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Abstract—In this paper, we rewrite the Minimal-Con-
nected-Component (MCC) model in 2-D meshes in a fully-dis-
tributed manner without using global information so that not only
can the existence of a Manhattan-distance-path be ensured at the
source, but also such a path can be formed by routing-decisions
made at intermediate nodes along the path. We propose the MCC
model in 3-D meshes, and extend the corresponding routing in
2-D meshes to 3-D meshes. We consider the positions of source
& destination when the new faulty components are constructed.
Specifically, all faulty nodes will be contained in some disjoint
fault-components, and a healthy node will be included in a faulty
component only if using it in the routing will definitely cause a
non-minimal routing-path. A distributed process is provided to
collect & distribute MCC information to a limited number of nodes
along so-called boundaries. Moreover, a sufficient & necessary con-
dition is provided for the existence of a Manhattan-distance-path
in the presence of our faulty components. As a result, only the
routing having a Manhattan-distance-path will be activated at the
source, and its success can be guaranteed by using the information
of boundary in routing-decisions at the intermediate nodes. The
results of our Monte-Carlo-estimate show substantial improvement
of the new fault-information model in the percentage of successful
Manhattan-routing conducted in 3-D meshes.

Index Terms—Adaptive routing, distributed algorithms, fault-
tolerant routing, minimal routing, 3-D meshes.

ACRONYM1

2-D meshes 2-dimensional meshes
3-D meshes 3-dimensional meshes
MCC minimal-connected-component

-routing Manhattan-routing from (0, 0)
to in 2-D meshes

-routing Manhattan-routing from (0, 0, 0)
to in 3-D meshes

NOTATION

source node
destination node
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1The singular and plural of an acronym are always spelled the same.

a rectangular region in 2-D meshes
with four vertexes , ,

, and
a line-segment along the
dimension with two end-points

& , and respectively
we have the one along the
dimension
a MCC with the
initialization-corner
the region extending from
along the dimension
that should be forbidden for a
Manhattan-routing to enter
the corresponding critical-region of

-corner the corner of a 2-D section of a 3-D
MCC parallel to plane that
has the minimum coordinate along
the dimension of those which
have the maximum coordinate
along the dimension; and
respectively we have -,

-, -, -,
and -corners

-edge the edge of a MCC in 3-D
meshes that only contains its

-corners; and respectively
we have -, -,

-, -, and
-edges

a cuboid region in 3-D meshes
with eight vertexes ,

, , ,
, , ,

and
a rectangular region on the

plane in 3-D meshes; and
respectively we have rectangles

, and
on the , and

planes

I. INTRODUCTION

I N a multi-computer-system, a collection of processors, or
nodes, work together to solve problems in large-scale ap-

plications. These nodes communicate data, and coordinate their
efforts by sending & receiving packets through the underlying
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Fig. 1. (a) Routing blocked from entering a rectangular fault-block in 2-D meshes; (b) the use of alternative plane in Manhattan-routing after the block in the
original plane; (c) a sample of cuboid fault-block that contains too many non-faulty nodes.

network of communication. Thus, the performance of such a
multi-computer-system depends on the end-to-end cost of com-
munication mechanisms. The routing-time of packets is one of
the key factors critical to the performance of multi-computers.
Basically, routing is the process of transmitting data from one
node, called the source, to another node, called the destination.
It is necessary to present the Manhattan-routing, i.e., the min-
imal routing, which always routes the packet to the destination
through a Manhattan-distance-path [1], so that the destination
can be reached in the quickest way.

The mesh-connected topology [8], [11] is one of the most
thoroughly investigated topologies of networks for multi-com-
puter-systems. Like 2-dimensional (2-D) meshes, 3-D meshes
are lower-dimensional meshes that have been commonly dis-
cussed due to structural regularity for easy construction, and
high potential of legibility of various algorithms. Some multi-
computers were built based on the 3-D meshes [3], [11]. As the
number of nodes in a mesh-connected multi-computer-system
increases, the chance of failure also increases. The complex na-
ture of networks also makes them vulnerable to disturbances.
Therefore, the ability to tolerate failure is becoming increasingly
important for Manhattan-routing [13], [18], [21].

In designing a fault-tolerant routing, one of the most impor-
tant issues is to select an appropriate fault-model. Most existing
literature [4]–[7], [9], [12], [14], [21], [22] uses the simplest
orthogonal convex-region to model node-faults (link-faults can
be treated as node-faults by disabling the corresponding adja-
cent nodes). In 2-D meshes, a routing will be blocked from en-
tering the rectangle-shaped region, also called rectangular fault-
block, because using any non-faulty node inside it may cause
a detour, and make the routing non-minimal (see Fig. 1(a)).
When the rectangular fault-block is extended to a cuboid block
in 3-D meshes, most routings blocked by the rectangle-shaped
section of this block on one plane can find a Manhattan-dis-
tance-path along an alternative plane (see Fig. 1(b)). That is,
some non-faulty nodes inside the cuboid fault-block can be used
in Manhattan-routing, and are unnecessarily disabled to form
the cuboid fault-region. In the worst case, a few nodes can dis-
able the entire mesh, and further, block any communication (see
Fig. 1(c)).

