
478 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 28, NO. 4, JULY 1998

Correspondence

Two Algorithms for a Reachability
Problem in One-Dimensional Space

Dajin Wang and Klaus Sutner

Abstract—Two algorithms are proposed to solve a reachability problem
among time-dependent obstacles in one-dimensional (1-D) space. In the
first approach, the motion planning problem is reduced to a path existence
problem in a directed graph. The algorithm is very simple, with running
time O(n2)O(n2)O(n2), where nnn is the complexity of obstacles in space–time. The
second algorithm uses a sweep-line technique and has running time
O(n log

2
n)O(n log

2
n)O(n log

2
n). Besides, the latter algorithm can be easily modified to

compute a collision-free trajectory, if such trajectories exist.

Index Terms—Algorithmic robotics, motion planning, obstacles, path
planning, reachability, space-time, sweep-line algorithm.

I. INTRODUCTION

The general purpose of robot motion planning is to plan the
movement of a robot in a known or unknown environment filled with
obstacles such that certain requirements are met. For example, the
robot might be commanded to navigate among a collection of static or
time-dependent (moving) obstacles; the shapes of those obstacles may
range from very simple ones (such as a single segment) to arbitrarily
complicated objects. The robot has to move from an initial position
to a target position without colliding with any of the obstacles.
Moreover, there can be many different restrictions on the types of
movement of the robot, and the robot’s mechanical limitations have
to be taken into account when planning its motion. For example, the
motors that drive the robot will have limited top-speed/acceleration,
causing the robot to navigate with speed/acceleration not exceeding
certain value. For a non-disk-like robot whose workspace is two-
dimensional (2-D), its movement can be either translational or
rotational. Thus one possible restriction is that only translational
movements are allowed. So there are many combinations of the
restrictions and conditions on the moving robot. Some of them have
been studied as special cases of motion planning problem since the
general planning has been found to be computationally intractable.
In fact, the significance of studying those “special cases” is not only
that they are more tractable but also that they are of theoretical
as well as practical interest in their own rights. In the past years,
many efficient algorithms have been developed for special cases of
motion planning. A typical example is the motion planning of a
straight-line segment (a “rod”) in a 2-D space filled with segment-
like obstacles. An algorithm was proposed by Leven and Sharir
[6] solving the problem inO(n2 log

2
n), wheren is the number

of segment obstacles. Another example is to plan the motion of a
circular disk in a 2-D polygonal workspace.Ó’Dunlaing and Yap [10]
used the so-called retraction method to design an algorithm which
solves the problem inO(n log

2
n). Some other efficient algorithms

Manuscript received February 5, 1993; revised April 7, 1994, February 5,
1995, and October 22, 1997.

D. Wang is with the Department of Computer Science, Montclair
State University, Upper Montclair, NJ 07043 USA (e-mail: wang@
pegasus.montclair.edu).

K. Sutner is with the Computer Science Department, Carnegie Mellon
University, Pittsburgh, PA 15213 USA.

Publisher Item Identifier S 1083-4427(98)04355-0.

for various special case motion planning problems can be found in
[2]–[4], [7]–[9], [15], and [16].

The motion planning in the presence of time-dependent obstacles
came to researchers’ attention relatively late. Two early papers in
this field were written by Sutner and Maass [14] and Reif and Sharir
[13]. Both papers showed that the general motion planning problem
for time-dependent obstacles is PSPACE-hard. However, for some
special cases, it is still possible to find efficient algorithms. In [14],
an O(n log

2
n) algorithm was developed to solve the reachability

problem in one-dimensional (1-D) space, where the obstacles are
assumed to be disjoint polygons inspace–time(the physical space
plus time dimension) andn is the total number of edges of the
polygons. In [5], Lee and Lee addressed the problem of collision-
free motion planning for two robots. The presence of the first
robot on the path of the second robot could be viewed as a time-
dependent obstacle. Using the collision map technique, [5] computed
an appropriate speed reduction and/or time delay for the second robot
to avoid the collision.

An important problem in advanced robotics research is to decide
whether a robot can reach a target, given the description of the
environment. In this paper, we will present two algorithms to solve
a special reachability problem in 1-D space. The results of this paper
extend the previous work of [14]. The problem to be solved is stated
as follows. Suppose a point-like robot intends to move from an initial
position to a target position along a 1-D track. The robot is supposed
to reach the target before a deadline time. However, the track is not
a clear one: between the initial and target positions, there are various
obstacles that are appearing and disappearing as the time passes. We
ask the question that given the obstacle information, can the robot
reach the target before the deadline?

There are many real-world problems that can be modeled or
approximated with the above problem. For example, suppose a robot
R moves between two spots of a workspace. The path of the robot
is a fixed rail (so it can be modeled with 1-D space). In the same
workspace, there are some other robots moving around so that they
cross the rail from time to time. It is then natural to ask ifR can
reach its target without colliding with other robots. Furthermore, if the
answer is yes, it is highly hoped that a trajectory ofR be computed
that reaches the target before the deadline, dodging all obstacles.

Certain simplifications are made to handle the problem efficiently.
First of all, we assume that all obstacles are of rectangular shapes
in space–time. The reasonableness of this assumption is twofold: 1)
in the example given above, if the crossing robots have the shapes
similar to rectangles (like trailers), the assumption nicely fits into
the situation; 2) for a more complex-shaped obstacle, we can use
a set of small rectangles to approximate it so that the algorithms
developed for rectangular obstacles can be carried over to irregular
obstacles. Secondly, we assume that the robot switches from one
speed to another with very little time, so that we can almost view its
acceleration as infinite. Although an infinite acceleration will never
be possible, this assumption will gain more and more practicality
and give better and better approximation results as manufacturing
technology develops.

We propose two different approaches to solve the reachability
problem. In the first approach, we construct a directed graph (or
digraph for short)G = (V; A) out of the layout of the obstacles.

