUTING IN MESH 315

Fig. 6. (a) Type-I MCC sequence, (b) Type-II MCC sequence.

Fig. 7. Manhattan route R exists. MCCs should be in either U or L, not

intersecting with R.

Authorized licensed use limited to: Rutgers University. Downloaded on May 12, 2009 at 11:43 from IEEE Xplore. Restrictions apply.

MCC sequence, such a gap could not be established (the
sequence of alternative directions would not be able to
reach the x-axis at east of s).

Similarly, by the assumption that there does not exist
any Type-II MCC sequence (shown in Fig. 6b), we can
establish a Type-II gap, composed of a sequence of
alternative, connected east, north, east, north, ... direc-
tions, originating from s, and ending somewhere south
of d at ðxd; yÞ, where y < yd. See Fig. 8b.

It is obvious that there must exist a node c shared by
both Type-I and Type-II gaps and c can be viewed as a
node that divides a gap into two portions, i.e., southwest
and northeast portions. Combining the southwest por-
tion of the Type-II gap and the northeast portion of the
Type-I gap, we get the desired Manhattan route. The
construction is shown in Fig. 9. tu

3 EXISTENCE ALGORITHM FOR MANHATTAN

ROUTES

3.1 Algorithm Description

Based on Theorem 2.1, we propose an algorithm to

determine whether there exists a Manhattan route between

two given nodes. This existence information can be built

into and then quickly retrieved from the transitive closure

on the MCC overlapping graph.
An MCC overlapping graph is constructed out of the

layout of MCCs. Given an MCC set S ¼ fM1;M2; . . . ;Mng
in a mesh, we construct a directed graph GI

S ¼ ðV ;AIÞ with

vertex set V ¼ fv1; v2; . . . ; vng, where vi represents MCC Mi

and the “I” superscript in GI
S and AI refers to Type-I. The

set of arrows (directed edges) AI is defined as follows: If

Mi’s northeast-most node, denoted Ui, is “immediately

below” Mj and “properly covered” by Mj’s west-east span

(see Fig. 10a for illustration), then there is an arrow pointing

from vi to vj. Using xðUiÞ; yðUiÞ to denote Ui’s x and

y-coordinates, respectively, and letting Lj represent the

southwest-most node of Mj, we have,

AI ¼ fðvi; vjÞ j going north from Ui;Mj is the first

encountered MCC such that

yðUiÞ < yðUjÞ ^ xðLjÞ ÿ 2 < xðUiÞ < xðUjÞg:

An obvious choice of data structure for GI
S is an n� n

2D array, denoted gIS . The value of an element gISði; jÞ will

be either 0 or 1:

gISði; jÞ ¼
1 if ðvi; vjÞ 2 AI or i ¼ j
0 if ðvi; vjÞ 62 AI:

�
The transitive closure of gIS , denoted T ðgISÞ, tells whether

there exists a directed path from one vertex to another in

GI
S , i.e.,

T ðgISÞði; jÞ ¼
1 if there exists a directed path from vi to vj
0 otherwise:

�
Fig. 11 illustrates an example set of MCCs, the

corresponding overlapping graph GI
S , gIS , and T ðgISÞ.

Symmetrically, we construct overlapping graph GII
S ¼

ðV ;AIIÞ for Type-II MCC sequence, where AII is defined as

follows: If Mi’s northeast node, Ui, is “immediately left of”

Mj and “properly covered” by Mj’s south-north span (see

Fig. 10b for illustration), then there is an arrow pointing

from vi to vj, i.e.,

316 IEEE TRANSACTIONS ON COMPUTERS, VOL. 52, NO. 3, MARCH 2003

Fig. 8. (a) Type-I gap, (b) Type-II gap.

Fig. 9. Combining Type-II and Type-I gaps to construct a Manhattan

route.

Authorized licensed use limited to: Rutgers University. Downloaded on May 12, 2009 at 11:43 from IEEE Xplore. Restrictions apply.

AII ¼ fðvi; vjÞ j going east from Ui;Mj is the first

encountered MCC such that

xðUiÞ < xðUjÞ ^ yðLjÞ ÿ 2 < yðUiÞ < yðUjÞg:

Once T ðgISÞ and T ðgIIS Þ are computed, based on
Theorem 2.1, the existence problem for Manhattan route
between a particular pair of nodes, say ð0; 0Þ and ðxd; ydÞ,
can be solved by the following algorithm.