In this paper, we focus on the minimal fault-region for Man-
hattan-routing, in which the non-faulty nodes contained are
reduced as much as possible. Because the global information

is not suitable for complex & large-scale grid-connected-net-
works, we also focus on a practical implementation of the
fault-information model in a fully-distributed manner to make
the whole system more scalable where each node knows only
the status of its neighbors. The contributions are listed as
follows:

• We introduce the MCC model for Manhattan-routing in
3-D meshes. A node will be included in a MCC of 3-D
meshes iff using it in a routing will cause a detour, and
make the route non-minimal. In this way, our MCC not
only can prevent the routing from using a non-faulty
node inside the area where a detour must be made, but
also will not block any possible Manhattan-distance-path.
Thus, each MCC has to follow a certain shape. To our
knowledge, this is the first attempt to achieve a minimal
fault-region in 3-D meshes. We consider the positions of
source & destination when the MCC is constructed.

• We provide a fully-distributed method via information ex-
changes among neighbors to collect MCC information, and
distribute to a limited number of nodes, also called bound-
aries. The boundaries exactly surround the region in which
the routing cannot find the Manhattan-distance-path. The
process of boundary construction is not trivial.

• The information of boundaries is introduced to Wu’s adap-
tive routing [17], where the path is formed by routing-deci-
sions at intermediate nodes. Only a Manhattan-routing will
be activated, and its success can be guaranteed.

• Extensive simulation is developed in the method of Monte-
Carlo-estimate [2] to determine the number of non-faulty
nodes included in MCC in 3-D meshes, and the rate of suc-
cessful Manhattan-routing under the MCC model. The re-
sults obtained are compared with the best currently known
results.

A short summary of our approach follows.
First, without using global information, we rewrite Wang’s

MCC model in 2-D meshes [15], which is a refinement of the
model of rectangular fault-blocks. After each non-faulty node
in Wang’s MCC is labeled, the shape of the fault-region is iden-
tified in a new distributed process. Then, the identified infor-
mation of this MCC will be propagated to form the boundaries
[10], [16]. After that, Wu’s adaptive routing in [17] with two
phases is extended to the Manhattan-routing in 2-D meshes: In
phase one, Wang’s sufficient & necessary condition for the ex-
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Fig. 2. (a) Definition of useless & can’t-reach nodes; (b) sample of rectangular fault-block; (c) the corresponding MCC.

istence of a Manhattan-distance-path, which has been rewritten
without using global information, is used to ensure the Man-
hattan-routing at the source. In phase two, the routing at each
intermediate node, including the source, will forward the packet
to the next node along the path. It uses the information of bound-
aries to keep the route minimal while not missing any Man-
hattan-distance-path.

Second, the above processes in 2-D meshes are extended to
3-D meshes. We introduce the MCC in 3-D meshes. A labeling
process is proposed to identify all nodes inside the MCC. Via
the propagation of information along 2-dimensional surfaces,
which is implemented through the transmission of messages be-
tween two neighboring nodes along one of those three dimen-
sions , , and , the shape of MCC is identified, and the cor-
responding boundaries are constructed. With the information of
these boundaries, Wu’s routing in [17] is extended to the Man-
hattan-routing in 3-D meshes.

The remainder of the paper is organized as follows.
Section II introduces some necessary notations & prelimi-
naries. Section III provides our construction for the boundaries
of MCC in 2-D meshes, and the corresponding boundary-in-
formation-based routing. In the same section, Wang’s sufficient
& necessary condition for the existence of a Manhattan-dis-
tance-path is rewritten without using global information.
Section IV presents the MCC model in 3-D meshes, and
extends the corresponding processes in 2-D meshes to 3-D
meshes. A labeling scheme for non-faulty nodes in each
MCC, and the construction of boundaries for a MCC, are
presented. Section V provides a sufficient & necessary con-
dition for the existence of a Manhattan-distance-path in 3-D
meshes. In Section VI, our Manhattan-routing in 3-D meshes
is provided. Its improvement compared with the best existing
routing is shown in the results of our Monte-Carlo-estimate in
Section VII. Section VIII concludes this paper, and provides
directions for future research.

II. PRELIMINARY

A -ary -dimensional mesh with nodes has an interior
node degree of , and the network diameter is . Each
node has an address , where .
Two nodes & are neighbors

if their addresses differ in one & only one dimension, say di-
mension ; moreover, . Basically, nodes along
each dimension are connected as a linear array. In a 2-D mesh,
each node is labeled as , and the Manhattan-distance
between two nodes & , , is equal to

. Assume node is the source, is the current node,
and is the destination. Simply, for a node , node

is called the -neighbor of . Respectively,
, , and are –, –,

and -neighbors of node in a 2-D mesh. When node is a
neighbor of node , is called a preferred neighbor if

; otherwise, it is called a spare neighbor. Respectively,
the corresponding connecting directions are called preferred di-
rection, and spare direction. In general, rep-
resents a rectangular region with four vertexes: , ,

, and . Specifically,
represents a line-segment along the dimension. In a

Manhattan-routing, the length of the routing-path from source
to destination is equal to . The Manhattan-routing

is also called minimal routing. Without loss of generality, as-
sume , and . The corresponding Man-
hattan-routing in 2-D meshes is also called -routing.
In this paper, the Manhattan-routing & -routing are
used alternatively. Similarly, in a 3-D mesh, (0,0,0) is the source,

is the current node, is the destina-
tion where , , , and the Manhattan-distance between
two nodes & , , is equal to