1083–4427/98$10.00 1998 IEEE

Authorized licensed use limited to: Rutgers University. Downloaded on May 12, 2009 at 11:42 from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 28, NO. 4, JULY 1998 479

A theorem is given establishing the relationship between the original
reachability problem and the digraph. Using the theorem, we can
solve the reachability problem by checking if there exists a directed
path in the digraph that satisfies certain conditions. The construction
of G and the checking of the existence of the directed path both
take O(n2) steps, wheren is the number of atomic obstacles in
the space–time under consideration. For the purpose of easy analysis
and correctness proof, the algorithm is first presented assuming that
the robot can move with unlimited velocity. Once the idea of the
algorithm is grasped, it is not a difficult task to adapt it to the case
of noninfinite velocity. The digraph algorithm is straightforward in
concept, uses no complicated techniques and therefore is easy to
implement.

The second approach proposed is a complex sweep-line algorithm,
which uses some earlier results in computational geometry. The total
running time of the algorithm isO(n log

2
n). But to make use of the

results in computational geometry to achieve the better running time,
we have to make one further assumption: the robot in question can
move very fast, so fast that the time it needs to move from the initial
to target position is so little compared to the time-span of the obstacles
that we can approximate the robot’s movement in space–time with
a vertical segment. With this approximation, we can not only get a
faster algorithm for the reachability problem, but can also, by adding
some actions into the algorithm, compute a collision-free trajectory
from the initial to the target position, if such trajectories exist.

The rest of the paper is organized as follows. In Section II,
we give the definitions of the technical terms and then formally
state the problems we will solve. In Section III, we present the
digraph algorithm to solve the reachability problem and analyze its
complexity, assuming the infinite velocity of the robot for the time
being. In Section IV, we extend the result of Section III to the more
practical, noninfinite velocity. In Section V, a sweep-line algorithm
is proposed to solve the problem and its complexity analyzed.
In Section VI we modify the sweep-line algorithm to compute a
collision-free trajectory, provided that such trajectories exist. We then
give some concluding remarks in Section VII.

II. TERMINOLOGY

The time-dependent obstaclecan be described in two possible
ways. We could first give the description of the physical shape
of the obstacle, and then describe its movement. Alternatively, we
can combine the above two pieces and describe the time-dependent
obstacle as a point-set inspace–time, i.e., the robot’s workspace plus
the time axis. In the study of motion planning with top-speed and/or
acceleration constraint, it is found to be extremely convenient to
express the movement of both robot and obstacle in space–time. The
advantage of this method is that it can even reflect the changes in
shape of the obstacles. We will express the obstacles in space–time.
Therefore the complexity of obstacles will be measured as the
complexity of the corresponding point-set in space–time. Notice that
if we consider the movement of a robot in space–time, the irreversible
movement along the time axis is always forced. So in our case,
where the robot moves in 1-D space, the problem is quite different
from motion planning in 2-D space. A point(x; t) in space–time is
called a location. We denoteX(x; t) = x; T (x; t) = t, and call
x the robot’sposition at time t. We consider motion planning with
the assumption that the complete information about obstacles—the
shape, the trajectory along which they are moving, etc.—is known
in advance and stored with some appropriate data structures, i.e., the
sensing of the environment has been done before the robot starts
navigating.

We are now ready to formally state the reachability problems we
consider in this paper. Suppose we are given a point-like robot that

Fig. 1. An atomic rectangular obstacle in space–time.

(a) (b)

Fig. 2. (a) An approximation of an arbitrary obstacle and (b) a finer
approximation of the same obstacle.

can navigate in interval[0; M] in 1-D space. The robot can assume
arbitrary velocity and the switching from one velocity to another
takes no time.

Instance: A set ofn rectangular obstaclesB = (b1; b2; � � � ; bn)
in space–time. The initial location(x0; t0) of the robot such that
x0 � 0. A destinationX such thatx0 � X � M . The deadline
time T > t0.

Problem 1: (Reachability Problem) Can the robot get fromx0 to
X beforeT , avoiding all obstacles?

Problem 2: (Trajectory Finding Problem) If the answer to Problem
1 is yes, specify one such trajectory.

A rectangular obstacle, which can be specified by four parameters
[ti; ti; qi; qi], represents the “blockade” of a portion of the space for
a certain amount of time. We defineT (bi) to be projection of the
obstaclebi on the time axis, i.e.,T (bi) = [ti; ti]. See Fig. 1 for the
illustration of such an obstacle.

An arbitrarily shaped obstacle in space–time can be approximated
by a set of rectangular obstacles, such as shown in Fig. 2. The accu-
racy of approximation will depend on how many “small rectangles”
are used to imitate the original obstacle—the smaller and the more
rectangles, the better imitation, but more running time is needed.

III. T HE DIRECTED GRAPH ALGORITHM

This approach solves problem 1 with a directed graph (digraph for
short) constructed out of the layout of the obstacles. Given rectangular
obstacle setB = (b1; b2; � � � ; bn) in space–time, construct a digraph
G = (V; A) with the set of verticesV = fv1; v2; � � � ; vng, where
vertex vi represents obstaclebi. The set of edgesA is defined as
follows:

A = f(vi; vj); (vj ; vi)jbi \ bj 6= ;g

f(vi; vj)j(bi \ bj = ;) ^ (qi � qj) ^ (tj < ti < tj)g:

Authorized licensed use limited to: Rutgers University. Downloaded on May 12, 2009 at 11:42 from IEEE Xplore. Restrictions apply.

480 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 28, NO. 4, JULY 1998

Fig. 3. Three obstacles and the corresponding digraph.

Fig. 4. RegionD.

Fig. 3 gives an example of a set of obstacles and the corresponding
digraph.