Algorithm Manhattan(source-node, destination-node)

{Purpose: Determine whether there exists a Manhattan

route for a pair of given nodes}

Input: Source node ðxs; ysÞ, destination node ðxd; ydÞ
Output: YES/NO

1. if 9i; j such that

Mi’s west-east span properly covers ðxs; ysÞ
and Mi is north of ðxs; ysÞ
and Mj’s west-east span properly covers

ðxd; ydÞ and Mj is south of ðxd; ydÞ

and T ðgISÞði; jÞ ¼ 1

then return NO;

else goto 2;

2. if 9k; l such that

Mk’s south-north span properly covers ðxs; ysÞ
and Mk is east of ðxs; ysÞ
and Ml’s south-north span properly covers

ðxd; ydÞ and Ml is west of ðxd; ydÞ
and T ðgIIS Þðk; lÞ ¼ 1

then return NO;

else goto 3;

3. return YES;

Refer to Fig. 11 again for an example. The condition

check in Step 1 of algorithm Manhattan will turn out “true”

with i ¼ 1 and j ¼ 4. Therefore, there will be no Manhattan

route from s to d.

3.2 Implementation Issues and Cost Analysis

For given MCC set S ¼ fM1;M2; . . . ;Mng, gIS , T ðgISÞ, gIIS , and

T ðgIIS Þ are all computed in a preprocessing phase. It is easier

WANG: A RECTILINEAR-MONOTONE POLYGONAL FAULT BLOCK MODEL FOR FAULT-TOLERANT MINIMAL ROUTING IN MESH 317

Fig. 10. (a) If that’s the case, there will be an arrow pointing from vi to vj in GI
S . (b) If that’s the case, there will be an arrow pointing from vi to vj in GII

S .

Fig. 11. (a) A set S of five MCCs, (b) GI
S , (c) gIS , (d) T ðgISÞ.

Authorized licensed use limited to: Rutgers University. Downloaded on May 12, 2009 at 11:43 from IEEE Xplore. Restrictions apply.

to appoint one processor to compute gIS (gIIS). The informa-
tion needed to carry out this computation is the two
“corners” (Ui; Li) of all MCCs. A simple check of Ui against
the west-east spans of all other MCCs will work out one
arrow of GI

S . Therefore, the time complexity to compute gIS
(gIIS) is Oðn2Þ, where n is the number of MCCs. After gIS (gIIS)
is established, T ðgISÞ (T ðgIIS Þ) can be computed using Floyd-
Warshall algorithm with complexity Oðn3Þ.

The existence algorithm for a pair of source/destination
can be run by any node. Naturally, it can be run by the
source node. For a node to run the existence algorithm, the
two matrices T ðgISÞ; T ðgIIS Þ must be residing at the node.
Also needed at each node ðx; yÞ are the ids of MCCs whose
east-west/north-south spans properly cover ðx; yÞ. To get
this information, ðx; yÞ simply sends out four signals in
parallel along the four directions. We discuss in detail how
to collect information of MCCs above ðx; yÞ. (For the other
three directions, the process is similar.) ðx; yÞ sends out a
request signal toward north. If an MCC is encountered, the
signal goes around the boundary of the MCC to restore its
north track. At the same time, the id of the encountered
MCC is sent back to ðx; yÞ along the path just traveled by the
signal. The north-bound signaling/reporting continues
until the boundary of mesh is reached. The information
collection process, like the computation of gS and T ðgSÞ, is
performed in the preprocessing phase.

When a node ðxs; ysÞ is about to perform the existence
algorithm for node ðxd; ydÞ, it needs to know the ids of
MCCs under ðxd; ydÞ. There are two possible ways this
information can be made available. One way is use the idea
of global fault information, i.e., the information of MCCs to a
node’s east/west/north/south directions is made known to
all other nodes. The global information is convenient for
any routing algorithm. However, since every node has to
store the covering MCC information of all other nodes, the
overhead is quite large. For that reason, many known
routing algorithms choose not to use global fault informa-
tion. Another approach is get this information on-demand.
That is, in the beginning, all nodes know nothing about
other nodes’ covering MCCs. When ðxs; ysÞ wants to
perform existence algorithm for node ðxd; ydÞ, it first sends
a small signal to ðxd; ydÞ along a path not necessarily
minimal. Upon receiving the signal, ðxd; ydÞ sends back to
ðxs; ysÞ the information about its covering MCCs. Once node
ðxs; ysÞ gets the information about ðxd; ydÞs covering MCCs,
it is kept in ðxs; ysÞ for possible later use.