. , , ,
, , and are

-, -, -, -, -, and -neighbors
of node . The Manhattan-routing in 3-D meshes is also called

-routing.
The formation of MCC in 2-D meshes [15] is based on the no-

tions of useless & can’t-reach nodes (see Fig. 2(a)): A node la-
beled useless is a node such that when an -routing en-
ters it, the next move must take either the or direction,
making the routing non-minimal. A node labeled can’t-reach is
a node such that for an -routing to enter it, a move in
the or direction must be taken, making the routing non-
minimal. The labels of faulty, useless, and can’t-reach nodes
can be determined through a labeling procedure. All faulty, use-
less, and can’t-reach nodes are also called unsafe nodes. The
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Fig. 3. (a) Identification activated at the initialization-corner; (b) identified information re-sending.

labeling procedure is given in Algorithm 1, and it can quickly
identify the non-faulty nodes in MCC. Each active node collects
its neighbors’ status, and updates its own status. Only those af-
fected nodes update their status. Eventually, neighboring unsafe
nodes form a MCC. Fig. 2(a) shows the idea of the definition of
useless & can’t-reach nodes. Fig. 2(c) shows some samples of
MCC for the routing from (0,0) to where , .

Algorithm 1: Labeling procedure of MCC for the routing from
(0,0) to where , .

1) Initially, label all faulty nodes as faulty, and all non-faulty
nodes as safe

2) If node is safe, but its -neighbor & -neighbor
are faulty or useless, then is labeled useless.

3) If node is safe, but its -neighbor & -neighbor
are faulty or can’t-reach, then is labeled can’t-reach.

4) The nodes are iteratively labeled until there is no new
useless or can’t-reach node.

5) All faulty, useless, and can’t-reach nodes are also called
unsafe nodes.

III. BOUNDARY-INFORMATION IN MCC MODEL IN 2-D
MESHES

In this section, we provide a distributed process to collect the
information of each MCC in 2-D meshes, and distribute it along
the boundaries so that not only the existence of a Manhattan-dis-
tance-path can be ensured at the source, but also such a routing
can be achieved successfully by routing-decisions at interme-
diate nodes along the path. The new routing provided in this
section can find a Manhattan-distance-path from the source to
the destination whenever such a path exists.

A. Corner & Boundary of MCC in 2-D Meshes

To collect the information of the MCC for the routing, each
MCC needs to identify its fault-region. Any node inside the
fault-region of a MCC is called an unsafe node. Otherwise, it
is called a safe node. Any safe node with an unsafe neighbor
in a MCC is called an edge-node of that MCC. A corner is a
safe node with two edge-neighbors of the same MCC in dif-
ferent dimensions, or a safe node with two unsafe neighbors of

the same MCC in different dimensions. After the labeling proce-
dure, the identification starts from an initialization-corner. The
initialization-corner is a corner with two edge-neighbors of the
same MCC in the & dimensions. A safe node with two
edge-neighbors of the same MCC in the & dimensions
is called the opposite corner.

From that initialization-corner, two messages, one clockwise
and one counter-clockwise, are initiated. They will be sent to
its two edge-neighbors. Each message is used to identify par-
tial region of MCC. Such propagation will continue along the
edges until the messages reach the opposite corner of the same
MCC. When the clockwise message passes through an inter-
mediate corner , the address of node will
be attached to the message. This information will be used at
the opposite corner to form the shape of this MCC. Similarly,
the counter-clockwise message will also bring the information
of every intermediate corner it passed through to the opposite
corner. After these two messages meet at the opposite corner,
the propagation will continue, and then bring the identified in-
formation back to the initialization-corner. This time, no new
intermediate corner needs to be identified, and no new informa-
tion will be added into each message. Fig. 3 shows a sample of
the identification for a MCC in 2-D meshes.

A MCC has only one pair of initialization-corner &
opposite-corner . If these two messages cannot meet
at that opposite corner in the process of identification, or if any
of them finds the shape changed when it is sent back to , it sug-
gests that this MCC is not stable. The message is discarded to
avoid generating incorrect MCC boundaries. If only one mes-
sage is received at the initialization-corner, the other has been
discarded during the propagation, and this message should also
be discarded. Usually, a TTL (time-to-live) is associated with
each message, and the corresponding message will be discarded
when the time expires.

In 2-D meshes, a MCC with initialization-corner is denoted
by . The -routing should avoid entering the re-
gion right below it in the direction if the destination is right
above it. The first region is called the forbidden-region, denoted
by . The corresponding region right above is called
critical-region, denoted by . Similarly, the routing should
avoid entering the forbidden-region on the left side of

in the direction if the destination is in the critical-re-
gion on the right side of . To guide the routing, two
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Fig. 4. Samples of boundary-construction under the MCC model in 2-D meshes.

boundaries will be constructed when both two messages of iden-
tification are received at node . In such a construction, two mes-
sages will be initiated. One message carrying the information

, , and will propagate to all the nodes along
the line until it reaches the edge of this 2-D mesh. These
nodes form the so-called -boundary. When this boundary
intersects with another MCC , a turn in the direction
is made. After that, it will go along the edges of to join
the same boundary of at the initialization-corner . At that
corner , merges into ( ;
see Fig. 4(a)). Similarly, another propagation, carrying ,

, and , will construct the -boundary. It will
go along line , and make a turn in the direction if
necessary (see Fig. 4(b)). The whole procedure is shown in Al-
gorithm 2.