In the following discussion, we will establish the relationship
between two different kinds of paths. One is the physical path in
space–time from the sourcex0 to the destinationX without hitting
any obstacle. The other is the combinatorial path in the digraph. To
avoid confusion, we will call the former asafe trajectory.

We are interested in a special type of safe trajectory, on which the
robot either stands still, or moves with maximum/minimum velocity.
We call a safe trajectory of this type abang-bang trajectory.

Lemma 1: If there exists a safe trajectoryP1, there must exist a
bang-bang trajectoryP2.

Proof: If there exists a safe trajectory, then we can partition it
into portions such that each portion is monotone. We will only show
how to replace a monotonically increasing portion with a bang-bang
trajectory.

Suppose the time projection of a monotonically increasing portion
is [t1; t2], and call this portionf . Let D be the region bounded by
the following three curves:

• f ;
• The vertical line passing through[t1; f(t1)];
• The horizontal line passing through[t2; f(t2)].

See Fig. 4 for the illustration ofD.
If there exists an obstaclebj such thatqj = minfqijbi \D 6= ;g,

then we can changef as follows.
Starting from[t1; f(t1)], go forward with maximum velocity (+1

here) until the horizontal linex = qj is hit. Then stand still untilf
is reached. Notice that we are able to do so becausex = qj is the
lowest obstacle boundary that intersects withD. Suppose the time of
reachingf is t0. For the remaining portion off from [t0; f(t0)] to
[t2; f(t2)], repeat the preceding procedure until no such aqj is found.

If there exists no more suchqj , then just go forward with full
velocity until reaching the horizontal line passing[t2; f(t2)]. Then
stand still to reach[t2; f(t2)]. For Lemma 1

Fig. 5. A safe trajectory satisfying (a), (b), (c), and (d) of Corollary 1.

With the lemma, Corollary 1 immediately follows.
Corollary 1: If infinite velocity is allowed, and there exists a safe

trajectory at all, then there is a safe trajectory which can be described
as a sequence of segmentsp1; p2; p2; p3; � � � ; pr�1; pr such that

a) X(p1) = x0; T (p1) = t0.
b) X(pr) = X; T (pr) < T .
c) For any segmentpi; pi+1, eitherX(pi+1) = X(pi) (standing

still) or T (pi+1) = T (pi) (moving with�1 velocity).
d) The projections of any two horizontal segments on time axis

are disjoint (no reversal in time).

Fig. 5 shows an example of such a trajectory (bang-bang).
The following theorem establishes the relationship between the safe

trajectory and the directed path inG.
Theorem 1: There exists a safe trajectory if and only if there does

not exist a directed path(vi ; vi ; � � � ; vi) in G such that

1) ti � t0.
2) qi � x0.
3) Either i) ti � T , or ii) qi � 0, or iii) ti � t0^ qi � x0.

The intuitive illustration of the three types of directed paths that
will keep the robot from reachingX is given in Fig. 6. We provide
the proof of Theorem 1 in the Appendix.

Theorem 1 allows us to transform the motion planning problem
under consideration into a path existence problem in graph theory.
The digraph algorithm to solve our reachability problem is sketched
as follows.

Step 1: Construct the digraphG = (V; A) according to the
arrangement of obstaclesb1; � � � ; bn.

Step 2: Find an obstaclebi such thatqi = minfqj jtj � t0^qj �
x0g, i.e., the obstacle directly above the robot’s initial location. If
there is no such an obstacle, the answer to the original question is
trivially YES.

Step 3: Compute the setVi = fvkjthere is a directed path from
vi to vkg.

Step 4: Decide if there is somevk 2 Vi such thatbk satisfies
either 3 i) or ii) or iii) in Theorem 1. By Theorem 1, if the answer
is YES, the answer to the original question is NO; if the answer is
NO, the answer to the original question is YES.

A simple example illustrating the idea of the algorithm is shown
in Fig. 7.

We now analyze the algorithm’s running time. To construct digraph
G, we basically have to check every pair of obstacles. Since there
areO(n2) pairs of obstacles, Step 1 takesO(n2) operations in the
worst case. Step 2 can be embedded in Step 1. For Step 3, in the
worst case we will traverse all edges ofG, and the number of edges
is bounded byO(n2). So Step 3 takesO(n2), too. Step 4 can be
effected asVi is being computed, and each checking takes constant
time. So altogether the complexity of the algorithm isO(n2).

Authorized licensed use limited to: Rutgers University. Downloaded on May 12, 2009 at 11:42 from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 28, NO. 4, JULY 1998 481

Fig. 6. The three types of directed path that will prevent the robot from reachingX.

Fig. 7. If the deadline isT1, then there exists a directed path satisfying
conditions of Theorem 1 (v1 �! v2), thereforeX is not reachable before
T1. If the deadline isT2, then there is no path satisfying conditions of Theorem
1, thereforeX can be reached beforeT2.

IV. THE DIGRAPH ALGORITHM EXTENDED TO NONINFINITE VELOCITY

We now present the modified version of the digraph algorithm
in Section III so that it can solve the reachability problem for the
case of noninfinite velocity, which is a more practical assumption.
The adaptation from infinite velocity to noninfinite velocity is not
a difficult task. Basically, what we have to do is to change the
way the digraph is constructed. Notice that a full-speed move is
now a segment with certain slope, instead of a vertical segment,
in space–time. As soon as the digraph is built accordingly, the
reachability problem again becomes the matter of checking the
existence of a directed path satisfying conditions similar to those
of Theorem 1.

Given rectangular obstacle setB = (b1; b2; � � � ; bn) in
space–time, we construct a digraphG = (V; A), taking into account
that the point-like robot’s velocity is bounded by a constantc such
that c < 1. Let V = fv1; v2; � � � ; vng, where vertexvi represents
obstaclebi. The set of edgesA is defined as follows:

1) (vi; vj) 2 A and (vj ; vi) 2 A if bi andbj intersect;
2) (vi; vj) 2 A if the following situation holds:

Fig. 8 gives an example of a set of obstacles and the corresponding
digraph. We point out that whenc ! 1, the definition of edge-set
A here will reduce to the same edge-set definition in Section III.