Once the information about ðxd; ydÞs covering MCCs is
available at ðxs; ysÞ, algorithm Manhattan can be per-
formed by 1) checking T ðgISÞ for an MCC directly above
ðxs; ysÞ and all MCCs below ðxd; ydÞ and 2) checking
T ðgIIS Þ for an MCC directly east of ðxs; ysÞ and all MCCs
west of ðxd; ydÞ. The complexity is bounded by OðnÞ,
where n is the number of MCCs.

4 MINIMAL ROUTING ALGORITHMS

If algorithm Manhattan returns a YES answer to the question
“Does there exist a minimal route from ðxs; ysÞ to ðxd; ydÞ?”,
the next step would be to work out such a route. Without
loss of generality, we assume ðxs; ysÞ ¼ ð0; 0Þ and xd; yd � 0.
There are two schemes to do the minimal routing. One

scheme initiates the routing at source node ðxs; ysÞ. That is,
node ðxd; ydÞ has no sense it is the destination of a message

(or messages) sent by another node. Therefore, ðxd; ydÞ is not

involved in the whole routing process. The other scheme
involves ðxd; ydÞ in the routing process. The routing is

initiated at both ðxs; ysÞ and ðxd; ydÞ. In the first scheme, to
assist in minimal routing, some relevant MCC information

has to be distributed in certain nodes or a minimal route
cannot be guaranteed. In the second scheme, no MCC

information needs to be distributed in any node. However,

a small premessage has to be sent to ðxd; ydÞ (via a path not
necessarily minimal) to inform it to start routing together

with ðxs; ysÞ. If in existence algorithm Manhattan, ðxs; ysÞ has
sent a signal to ðxd; ydÞ (for request of ðxd; ydÞs covering

MCCs), then there is no need to send a premessage again

—ðxd; ydÞ already knows it will be the destination of a
routing process.

4.1 Routing Initiated at s

The idea of the algorithm is to always look for a Type-I gap

with respect to d. When a node is met that belongs to a

Type-I gap, the route can just go along the gap to reach d.
The problem is, however, since d does not know it is the

target of a routing, it will not establish a Type-I gap.
The solution is to preestablish Type-I gap information for

an L0-corner with respect to all its “potential targets.” This is

a preprocessing, performed one time after the formation of

MCC set. Once established, it can be used to guide all future
routings. The preprocessing performs a south-first-west-

second traversal from all nodes: A node always sends a
signal to its south neighbor as long as it can, until an MCC

boundary is hit, at which time it sends a signal to its west

neighbor along the boundary of MCC. The signal just
contains the coordinates of the originator node, say ðx; yÞ.
When a corner node L0 is reached, ðx; yÞwill be deposited in
L0. At the end of preprocessing, the L0 contains every ðx; yÞ
with respect to which L0 belongs to the Type-I gap.

As illustrated in Fig. 12, the locations of all white nodes

are stored in L0j, which means L0j lies on the Type-I gap of
any white node. Similarly, L0i lies on the Type-I gap of any

black or white node. An L0-node then distributes its target
list southward along vertical direction. The distribution

stops when a node of MCC is met.
The size of target list introduced above can be greatly

reduced so that the search time of the target list can be
minimized. For example, instead of storing every individual

target node, we can store a vertical range of targets. See
Fig. 13 for illustration. The routing procedure is described

below.
The routing begins at source s.

1. Go east, until a node c is met that contains a target
list or an MCC is hit. If a c-node is met, goto 2a, if an
MCC is hit goto 2b.

2.

a. A c-node is met. Search the target list to see if it
contains d. If YES (the c-node is on the gap
leading to d), run Gap_Traversal and terminate; if
NO goto 1.

318 IEEE TRANSACTIONS ON COMPUTERS, VOL. 52, NO. 3, MARCH 2003

Authorized licensed use limited to: Rutgers University. Downloaded on May 12, 2009 at 11:43 from IEEE Xplore. Restrictions apply.

b. An MCC Mi is hit. Go along the northwest (NW)
boundary of Mi; then goto 1.

(Note that Step b is actually the construction of a

Type-II gap.)

The Gap_Traversal process is described as follows: First,

go north toward the L0-node. Starting at the L0-node, go

along the NW boundary until the upper corner U 0 is

reached. Then, go east, until hitting the NW boundary of

another MCC. Repeat above boundary-east-boundary-east

routing until x ¼ xðdÞ is reached. Then, go north to reach d.