Algorithm 2: Identification & boundary-construction for a
MCC.

1) Identification of edge-nodes, the initialization-corner
, intermediate corners, and the opposite corner

.
2) Identification of MCC : (a) From node , two

messages, one clockwise and one counter-clockwise, are
sent along the edge-nodes of until they reach node

. (b) Information of the partial region of , including
the address of all intermediate-corners and corner , is
transferred to form the shape of at node . (c) After
they meet at node , the propagation will continue until
the identified information reaches back to node . (d) The
stable shape of can be ensured at node when
these two messages are both received. Meanwhile, the
forbidden-regions ( & ), and critical-regions
( & ), are identified.

3) Construction of - / -boundary of :
A boundary-construction is activated at node after
it receives two messages in the above process of
identification. The information of , /

, and is propagated along the line
. When the propagation intersects another

MCC, say , it will make a turn in the
direction, and go along the edges of . Eventually,
it will join the same boundary of . Since then, the
forbidden-region of , , will merge
into that of , .

B. Sufficient & Necessary Condition for the Existence of a
Manhattan-Distance-Path in 2-D Meshes

The MCC model includes many fewer non-faulty nodes in its
fault-region than the conventional model in 2-D meshes. Many
non-faulty nodes that would have been included in rectangular
fault-blocks now can become candidate nodes of routing. As a
matter of fact, MCC is the “ultimate” minimal fault-region; that
is, no non-faulty node contained in a MCC can be useful in a
Manhattan-routing. A routing that enters a non-faulty node in
the MCC would force a step that violates the requirement for a
Manhattan-routing. In other words, the MCC is a fault-informa-
tion model that provides the maximum possibility to find a Man-
hattan-routing in the presence of faults. If no Manhattan-routing
exists under the MCC model, there will be absolutely no Man-
hattan-routing. In [15], a sufficient & necessary condition was
provided for the existence of a Manhattan-distance-path. This
can be rewritten as the following:

Lemma 1: A routing does not have a Manhattan-distance-
path iff there exists a MCC that a)

, or b) .
Theorem 1: A routing does not have a Manhattan-distance-

path iff there exists a MCC in which a) , and its
-boundary does not intersect with the segment

; or b) , and its -boundary does not intersect
with the segment .

C. Boundary-Information-Based Routing Under the MCC
Model in 2-D Meshes

Wu proposed a minimal, adaptive routing in n-D meshes in
[17]. It can easily be extended to a routing in 2-D meshes under
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Fig. 5. (a) Type-I sequence of MCC; (b) type-II sequence of MCC.

the MCC model (see Algorithm 3). In this routing, at the source
, a check is first activated to make sure that the Manhattan-

routing exists. Otherwise, the routing will stop. First, after a self-
rotation of 180 , the source will play the role of the destination
in Theorem 1. It sends two messages of detection: one along the

-boundary from (i.e., the -boundary in the original
mesh before the rotation), and one along the -boundary
from (i.e., the -boundary in the original mesh). The first
one is to check if a type-I sequence [15] (see Fig. 5(a)) exists or
not. If it can reach the segment in the original
network before rotation (return “YES”), it will make the con-
dition b) in Theorem 1 false. In other words, there is no type-I
sequence. Similarly, the second one is to check if a type-II se-
quence (see Fig. 5(b)) exists or not. If the source knows both
segments can be reached, based on the sufficient & necessary
condition in Theorem 1, a Manhattan-routing from to exists.
That is, a Manhattan-routing from to exists.

Algorithm 3: Routing from to where ,
.

1) Check of feasibility: At source , send two messages of
detection (the first along the -boundary from , and
the second along the -boundary from ) until they
reach the line , or line . If it intersects
with the segment ,
return “YES” to node ; otherwise, return “NO”. If any
return is “NO”, stop the routing because there is no
Manhattan-distance-path.

2) Routing-decision at the current node , including the
source .

a) Add all the preferred directions into the set of
candidates of forwarding directions , and find each
recorded MCC.

b) For each found, remove direction
from if .

c) Apply any fully-adaptive, minimal routing to select a
forwarding direction from set .

d) Forward the packet along the selected direction to
the next node.

At each node along the routing-path, including the source
, the routing basically has two preferred directions: , and

. The boundary-information of a MCC at the current node
will help the routing avoid entering the forbidden-region by re-
moving the corresponding preferred direction from the candi-
dates of the forwarding-direction. After that, any fully-adaptive
minimal routing could be applied to select the forwarding-di-
rection, and forward the packet along this direction to the corre-
sponding neighbor. The procedure of check & routing-decision
can also be seen in the samples in Fig. 6.