The existence of a safe trajectory before deadline is equivalent to
the nonexistence of a directed path(vi ; vi ; � � � ; vi) in G such
that

Fig. 8. Set of obstacles and the corresponding digraph.

1) starting from(x0; t0), the robot moving with velocity+c will
hit bi at some location(x; t), wherex < X and t < T ;

2) obstaclebi is positioned in one of the three ways in Fig. 9.

Again, notice that whenc ! 1, condition 1 above will coincide
with conditions 1 and 2 in Theorem 1, and condition 2 will coincide
with condition 3 in Theorem 1.

Having modified the definition of digraphG, we can obtain a
similar 4-step reachability algorithm as in Section III, which is given
below.

Step 1: Construct the digraphG = (V; A) according to the edge
definition.

Step 2: Find an obstaclebi such that starting from(x0; t0), the
robot with velocity+c will hit bi at some location(x; t), x < X and
t < T . If there is no such an obstacle, the answer to the reachability
problem is YES.

Step 3: Compute the setVi = fvk there is a directed path from
vi to vkg.

Step 4: Decide if there is somevk 2 Vi such thatbk satisfies one
of the three conditions in Fig. 9. If the answer is YES, the answer
to the reachability problem is NO; if the answer is NO, the answer
to the reachability problem is YES.

The complexity analysis takes the same line as that of Section III,
resulting in anO(n2) running time.

V. THE SWEEP-LINE ALGORITHM

The sweep-line method discussed in this section will make use of
the known efficient algorithms [12] that compute theexternal contour
of a union of isothetic rectangles and determine the inclusion of a
point in a plane subdivision.

Using the definition in [12], the external contour of a unionF of
isothetic rectangles is the boundary betweenF and the unbounded
region of the plane. Fig. 10 gives an example of external contour of
a union of isothetic rectangles in space–time. Notice that here the
union of isothetic rectangles corresponds to our obstacle setB.

The following two theorems are from [12].
Theorem 2: The total number of edges forming the external con-

tour of a union ofn isothetic rectangles isO(n).
Theorem 3: The external contour of a union ofn isothetic rectan-

gles can be constructed in optimal time�(n log
2
n).

Authorized licensed use limited to: Rutgers University. Downloaded on May 12, 2009 at 11:42 from IEEE Xplore. Restrictions apply.

482 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 28, NO. 4, JULY 1998

Fig. 9. The positioning ofbi that will prevent the robot from reaching the destination.

Fig. 10. The external contour of a union of isothetic rectangles.

We call a groupH of isothetic rectanglesconnected blockif for
any two pointsa; b 2 H there is a curve that entirely lies withinH
and connectsa; b. For example, in Fig. 10 there are two connected
blocks.

According to Theorem 3, we can divideB = (b1; b2; � � � ; bn)
into several connected blocks inO(n log

2
n) steps. This result helps

us develop an efficient [i.e.,O(n log
2
n)] algorithm to solve the

reachability problem. The crucial observation that prevents us from
doing lots of unnecessary work is that a connected block actually
plays the role ofonegeneral obstacle. The boundary of that general
obstacle is just the external contour of the group of related rectangular
obstacles—all corners or edges “inside” the block do not have to be
considered when determining the reachability.

The rest of this section will be devoted to describing the sweep-line
method. The data structures used in the algorithm will be presented
at appropriate stages on an as-needed basis.

Preprocessing Step 1:First of all, for the given obstacle setB =
(b1; b2; � � � ; bn), compute the external contour. The result will be
several disjoint connected blocks. Suppose there arem blocks and
let Bi (1 � i � m) denote the set of obstacles belonging to block
i, thenB = B1 [B2 [� � � [Bm andBi \ Bj = ; if i 6= j. Each
block is now viewed as one general obstacle.

Fig. 11 illustrates the situations before and after the external
contour computation. See [12] for the details of computing external
contour.

Our algorithm sweeps all blocks from left to right. The time
components of allvertical edges of the blocks constitute the set of
so calledcritical moments. Each critical momentt has three tags as
follows:

1) t " block, indicating the block it belongs to;
2) t " ends, the two end points of the corresponding vertical edge;
3) t " lr, whether the corresponding edge is aleft one, by which

we mean an edge such that the block is on its right, or aright
one, by which we mean an edge such that the block is on its
left.

Fig. 11. After the external contour computation, many “inside” edges dis-
appear. They do not need to be “looked at” any more.

(a) (b) (c)

Fig. 12. (a) The edge entirely lies withinI1, (b) a portion of the edge
intersects withI1, and (c)I1 entirely lies within the edge.

Notice that sweeping from left to right, the sweep-line “sweeps
into” the block when encountering a left edge, and it “sweeps out
of” the block from a right edge. Also notice that the above three
pieces of information can be obtained during the computation of the
external contour.

It is not difficult to realize that only at those critical moments does
the reachable space-intervals of the robot change. This is the very
crucial observation that makes the sweep-line method work.

Preprocessing Step 2:Sort all critical moments in nondescending
order, i.e., from left to right. Denote the resulting critical-moment-
list (t01; t

0

2; � � � ; t
0

p) such thatt0 � t01 � t02 � � � � � t0p. All critical
moments less thant0 are ignored because the sweep starts att0. If
all critical moments are greater thant0, then the robot can trivially
reach the target by going straight up (with infinite speed).

We need to build a data structure which we callspace–structure.
It is basically anorderedset of reachable space–intervals at a given
critical moment. The order can be, say, from top to bottom. The
sweeping algorithm is nothing more than a process of updating of
the space–structure. To search, add and delete efficiently, we can
resort to any balanced binary search tree [1], such as AVL tree, to
implement the space–structure.