The success of the Gap_Traversal process is guaranteed by

the fact that its starting node is indeed on the (Type-I) gap

with respect to d. Also, the existence of a gap guarantees

that the gap will be reached sooner or later.
Note that, as soon as the gap node is hit, there will be no

more target list search. Before reaching the gap, the search is

only performed at several “crucial” nodes. The major cost

for this approach is the storage of search lists.

4.2 Routing Initiated at Both s and d

This routing scheme is based on the second part of the proof

for Theorem 2.1. It proceeds by working out the Type-I gap

(from destination) and Type-II gap (from source) defined in

the proof.
The routing process is begun at both s and d.
From node s:

. Initialization: s marks itself as “s-route-node.”

. A newly marked s-route-node always sends a signal
to its east neighbor as long as it can (i.e., as long as
the east neighbor does not belong to an MCC).

. A node receiving a signal marks itself as s-route-node.

. If a newly marked s-route-node cannot send east
(“hitting an MCC”), it sends signal to its north
neighbor (going along the boundary of MCC).

. The preceding process is repeated until a node
a ¼ ðax; ayÞ, where ax ¼ xd, is marked s-route-node
for the first time. (Being able to reach such a node is
guaranteed by Theorem 2.1.)

From node d:

. Initialization: d marks itself as “d-route-node.”

. A newly marked d-route-node always sends a signal
to its south neighbor as along as it can.

. A node receiving a signal marks itself as d-route-
node.

. If a newly marked d-route-node cannot send south-
ward, it sends signal to its west neighbor (going
along the boundary of MCC).

. The preceding process is repeated until a node
b ¼ ðbx; byÞ, where by ¼ 0, is marked d-route-node for
the first time. (Being able to reach such a node is
guaranteed by Theorem 2.1.)

Final construction:
The Manhattan route from s to d can be constructed as

follows: Starting from s, the route goes along the s-route-

nodes. When it reaches the node that was marked as both

s-route-node and d-route-node, the route goes along the

“upper-east” part of d-route-nodes. Fig. 14 illustrates the

routing process.

5 CONCLUSION

In this paper, we proposed a rectilinear-monotone shaped

fault block model for fault-tolerant adaptive routing in

mesh interconnection networks. This model improves the

widely used rectangular model by taking into consideration

the positions of source and destination relative to faulty

nodes in the process of constructing fault blocks. It has been

shown that the MCC model is a finer grouping of faulty

nodes than rectangular model. Many fewer nonfaulty nodes

are included in fault blocks. Many nonfaulty nodes that

would have been included in rectangular fault blocks now

can be used in routing, thus increasing the chances of

WANG: A RECTILINEAR-MONOTONE POLYGONAL FAULT BLOCK MODEL FOR FAULT-TOLERANT MINIMAL ROUTING IN MESH 319

Fig. 12. Corner stores “potential targets” information.

Fig. 13. We can store a vertical range of targets to reduce space cost and search time.

Authorized licensed use limited to: Rutgers University. Downloaded on May 12, 2009 at 11:43 from IEEE Xplore. Restrictions apply.

obtaining optimal routes among faulty nodes. We proposed

a sufficient and necessary condition for checking the

existence of the minimal Manhattan routes in presence of

such fault blocks. Based on the condition, an algorithm was

proposed to determine the existence of Manhattan routes in

a faulty mesh. We also gave two adaptive routing

algorithms that construct a Manhattan route avoiding all

fault blocks.
If the determination algorithm returns a NO answer for

the faulty mesh, we still need to find a route, preferably as

short as possible. A natural direction in which the work of

this paper can be extended is to find a shortest route among

MCC fault blocks if a minimal route does not exist.

REFERENCES

[1] R.V. Boppana and S. Chalasani, “Fault-Tolerant Wormhole
Routing Algorithms for Mesh Networks,” IEEE Trans. Computers,
vol. 44, no. 7, pp. 848-864, July 1995.

[2] Y.M. Boura and C.R. Das, “Fault-Tolerant Routing in Mesh
Networks,” Proc. 1995 Int’l Conf. Parallel Processing, pp. I 106-I 109,
1995.

[3] A.A. Chien and J.H. Kim, “Planar-Adaptive Routing: Low Cost
Adaptive Networks for Multiprocessors,” Proc. 19th Int’l Symp.
Computer Architecture, pp. 268-277, 1992.