IV. MCC MODEL IN 3-D MESHES

In this section, we present our solution for constructing MCC,
and propagating the corresponding information in 3-D meshes.
First, the status of each node inside a fault-region is identified
in a labeling process. Then, each 2-D section, and its neigh-
boring section in a 3-D fault-region, are identified. After that,
the information of 2-D sections is collected along the edges in
the edge-construction. With this information collected, the re-
gion is identified as a MCC, and the information of its shape,
forbidden-region, and critical-region is formed. Finally, in the
boundary-construction, the formed information will be propa-
gated along the boundaries to prevent the routing from entering
the forbidden-region.

A. Labeling Process

A useless node in a MCC in 2-D meshes has two useless
or faulty neighbors, one in each of the , and direc-
tions. Based on the label scheme in Algorithm 1, any

-routing will be blocked by the faulty nodes if it enters node
. For a non-faulty node in 3-D meshes, if it has only two

useless or faulty neighbors, one in each of the , and
directions, the routing can still route around the fault-region in
the direction. Therefore, a non-faulty node is useless in 3-D
meshes iff it has three useless or faulty neighbors, one in each of
the , , and directions. Similarly, a non-faulty node
is can’t-reach iff it has three can’t-reach or faulty neighbors, one
in each of the , , and directions. The corresponding
labeling scheme is shown in Algorithm 4.

Algorithm 4: Labeling procedure of MCC in 3-D meshes.

1) Initially, label all faulty nodes as faulty, and all non-faulty
nodes as safe.

2) If node is safe, but its -neighbor, -neighbor,
and -neighbor are faulty or useless, then is labeled
useless.

3) If node is safe, but its -neighbor, -neighbor,
and -neighbor are faulty or can’t-reach, then is
labeled can’t-reach.

4) The nodes are iteratively labeled until there is no new
useless or can’t-reach node.

5) All faulty, useless, and can’t-reach nodes are also called
unsafe nodes.
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Fig. 6. (a) Check in a case without any Manhattan-distance-path; (b) check to ensure the existence of a Manhattan-distance-path; (c) routing-decision to construct
a Manhattan-distance-path.

Fig. 7. (a) Sample of cuboid fault-block in 3-D meshes; (b) the corresponding MCC.

Fig. 7(b) shows two sample MCC in 3-D meshes. First,
(5,5,6), (6,5,5), (5,6,5), (6,7,5), (7,6,5), (5,4,7), (4,5,7), and
(7,8,4) are faulty nodes. Then, (5,5,5) becomes useless, and
(5,5,7) becomes can’t-reach according to our labeling process
in Algorithm 4. One MCC contains only one faulty node
(7,8,4), and the other MCC contains all the other faulty, useless,
and can’t-reach nodes. Usually, a 2-D section of the MCC
parallel to plane , plane , or plane is not
a convex polygon. A convex polygon has been defined in [20]
as a polygon for which a line-segment connecting any two
points in lies entirely within . A non-convex section of the
second MCC on the plane with a hole at (6,6,5) is shown
in Fig. 7(b).

In the following subsections, we will introduce a process
(see Algorithm 5) to collect the information about the shape of
each MCC, and distribute to a limited number of nodes along
so-called boundaries for our Manhattan-routing.

B. Edge-Identification

The identification of the shape of a MCC in 3-D meshes
starts from the identification of each 2-D section on the
plane, plane, and plane simultaneously. Simply, we

call these sections sections, sections, and sec-
tions. The process is based on the identification of the shape
for the MCC in 2-D meshes. For each section, for example an

section, an identification in Algorithm 2 is activated at its
corner , say one with the minimum coordinate along the di-
mension of those which have the maximum coordinate along
the dimension (see Fig. 8). Such a corner is also called the

-corner of this section. The corner of a sec-
tion uses the previous definition for the one of an orthogonal
fault-region in 2-D meshes. This section may have several
corners with the maximum coordinate along the dimension,
and the one with the minimum coordinate along the dimen-
sion is called the -corner of this section. Respectively,
we have - & -corners of a section,
and - & -corners of a section. Each

section will be identified by a similar process initiated
from its - / -corner. It is noted that these
two messages in the identification of a 2-D section may meet at
any edge-node, not necessarily a corner-node (see Fig. 8(b)).

After the identification of 2-D sections, six kinds of edges of
each MCC are identified for the boundary-construction:

-edge, -edge, -edge, -edge,
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Fig. 8. Identification of an XY section with the initialization-corner, (+Y �
X)-corner c.

Fig. 9. Samples of corners, edges, and boundaries in 3-D meshes.

-edge, and -edge (see Fig. 9). Each of
these edges are defined by all of its edge-nodes. Each edge-node
is the corresponding corner in its 2-D section. The identifica-
tion of edge-nodes is to find the path linking edge-nodes in
two neighboring 2-D sections. The edge-node next to the other
in the routing-direction, , , or direction, is called
the succeeding edge-node. The other one is called its preceding
edge-node. By connecting all the links together, the entire edge
can be constructed. Such a process has three phases. In phase
one, a message will be initiated at an edge-node, and routed
around its 2-D section to find a path to the neighboring section in
a certain direction, say the direction in an -edge
for the -routing. In phase two, this message
will be propagated along that path to the neighboring section.
In phase three, it will route around that neighboring section to
reach the corresponding corner. When this message reaches that
corner, those two corners in neighboring sections are identified
as preceding and succeeding edge-nodes, and the path between
them will be used for future edge-construction.

For example, the -edge of a MCC is defined by
the -corners of all its sections. The identifica-
tion of this -edge starts from each -corner.