Step 1: We start the sweep fromt0 at which the only reachable
space–interval is the interval between the obstacles directly above
and belowx0, the robot’s initial position. Clearly, these two special
obstacles can be found with one scan ofB. On completion of this

Authorized licensed use limited to: Rutgers University. Downloaded on May 12, 2009 at 11:42 from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 28, NO. 4, JULY 1998 483

(a) (b)

Fig. 13. (a) The obstacles and initial positionx0 and (b) the reachable intervals att0
1
; � � � ; t0

5
.

initial sweep step, the space–structure contains only one interval
denoted as, say,I1.

Step 2: Now consider critical momentt01. We modify current
space–structure according to the values oft01 tags. By checking
t01 " ends, we know if the edge intersects withI1 or not. If not, do
nothing. If the edge intersects withI1, our updating action depends
on the value oft01 " lr.

Case 1: t01 " lr = left. ThenI1 is either chopped into two shorter
intervals, or cut at one end, resulting one shorter interval, orI1 is
totally gone. The situation is illustrated in Fig. 12.

Case 2: t01 " lr = right. Then I1 gets extended at one end. To
update space–structure, we need to know how longI1 is extended.
Without loss of generality, supposeI1 should be up-extended, we
then want to locate the horizontal edge of some block which is
directly aboveI1. Efficiently finding that horizontal edge is not trivial.
However, resorting to an algorithm of locating a point in aplanar
straight-line graph, the horizontal edge can be found inO(log2 n)

with O(n log2 n) preprocessing.
A planar straight-line graph is a graph on plane whose vertices

are geometrical points, whose edges are straight lines with no
intersections. It determines in general a polygonal subdivision of
the plane. A point-location algorithm is to find the polygon in
which a given point lies. An algorithm calledtrapezoid method,
due to Preparata [11], can locate the query point inO(log2 n) with
O(n log2 n) preprocessing, wheren is the number of vertices of the
planar straight-line graph.

Theorem 4 (Preparata/Shamos):A point can be located in an
n-vertex planar subdivision with fewer than4 log2 n tests, using
O(n log2 n) preprocessing time.

The preprocessing in the theorem corresponds to the buildup of a
balanced binary search tree. Readers who are interested in knowing
the algorithm in detail are referred to [11] or [12].

Now consider the collection of blocks from Preprocessing Step 1.
It can be seen that those blocks also perfectly determine a subdivision
of the plane. So we can construct a binary search tree out of them.
Denote the binary search treeTtrapi. According to Theorem 4,Ttrapi
can be constructed inO(n log2 n).

In Case 2 of Step 2, we want to locate the horizontal edge which
is directly aboveI1. For this purpose, we just searchTtrapi to find
the trapezoid in which the upper-end ofI1 lies. Once the trapezoid
is found, we up-extendI1 to its upper-horizontal edge. Again, by
Theorem 4 this can be effected inO(log2 n).

The actions in all steps henceforth are alike. Each of them is for
one critical moment. Recall that there arep critical moments and
p = O(n).

Stepi; i = 3; � � � ; p: At critical moment t0i, we first examine
t0i " ends to decide the set of reachable intervals that intersect the
encountered edge. Notice that the set of intersecting intervals is a

consecutiveportion of the space–structure, by which we mean that
any interval not belonging to that set is either above or below all the
intervals in that set.

Without loss of generality, suppose the intersecting reachable
intervals areIj ; Ij+1; � � � ; Ik, whereIj is aboveIj+1; � � � ; Ik�1 is
aboveIk. Then we havemax ft0i " endsg 2 Ij , minft0i " endsg 2
Ik and Ij+1; � � � ; Ik�1 � [maxft0i " endsg; minft0i " endsg].
Again, the updating action depends ont0i " lr.

Case 1: t0i " lr = left. The sweep-line sweeps “into” a block.
IntervalsIj+1; � � � ; Ik�1 are all gone.Ij ’s lower-end is updated to be
maxft0i " endsg. Ik ’s upper-end is updated to beminft0i " endsg.

Case 2: t0i " lr = right. The sweep-line sweeps “out of” a block.
There are two possibilities.

Case 2.1: Either Ij gets up-extended orIk gets down-extended.
We need to searchTtrapi to find either the trapezoid in which the
upper-end ofIj lies or the trapezoid in which the lower-end ofIk lies.

Case 2.2: Some two consecutive intervals merge into one.
A simple example of sweeping process is given in Fig. 13.
To solve reachability problem, at each critical moment, after

updating space–structure, we search it to find if there is an interval
containingX. If we find such an interval at some critical moment,
then the answer is YES. If we cannot find such an interval even after
T , the answer will be NO.

We now turn to the time analysis of the algorithm. By Theorem
3, Preprocessing Step 1 takesO(n log2 n). Preprocessing Step 2 is
sorting, henceO(n log2 n). Step 1 takes constant time. Step 2 can
be done inO(log2 n) in the worst case (the interval gets extended)
with the trapezoid tree, which is built inO(n log2 n) time. For
Step 3,� � �, Stepp, Ij , and Ik can be found with two searches of
space–structure, therefore needsO(log2 n) time. The updating of the
AVL space–structure tree again takesO(log2 n). Lastly, at the end
of each step, we check the inclusion ofX in the space–structure,
anotherO(log2 n). So, in summary, we have the following.

Theorem 5: The reachability question can be answered in
O(n log2 n) time using a sweep-line technique, wheren is the
complexity of measurement of the obstacles.

In comparison with the digraph algorithm, this method is much
faster whenn is large. Besides, it is a reasonable conjecture that
O(n log2 n) is the optimal running time one can possibly get for
the reachability problem under consideration. However, an obvious
advantage of digraph algorithm over sweep-line algorithm is that
the former is easier to implement. So whenn is small, the digraph
algorithm is preferred.