[4] G.M. Chiu and S.P. Wu, “Fault-Tolerant Routing Strategy in
Hypercube Multicomputers,” IEEE Trans. Computers, vol. 45, no. 2,
pp. 143-155, Feb. 1996.

[5] W.J. Dally, “The J-Machine: System Support for Actors,” Actors
Knowledge-Based Concurrent Computing, C. Hewitt and G. Agha,
eds., MIT Press, 1989.

[6] D. Estrin, R. Govindan, J. Heidemann, and K. Kumar, “Next
Century Challenges: Scalable Coordination in Sensor Networks,”
Proc. IEEE/ACM Mobicom ’99, pp. 263-270, 1999.

[7] P.T. Gaughan, B.V. Dao, S. Yalamanchili, and D.E. Schimmet,
“Distributed, Deadlock-Free Routing in Faulty, Pipelined, Direct
Interconnection Networks,” IEEE Trans. Computers, vol. 45, no. 6,
pp. 651-665, June 1996.

[8] G.J. Glass and L.M. Ni, “Fault-Tolerant Wormhole Routing in
Meshes without Virtual Channels,” IEEE Trans. Parallel and
Distributed Systems, vol. 7, no. 6, pp. 6201-636, June 1996.

[9] T.C. Lee and J.P. Hayes, “A Fault-Tolerant Communication
Scheme for Hypercube Computers,” IEEE Trans. Computers,
vol. 41, no. 10, pp. 1242-1256, Oct. 1992.

[10] A.C. Liang, S. Bhattacharya, and W.T. Tsai, “Fault-Tolerant
Multicasting on Hypercubes,” J. Parallel and Distributed Computing,
vol. 23, no. 3, pp. 418-428, Dec. 1994.

[11] R. Libeskind-Hadas and E. Brandt, “Origin-Based Fault-Tolerant
Routing in the Mesh,” Proc. First Int’l Symp. High Performance
Computer Architecture, pp. 102-111, 1995.

[12] S.L. Lillevik, “The Touchstone 30 Gigaflop DELTA Prototype,”
Proc. Sixth Distributed Memory Computing Conf., pp. 671-677, 1996.

[13] C.L. Seitz, “The Architecture and Programming of the Amete
Series 2010 Multicomputer,” Proc. Third Conf. Hypercube Concurrent
Computers and Applications, pp. I 33-I 36, Jan. 1988.

[14] C.C. Su and K.G. Shin, “Adaptive Fault-Tolerant Deadlock-Free
Routing in Meshes and Hypercubes,” IEEE Trans. Computers,
vol. 45, no. 6, pp. 666-683, June 1996.

[15] Y.-J. Suh, B.V. Dao, J. Duato, and S. Yalamanchili, “Software Based
Fault-Tolerant Oblivious Routing in Pipelined Networks,” Proc.
1995 Int’l Conf. Parallel Processing, pp. I 101-I 105, 1995.

[16] J. Wu, “Reliable Unicasting in Faulty Hypercubes Using Safety
Levels,” IEEE Trans. Computers, vol. 46, no. 2, pp. 241-247, Feb.
1997.

[17] J. Wu, “Fault-Tolerant Adaptive and MinimalRouting in Mesh-
Connected Multicomputers Using Extended Safety Levels,” IEEE
Trans. Parallel and Distributed Systems, vol. 11, no. 2, pp. 149-159,
Feb. 2000.

Dajin Wang received the BEng degree from
Shanhai University of Science and Technology,
China, in 1982, the MS degree and the PhD
degree, both in computer science, from the
Stevens Institute of Technology, Hoboken, New
Jersey, in 1986 and 1990, respectively. Since
then, he has been with the faculty of the
Department of Computer Science at Montclair
University, Upper Montclair, New Jersey, where
he is currently a professor. He has also been a

visiting research professor at the State Key Laboratory for Novel
Software Technology at Nanjing University, China, and has held the
position of visiting scholar at Hong Kong Polytechnic University. His
research interests include fault-tolerant computing, algorithmic robotics,
and parallel processing. He is a member of the IEEE.

. For more information on this or any computing topic, please visit
our Digital Library at http://computer.org/publications/dlib.

320 IEEE TRANSACTIONS ON COMPUTERS, VOL. 52, NO. 3, MARCH 2003

Fig. 14. Manhattan routing: the dashed lines show the “s-route” and “d-route.” The solid line is the constructed Manhattan route.

Authorized licensed use limited to: Rutgers University. Downloaded on May 12, 2009 at 11:43 from IEEE Xplore. Restrictions apply.