In phase one, from a -corner in the
section in Fig. 10(a), a message will be sent to route
around this section. When such a message passes through a node

with an unsafe neighbor in the direction, the
identified information of the section on the plane
is used to find a neighboring section on plane .
A neighboring section exists if is not the minimum coordi-
nate in the dimension in that section. In phase two, the
neighboring section is found, and the message will go around
the corresponding section to the neighboring section
(see Fig. 10(b)). In phase three, when the message arrives at
the neighboring section, it will go around that section to
reach its corresponding -corner . At node , is
identified as its preceding edge-node, and the information of the
path to node (see the dash link in Fig. 10(c)) is saved for fu-
ture propagation of information. It is noted that the propagation
of a message may require several hops to detour the irregular
fault-region in each phase (see Fig. 11).

C. Edge-Construction

In phase one in the above identification of an edge-node, if
the neighboring section is not found, that starting edge-node
without a succeeding edge-node is identified as the starting point
of the entire edge, and the corresponding section is identified
as a surface of this MCC (see Fig. 11(a)). From that starting
edge-node , a collection-process is activated to collect all the
links between preceding & succeeding edge-nodes, and form the
entire edge. A message is sent along the path linking each edge-
node to its preceding edge-node. Such a propagation will con-
tinue until it reaches the ending node, i.e., an edge-node without
any preceding node. At each edge-node it passes through, the
section-information is attached to the message. With the previ-
ously attached information, the area of MCC from the current
node to the starting point , , is determined. The in-
formation of forbidden-region and critical-region
can also be formed at node . Fig. 12 shows some samples of
the determined information at edge-nodes. It is noted that an
edge-node (see node in Fig. 12(b)) may have more than one
preceding edge-node. In that case, the collection process needs
a multi-casting to all the preceding nodes. It is also noted that
each edge-node cannot have more than one succeeding edge-
node due to the exclusion of the corresponding edge-node in
the neighboring section.

D. Boundary-Construction

At each edge-node , say along a -edge, after
is formed, the information of , , and will be
propagated along the boundary, also called -boundary,
to block the routing from entering the region in the
dimension if the destination is inside the critical-region .
Initially, a message carrying the information is sent from node

along the dimension (see Fig. 13(a)). When this message
intersects with another MCC at node , it will
propagate along the surface of in the & directions
to join its -boundary & -boundary. From
each joint point, the forbidden-region of will merge
into : (see Fig. 13(b)). To avoid
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Fig. 10. Identification of edge from node c(x ; y ; z ): (a) phase one; (b) phase two; (c) phase three.

Fig. 11. Some samples of identification of edge-node c: (a) identification of starting point of edge; (b) complex case of phase one in finding neighboring section;
(c) complex case of phase two in reaching the neighboring section.

propagation of redundant information along the boundaries of
the intersected MCC, we have the following superseding rule:

• Superseding rule: A propagation of an edge-node over-
writes the propagation of its succeeding edge-node because
the MCC information of the former one contains that of the
latter one.

Fig. 13(c) shows that the propagation of an edge-node is
overwritten by the propagation of its preceding edge-node on
the surface of the intersected MCC . A sample of a com-
plete -boundary is shown in Fig. 13(d). The whole
procedure to collect & distribute MCC information is shown in
Algorithm 5.

Algorithm 5: Identification & boundary-construction of a
MCC in 3-D meshes.

1) Identification of each 2-D section by using the process of
identification in Algorithm 2.

2) Edge-identification: a) a message is sent along each ,
, or section from its starting corner to find the

path to its neighboring section; b) the message reaches

the neighboring section along this path; c) the message
routes around that neighboring section to reach the
corresponding corner, the succeeding edge-node.

3) Edge-construction: If no succeeding edge-node is found,
the edge-node itself will be identified as the starting
node of the entire edge. From this node, a message will
propagate along the links from each edge-node to its
preceding edge-node(s), and such a propagation will
continue until it reaches the end (an edge-node without
any preceding edge-node). At each edge-node, the 2-D
section information will be attached to the message. With
the information previously attached, the concerning MCC
part can be determined. The forbidden-region ,
and critical-region can also be formed.

4) Boundary-construction: After , , and is
formed at an edge-node , say along the -edge,
the information , , and will be
propagated along its -boundary in the
direction. If it intersects with another MCC , it will
join the boundary of the “nose”-part of , and merge the
corresponding forbidden-region into .
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Fig. 12. Sample of constructed (+Y �X)-edge: (a) information (M , Q , and Q ) formed at ending edge-node end1; (b) information formed at an edge-node
c ; (c) information formed at ending edge-node end2.

Fig. 13. (a) Construction of a (+Y �X)-boundary; (b) propagation ofM(u)
at the intersection u to cover the “nose”-part; (c)M(u) overwritten byM(v);
(d) a complete (+Y �X)-boundary constructed for MCC M .

V. SUFFICIENT & NECESSARY CONDITION FOR THE EXISTENCE

OF A MANHATTAN-DISTANCE-PATH IN 3-D MESHES

In this section, a sufficient & necessary condition with
boundary-information is presented to ensure the existence of a
Manhattan-distance-path in 3-D meshes.