VI. COMPUTING A TRAJECTORY

If the answer to the reachability problem is YES, i.e., there exist
trajectories fromx0 (at time t0) to X before T , the next natural
question is how to find such a trajectory.

Authorized licensed use limited to: Rutgers University. Downloaded on May 12, 2009 at 11:42 from IEEE Xplore. Restrictions apply.

484 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 28, NO. 4, JULY 1998

(a) (b)

Fig. 14. (a)Ii is chopped intok pieces (k may equal to 1) and (b)Ij is
obtained by expendingIi.

If the trajectory is not unique—one can easily work out aB such
that there exists only one trajectory fromx0 toX—then there will be
continuously many of them. That fact is easy to see: ifP is a known
trajectory, then any continuous change in the velocity at any moment
will make a different trajectoryQ. We are interested in finding just
one such a trajectory, which in essence represents a family of them.
For the sake of simplicity, we try to establish astaircasetrajectory
on which the robot either stands still (a horizontal line in space–time)
or moves with top-speed (going straight up or down). By Lemma 1
of Section III, a trajectory of this type must exist if there exists any
trajectory at all.

By embedding some actions in the sweep-line algorithm discussed
in last section, we can find a staircase trajectory inO(n log2 n)
time. The basic idea of the algorithm is to construct a digraph
GT = (VT ; AT) (with T standing for trajectory) during the sweep-
line process. Each vertex ofGT represents some reachable interval
at a certain critical moment. An edge(vi; vj) 2 AT only if

1) interval Ij is at the moment next toIi’s;
2) eitherIj � Ii, i.e., Ij is one of the two pieces derived from

choppingIi, or Ii � Ij , which means thatIj is obtained by
expendingIi.

Fig. 14 illustrates the correspondence between intervals and edges
of digraphGT . It can be seen from the figure that if there is an edge
from vi to vj , then one can find a horizontal segment connecting
Ii and Ij . Notice that the digraphGT is constructed instages, i.e.,
vertices of the same momenttl can be all drawn in a vertical pattern,
right to vertices of momenttl�1, and left to those oftl+1. Each stage
represents adistinct critical moment and may include several critical
moments (recall that critical momentst0 � t01 � t02 � � � � � t0p,
so the number ofdistinct critical moments may be less thanp). All
edges emanating from some vertices of a particular stage terminate at
some vertices of the next stage. Therefore, in essence, all the edges
of GT direct “from left to right.”

With the finishedGT , the construction of a collision-free trajectory
becomes a straightforward process. We just start from vertexvk such
that Ik contains the targetX and trace back until we reach the very
first intervalI1, which containsx0. The directed path leading fromv1
to vk then perfectly represents a staircase trajectory from the original
location to the target.

The important thing in this approach is to keep the size of the
digraph as small as possible so that theO(n log2 n) running time
can be achieved. Naively, at each stage, we may retain vertices for
all intervals of this stage. And the whole digraphGT is staged

from left to right. This construction is very clear in concept, but
the total number of vertices may beO(n2), because there may be
O(n) reachable intervals at a stage and there may beO(n) stages.

To reduce the number of vertices of digraphGT , we manage not to
retain as many asO(n) vertices at every stage. Observe that at each
critical momentt0i, either one interval is chopped into two, or one
interval is cut/extended at one end, or some interval(s) vanish. One
strategy is then that att0i, we only add in new vertices that correspond
to newly generated intervals. Intervals from the previous stage that
don’t change are left alone, with no new vertices created for them.

Each vertex has a tag ofalive/deadindicating if the corresponding
interval is still active or not. In the beginning, there is only one
vertex v1 with alive tag. If at the next moment,I1 is chopped into
two partsI2 andI3, thenv2; v3 are added into the vertex setVT and
(v1; v2); (v1; v3) are added into the edge setAT . The tags of new
vertices are alwaysalive. When an intervalIj is to be deleted from
the space–structure, we change the tag ofvj to dead. Notice that no
edge emanates from a dead vertex.

If a collision free trajectory exists at all, then at some moment
we will detect, in space–structure, an active intervalIk that contains
X. We then find the vertexvk, which must be alive, and start a
trace-back process from it.

Constructing the digraphGT = (VT ; AT) as described above,
GT ’s size is drastically reduced because only two vertices at most
are to be added toVT for each critical moment. Since there are
O(n) critical moments, the cardinality ofVT is linear. The number
of edges inAT is also of orderO(n), because each vertex’s in-degree
is always 1. Since the construction ofGT can be entirely embedded
in the process of making space–structure, no extra work is needed to
find a specific collision-free trajectory. Thus, we have the following.

Theorem 6: If there exist collision-free trajectories from(x0; t0)
to (X; t0), somet0 � t0 � T , then one can construct a staircase
collision-free trajectory inO(n log2 n) time.

VII. CONCLUSION

We have proposed two algorithms—the digraph algorithm and the
sweep-line algorithm—to solve a reachability problem in 1-D space.
The space–time plane was used as a basic tool to solve our problem.
The digraph approach has its appeal due to its simplicity and easy
implementation. Two versions of the algorithm were presented, for
unlimited and limited robot velocity, respectively. To adapt from
unlimited to limited velocity, all we have to do is to change the
way the digraph is constructed. As soon as the digraph is adequately
constructed, the reachability problem becomes the matter of checking
the existence of a special directed path. The construction of the
digraph and the checking of the existence of the directed path take
O(n2) steps, wheren is the complexity of obstacles. The sweep-line
algorithm improves the running time of an earlier proposed algorithm
for a similar problem [14] in the sense that the algorithm presented
here gainsO(n logn) running time for arbitrary obstacle layout,
whereas in [14] to haveO(n logn) running time the obstacles have
to be disjoint. Yet it has to be pointed out again that our sweep-
line algorithm assumes very high velocity and acceleration relative
to the time-span of obstacles, so that the movement of robot can be
approximately expressed with vertical segments in space–time.

Taking into account the robot’s acceleration constraint turns out to
be much more challenging than only considering bounded velocity.
However, the literature in the past few years has already seen work
done in this direction. One can easily anticipate the intractability of
acceleration constrained motion planning in general terms. So most
contributions have concentrated on solving special case problems,
for example in [7], [16].

Authorized licensed use limited to: Rutgers University. Downloaded on May 12, 2009 at 11:42 from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 28, NO. 4, JULY 1998 485

Fig. 15. (qi < qi) ^ (ti < ti < ti).

APPENDIX

Proof of Theorem 1:We first show that if there exists a safe tra-
jectory, then there does not exist a directed path(vi ; vi ; � � � ; vi)
in G such that 1), 2), and 3) in Theorem 1 can hold simultaneously.
We then show that if there does not exist a safe trajectory, then there
must exist a directed path(vi ; vi ; � � � ; vi) in G such that 1), 2),
and 3) in Theorem 1 are satisfied simultaneously.

Suppose there exists a safe trajectory. Then by Corollary 1,
there is a bang-bang trajectory along which the robot either moves
straight up/down or stands still. Without loss of generality, suppose
the trajectory in Fig. 5 is what we have constructed. Observe the
rectangular region bounded byt = t0; t = T; x = 0, andx = X.
Denote this region asS. One can see that a safe trajectory partitions
S into two parts. Define

U = fs 2 Sj9i[T (s) 2 [T (pi); T (pi+1)]

^X(pi+1) � X(s)]g;

and

L =S � U:

Intuitively, U is the region “above” the safe trajectory (including
the trajectory itself) whereasL the region “below” it. ClearlyU\L =
;.

Notice that if there exists a safe trajectory satisfying a), b), c), and
d) in the corollary, then there will be no obstacle intersecting with
the trajectory, i.e.,

8 i [either bi � U or bi � L]:

We are now ready to show that with existence of a safe trajectory
satisfying a), b), c), and d) in the corollary, there cannot be a directed
path(vi ; vi ; � � � ; vi) in G such that 1), 2), and 3) in the theorem
hold simultaneously.

For the sake of contradiction, assume there exists a directed path
(vi ; vi ; � � � ; vi) in G such that 1), 2), and 3) in Theorem 1 hold
at the same time. Then because of 1) and 2), it must be the case
that bi � U . Considerbi now. If bi � U , too, then neither 3(i)
nor (ii), nor (iii) can hold. Thereforebi � L. So there must exist
(vi ; vi) 2 A such that

(1 � j < m) ^ (bi � U) ^ (bi � L):

SinceU \L = ;, we havebi \ bi = ;. So from the definition
of G

(q
i
< qi) ^ [T (bi) \ T (bi) 6= ;]:

The corresponding situations are shown in Fig. 15.
One can immediately see that the situation in Fig. 15 cannot happen

unless d) is violated, which means “going backward” in time—a
contradiction.

Fig. 16. There must be at least one obstacle blockingx0X .

(a) (b) (c)

Fig. 17. The trajectory in (b) is a forward-trajectory.

We now show that if there does not exist a safe trajectory, then
there must exist a directed path(vi ; vi ; � � � ; vi) in G such that
1), 2), and 3) in the theorem are satisfied simultaneously.

By our assumption, there is no safe trajectory. So the vertical
segmentx0X must have at least one obstacle intersecting with it.
See Fig. 16.

Let S1 be the set of all obstacles intersecting withx0X. The
following fact is trivially true:

bk 2 S1 implies thatvk satisfies 1) and 2) in Theorem 1.

If there exists abk 2 S1 such thatbk satisfies 3), then we have
already constructed the required directed path(vk), and the proof is
complete.

Suppose, however, that nobk 2 S1 satisfies 3., then it is obvious
to see that in the presence ofS1, we can construct a safe trajectory
somehow. For our purpose, we are particularly interested in one
particular way of constructing the safe trajectory. As has been pointed
out, there are only three types of movement of the robot in a bang-
bang trajectory: going up, going down, or going right (standing still).
We construct the safe trajectory in such a way that at any location-
time, going-up movement has the highest priority, going-right has
the second, and going-down has the lowest. In other words, the robot
always tries to go upward first. It stands still only when it cannot go
up any more (so it has to “drift” along the bottom of an obstacle).
And it will go downward only if it cannot even stand still. In Fig. 17,
only the trajectory in (b) meets this criterion. We will call this type
of trajectory aforward-trajectorybecause itgoes forward as soon as
it can do so.

Now suppose that, in the presence ofS1, we have constructed
the forward-trajectoryF1. From the assumption that there exists no
safe trajectory, we know that there must be at least one obstacle
intersecting withF1. Let S2 be the set of all obstacles intersecting
with F1.

Claim 1: For eachbi 2 S2, there is somebi 2 S1 such that
(vi ; vi) 2 A.

Proof: For the sake of contradiction, suppose the claim is not
true. Then there will be somebi 2 S2 such that8 bi [bi 2 S1 �!
(vi ; vi) 62 A].

Authorized licensed use limited to: Rutgers University. Downloaded on May 12, 2009 at 11:42 from IEEE Xplore. Restrictions apply.

486 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 28, NO. 4, JULY 1998

(a) (b)

Fig. 18. (a) All possible intersection patterns and (b) the corresponding
modification strategies.

An obstacle inS2 can intersect with the current forward-trajectory
F1 in four general manners shown in (1), (3), (7) and (8) of Fig. 18(a).
Since (vi ; vi) 62 A, according to the definition ofG, for each
bi 2 S1, either bi is “above” (but doesn’t intersect with)bi or
T (bi) \ T (bi) = ;. Then it can be seen thatF1, constructed in
presence ofS1, was not a forward-trajectory. A contradiction.