After the boundary-construction, a boundary node will have
the information of fault-region , the forbidden-region

( , , or ), and the critical-region
( , , or ). When a routing-message arrives,
and its destination is inside , the boundary-line can

be used as a part of a path in the Manhattan-routing to route
around . Thus, we have the following sufficient & neces-
sary condition for the existence of a Manhattan-distance-path
in 3-D meshes:

Lemma 2: A routing does not have a Manhattan-distance-
path iff there exists a MCC for which a) ; b)

; or c) .
Theorem 2: A routing does not have a Manhattan-distance-

path iff there exists a MCC for which a) , and neither
its -boundary nor its -boundary intersects
with the surface ; b) , and neither
its -boundary nor its -boundary intersects
with the surface ; or c) , and neither
its -boundary nor its -boundary intersects
with the surface .

VI. BOUNDARY-INFORMATION-BASED ROUTING UNDER THE

MCC MODEL IN 3-D MESHES

Based on Theorem 2, Wu’s routing in [19] in 3-D meshes
is extended to a routing under the MCC model (see Algorithm
6). Such a routing can find a Manhattan-distance-path whenever
this path exists.

Algorithm 6: Routing from to
.

1) Check of feasibility: At source , send messages of
detection along the , , and directions.
When a message, say the one along the direction,
intersects another MCC, it will join the - &

-boundaries as boundary-construction. The
source will check if these three messages can reach the
surfaces , ,
and respectively. If any one of
these three surfaces cannot be reached, stop the routing
since there is no Manhattan-distance-path.
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Fig. 14. Sample of propagation of detection-message: (a) configuration of faults; (b) configuration after a self-rotation of 180 , and the corresponding (+Y �X)-
& (+Y � Z)-boundaries in the meshes; (c) propagation of detection message along the (+Y �X)- & (+Y � Z)-boundaries in (b).

Fig. 15. Samples of check of feasibility.

2) Routing-decision at the current node , including the
source :

a) Add all the preferred directions into the set of
candidates of forwarding-directions , and find each
recorded MCC.

b) b) For each MCC found in the above step, remove
direction from if the destination is in the
critical-region, and the neighbor of along this
direction is inside the forbidden-region.

c) Apply any fully-adaptive & minimal routing to select
a forwarding-direction from set .

d) Forward the packet along the selected direction to
the next node.

Similar to the routing in 2-D meshes, a check is first activated
at the source to make sure that a Manhattan-distance-path ex-
ists. Otherwise, the routing will stop. First, the source will play
the role of the destination in Theorem 2. Three messages of de-
tection will be sent from along the , , and direc-
tions. If any message, say the one along the direction (see
Fig. 14(c)), intersects another MCC, it will join the -
& -boundaries as boundary construction, i.e., the

- & -boundaries in the 3-D meshes after
a self-rotation of 180 (see Fig. 14(b)). If any copy of this mes-
sage reaches the surface , it will return
“YES” back to . If receives all three “YES”-returns, based

on the sufficient & necessary condition in Theorem 2, a Man-
hattan-routing from to exists; that is, a Manhattan-routing
from to exists. Fig. 15 shows some samples of this check.

At each node, including the source , the routing basically
has three preferred directions: the , , and directions.
The boundary-information of a MCC will help the routing avoid
entering the forbidden-region by removing the corresponding
preferred direction from the candidates for the forwarding di-
rection. After that, any fully-adaptive & minimal routing could
be applied to pick up the forwarding direction, and forward
the packet along this selected direction to the corresponding
neighbor. Fig. 16 shows some samples of routing under our
MCC model in 3-D meshes.

VII. RESULTS OF MONTE-CARLO-ESTIMATE

We developed a simulation to test the effect of our new MCC
model on the performance of routing in 3-D meshes, in terms
of the percentage of successful Manhattan-routing. The cost
for construction of MCC model was also tested, in terms of
a) the number of unsafe nodes whose communications are dis-
abled, and b) the number of rounds of information exchanges &
updates needed in a synchronous-round-based system (i.e, the
speed that the construction converges). To show that our new in-
formation model is cost-effective, the results are compared with
those under the cuboid fault-block (CFB) model [19], which are
the best results known to date.
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Fig. 16. Samples of routing under the MCC model.

The simulation is developed in the method of Monte-Carlo-
estimate. That is, we simply take many samples independently,
and average them to get results close to the true value. In the sim-
ulation, we take many samples ( 10,000) of a 30 30 30
3-D mesh. In each case, a certain number of faults are uniformly
distributed. After this, the MCC, and CFB are constructed. And
then, many routing-cases with a pair of source & destination
randomly generated for each are tested in different routings. We
only test those cases when a Manhattan-distance-path exists be-
tween source & destination. When the number of faults is larger
than 500, applying the CFB model may disable all the non-faulty
nodes in the networks, and furthermore disable all their com-
munication while many nodes and their data transmission are
kept enabled under our MCC model in the same configuration
of faults. Therefore, only the results when the number of faults
is no more than 500 are compared in a fair way in Fig. 17. It
is noted that all the schemes presented in this paper can also be
applied in an asynchronous system; however, to make the dis-
cussion simple, we do not pursue the relaxation here.