For Claim 1
If there is abi 2 S2 such thatvi satisfies 3), then by Claim 1

we have already found the required directed path(vi ; vi) and the
proof is done. If there is no such abi , we will show that we can
modify F1 into a new trajectoryF2 to avoid obstacles inS2 in a
way such thatF2 remains to be a forward-trajectory. The process of
modification is as follows.

Go along the current forward-trajectoryF1 until the first blocking
obstacle inS2 is encountered. The manners of the intersection ofF1

and an obstacle fall into four general situations as stated in Claim
1. We then can modifyF1 according to (1), (3), (7) and (8) of
Fig. 18(b), respectively.

With F1 partially modified, repeat the preceding procedure so that
all the obstacles inS2 are encountered and the trajectory modified

accordingly. The modification will end after certain number of steps
sinceS2 is finite. It is important to notice that

• forward property is preserved in the modification;
• for the modification to be valid, it is necessary thatbi satisfy

neither 3 i) nor ii) nor iii).
Repeatedly using the assumption that there does not exist any

safe trajectory, we can inductively discriminateSi that blocksFi�1,
and modify Fi�1 into Fi, a safe forward-trajectory that avoids
S1 [� � � [Si. To adjust the current forward-trajectoryFi�1, observe
that an obstacle inSi intersects withFi�1 in nine general ways shown
in (1)–(9) of Fig. 18(a). Clearly, these nine types exhaustall possible
intersection patterns. The corresponding modification strategies are
shown in Fig. 18(b).

By the two facts that
1) the number of obstacles is finite;
2) Si \ Sj = ; if i 6= j;

we will eventually encounter somem such thatbi 2 Sm satisfies
3) of the theorem.

The following lemma is just a generalization of Claim 1.
Lemma 2: For eachbi 2 Sd+1; 1 � d < m, there exists some

bi 2 Sd such that(vi ; vi) 2 A.
The proof of Lemma 2 is similar to that of Claim 1.
Now by Lemma 2, there are somebi 2 Sm�1, some

bi 2 Sm�2 � � � such that(vi ; vi) 2 A; (vi ; vi) 2
A; � � � ; (vi ; vi) 2 A, hence the required directed path.

For Theorem 1

REFERENCES

[1] G. M. Adel‘son-Vel‘skii and Y. M. Landis, “An algorithm for the
organization of information,”Soviet Math. Dokl.,vol. 3, pp. 1259–1262,
1962.

[2] B. K. Bhattacharya and J. Zorbas, “Solving the two-dimensional findpath
problem using a line-trangle representation of the robot,” Tech. Rep.,
School Comput. Sci., Simon Fraser University, Burnaby, BC, Canada.

[3] K. Kedem and M. Sharir, “An efficient algorithm for planning
collision-free translational motion of a convex polygonal object in
two-dimensional space amidst polygonal obstacles,”Proc. ACM Symp.
Comput. Geom.,1985, pp. 75–80.

[4] K. Kedem, R. Livne, J. Pach, and M. Sharir, “On the union of
Jordan regions and collision-free translational motion amidst polygonal
obstacles,”Discr. Comput. Geom. 1,pp. 59–71, 1986.

[5] B. H. Lee and C. S. G. Lee, “Collision-free motion planning of two
robots,”IEEE Trans. Syst., Man, Cybern.,vol. SMC-17, no. 1, pp. 21–32,
1987.

[6] D. Leven and M. Sharir, “An efficient and simple motion-planning al-
gorithm for a ladder moving in two-dimensional space amidst polygonal
barriers,”J. Algorithms,vol. 8, pp. 192–215, 1987.

[7] C. ÓDúnlaing, “Motion planning with inertial constraints,”Algorith-
mica, vol. 2, no. 4, pp. 431–475, 1987.

[8] C. ÓDúnlaing, M. Sharir, and C. Yap, “Generalized Voronoi diagrams
for a ladder: I. Topological analysis,”Commun. Pure Appl. Math.,vol.
39, pp. 423–483, 1986.

[9] , “Generalized Voronoi diagrams for a ladder: II. Efficient con-
struction of the diagram,” Tech. Rep. 140, Comput. Sci. Dept., New
York Univ., Nov. 1984.

[10] C. ÓDúnlaing and C. Yap, “A ‘retraction’ method for planning the
motion of a disc,”J. Algorithms,vol. 6, pp. 104–111, 1985.

[11] F. Preparata, “A new approach to planar point location,”SIAM J.
Comput.,vol. 10, no. 3, pp. 473–482, 1981.

[12] F. Preparata and M. Shamos,Computational Geometry: An Introduction.
Berlin, Germany: Springer-Verlag, 1985.

[13] J. Reif and M. Sharir, “Motion planning in the presence of moving
obstacles,” inProc. 25th IEEE Symp. FOCS,1985, pp. 144–154.

[14] K. Sutner and W. Maass, “Motion planning among time dependent
obstacles,”Acta Inform.,vol. 26, pp. 93–122, 1988.

[15] S. Sifrony and M. Sharir, “An efficient motion planning algorithm for
a rod moving in two-dimensional polygonal space,” Tech. Rep. 8540,
Eskenasy Inst. Comput. Sci., Tel Aviv Univ., Tel Aviv, Israel, Aug. 1985.

[16] D. Wang, “Finding the safest one-dimensional path among obstacles for
the acceleration constrained robot,” inComputer Science 2: Research
and Applications,R. Baeza-Yates, Ed. New York: Plenum, 1994.

Authorized licensed use limited to: Rutgers University. Downloaded on May 12, 2009 at 11:42 from IEEE Xplore. Restrictions apply.