Compared with the CFB model, the MCC model has much
fewer unsafe nodes, and can enable much more end-to-end com-
munication in the entire network, especially when the number
of faults is larger than 400. As shown in Fig. 17(b), the construc-
tion of our MCC model also converges very fast in terms of the
number of rounds needed. It is noted that, in our generator of
random-faults, the faults will be distributed sparsely when only
a small amount of faults are generated. When the number of
faults is less than 10, MCC, and CFB contain faults only; that
is, no unsafe node is disabled, and the costs under two different
models are the same. Even when the number of faults reaches
100, few unsafe nodes are disabled in both models. Therefore,
the cost is nearly the same for MCC and CFB when the number
of faults is limited. However, the cost of the MCC model is al-
ways less than that of the CFB model.

Our new MCC routing proposed in this paper can find
a Manhattan-distance-path from to whenever it exists.
However, it needs a broadcast along surfaces in the check of
feasibility. Wu presented a simple check of feasibility for the
Manhattan-routing in [19], which only requires propagations
of information along three rays. However, if the existence
of a Manhattan-distance-path is ensured in the process of a
check, then a Manhattan-routing can be conducted, but not the
other way around. To reduce the cost for the check, we replace
our check in Algorithm~6 by that in [19]. The corresponding

Fig. 17. (a) Number of unsafe nodes (lg); (b) number of rounds of information
exchanges & updates in labeling process; (c) percentage of successful Man-
hattan-routing.

routing, denoted by MCC’, is a simple version of our MCC
routing. In the routing using a cuboid fault-block, which is
denoted by CFB [19], the proposed Manhattan-routing under
the MCC model which is denoted by MCC, and its simplified
version MCC’ routing, whenever the check of feasibility is
passed, a Manhattan-routing can be guaranteed. Thus, in these
routings, the success of Manhattan-routing depends on the
passing rate of the check. Fig. 17(c) shows the percentage of
passing cases, i.e., the rate of successful Manhattan-routing.
The results of Monte-Carlo-simulation show that our new MCC
routing can always find a Manhattan-distance-path whenever it
exists, i.e., rate of successful . In
MCC’ routing, the simple check process is not able to identify
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every existing Manhattan-distance-path. Thus, MCC’ routing
will have less success than MCC routing. However, by using
the MCC information, the rate is still higher than that of CFB
routing. These results show the value of applying our MCC
information model in 3-D meshes.

VIII. CONCLUSION

In this paper, we have proposed the minimal fault-region
MCC for the Manhattan-routing, also called the minimal
routing, in 3-D meshes by considering the positions of source
& destination. Using a non-faulty node contained in a MCC will
definitely make the routing non-minimal. If no Manhattan-dis-
tance-path exists under the MCC model, there will be absolutely
no Manhattan-routing. We have provided a fully-distributed
process in 2-D & 3-D meshes to collect & distribute the MCC
information along the boundaries. Based on the boundary-infor-
mation, our routing will guarantee a Manhattan-distance-path
for the communication in a system without using global infor-
mation. Our estimates in the Monte-Carlo-method have shown
the improvement under our MCC model in 3-D meshes by
comparing with the best currently known approaches. In our
future work, we will study the performance of our new routing.
The maximum achieved throughput among the safe nodes that
can communicate under the MCC model will be analyzed &
tested. We will also extend our results to dynamic networks
in which any of the components can become faulty during the
routing. As a result, the minimal fault-region can change its
shape dynamically, and the corresponding boundaries will be
adjusted frequently. Next, our results will be extended to higher
dimension networks.

APPENDIX

Here we give the proof of the theorems given in the main body
of this paper.

Proof of Lemma 1: A sequence of MCC
, such that

1) contains a node and ,
2) contains a node and ,
3) for all & , ,

and

is called Type-I sequence in [15] (see Fig. 5(a)). It is obvious
that there exists such a sequence iff there exits a MCC M(c) that

.
Similarly, a sequence of MCC , such that

1) contains a node and ,
2) contains a node and ,
3) for all & , ,

and

is called Type-II sequence (see Fig. 5(b)). There exists a Type-II
sequence iff there exists a MCC M(c) that

. Based on the result presented in [15] that a Manhattan-
routing can be found iff neither Type-I sequence nor Type-II se-
quence exists, the statement is proved to be true. For the details,
refer to [15].

Proof of Theorem 1: When , based on our con-
struction for -boundary in Algorithm 2, iff
the -boundary does not intersect with the segment

. When , similarly, iff the
-boundary does not intersect with the segment

. With Lemma 1, the statement is easy to prove.
Proof of Lemma 2: Along the path in

-routing from to , if a Manhattan-distance-path exists,
any intermediate node should have a length- path to

(condition a)). Among all the nodes in
meeting such a satisfaction, only a node which has a
length- path to can be selected to form the
Manhattan-distance-path from to (condition b)). As-
sume is the closest MCC that .
Respectively, is the closest MCC that

. Define the region of the Manhattan-dis-
tance-paths that includes every node meeting the
satisfaction of both conditions a) & b). We have its region:

. Based
on the construction of boundaries for , , and

, a Manhattan-distance-path from to (i.e., from to
) exists iff ; that is, , , and

.
Proof of Theorem 2: For any MCC, its -boundary

( -boundary) and -boundary
( -boundary) intersect with the surface

iff , and .
With Lemma 2, the statement is easy to prove.
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