478 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 28, NO. 4, JULY 1998

Correspondence

Two Algorithms for a Reachability for various special case motion planning problems can be found in
Problem in One-Dimensional Space [21-[4], [71-[9], [15], and [16].

The motion planning in the presence of time-dependent obstacles

Dajin Wang and Klaus Sutner came to researchers’ attention relatively late. Two early papers in

this field were written by Sutner and Maass [14] and Reif and Sharir

Abstract_Two alaorith 4 1o sol habili b [13]. Both papers showed that the general motion planning problem
stract—Two algorithms are proposed to solve a reachability problem e :)

among time-dependent obstacles in one-dimensional (1-D) space. In thefor tlme depende'nt o.bstacle_s 1S PS_PACE_ hard. However, for some
first approach, the motion planning problem is reduced to a path existence SP€cial cases, it is St_'" possible to find efficient algorithms. In [Z.I._4],
problem in a directed graph. The algorithm is very simple, with running an O(n log, n) algorithm was developed to solve the reachability
time (()j(""l’), Wﬂefe n is the Comp|‘|3><ity Ofr?bStadeS (ijn r?pace—time- The problem in one-dimensional (1-D) space, where the obstacles are
second algorithm uses a sweep-line technique and has running time i : 4 ;

O(n log, n). Besides, the latter algorithm can be easily modified to assumed to. be dl.sjomt polygons #pace-timg(the physical space
compute a collision-free trajectory, if such trajectories exist. plus time dimension) ana is the total number of edges of _th_e
polygons. In [5], Lee and Lee addressed the problem of collision-
free motion planning for two robots. The presence of the first
robot on the path of the second robot could be viewed as a time-
dependent obstacle. Using the collision map technique, [5] computed
I. INTRODUCTION an appropriate speed reduction and/or time delay for the second robot

Index Terms—Algorithmic robotics, motion planning, obstacles, path
planning, reachability, space-time, sweep-line algorithm.

The general purpose of robot motion planning is to plan tH@ avoid the collision.
movement of a robot in a known or unknown environment filled with An important problem in advanced robotics research is to decide
obstacles such that certain requirements are met. For example, Whéther a robot can reach a target, given the description of the
robot might be commanded to navigate among a collection of static@#vironment. In this paper, we will present two algorithms to solve
time-dependent (moving) obstacles; the shapes of those obstacles thapecial reachability problem in 1-D space. The results of this paper
range from very simple ones (such as a single segment) to arbitrafitend the previous work of [14]. The problem to be solved is stated
complicated objects. The robot has to move from an initial positicis follows. Suppose a point-like robot intends to move from an initial
to a target position without colliding with any of the obstaclesPosition to a target position along a 1-D track. The robot is supposed
Moreover, there can be many different restrictions on the types t@freach the target before a deadline time. However, the track is not
movement of the robot, and the robot’s mechanical limitations ha@eclear one: between the initial and target positions, there are various
to be taken into account when planning its motion. For example, tAbstacles that are appearing and disappearing as the time passes. We
motors that drive the robot will have limited top-speed/acceleratiogk the question that given the obstacle information, can the robot
causing the robot to navigate with speed/acceleration not exceedifigch the target before the deadline?
certain value. For a non-disk-like robot whose workspace is two- There are many real-world problems that can be modeled or
dimensional (2-D), its movement can be either translational @pproximated with the above problem. For example, suppose a robot
rotational. Thus one possible restriction is that only translation& moves between two spots of a workspace. The path of the robot
movements are allowed. So there are many combinations of ilsea fixed rail (so it can be modeled with 1-D space). In the same
restrictions and conditions on the moving robot. Some of them hawerkspace, there are some other robots moving around so that they
been studied as special cases of motion planning problem since ¢hess the rail from time to time. It is then natural to askHfcan
general planning has been found to be computationally intractableach its target without colliding with other robots. Furthermore, if the
In fact, the significance of studying those “special cases” is not ordynswer is yes, it is highly hoped that a trajectoryfdbe computed
that they are more tractable but also that they are of theoretithht reaches the target before the deadline, dodging all obstacles.
as well as practical interest in their own rights. In the past years,Certain simplifications are made to handle the problem efficiently.
many efficient algorithms have been developed for special casesFafkt of all, we assume that all obstacles are of rectangular shapes
motion planning. A typical example is the motion planning of @ space—time. The reasonableness of this assumption is twofold: 1)
straight-line segment (a “rod”) in a 2-D space filled with segmenin the example given above, if the crossing robots have the shapes
like obstacles. An algorithm was proposed by Leven and Shagimilar to rectangles (like trailers), the assumption nicely fits into
[6] solving the problem inO(n? log, n), wheren is the number the situation; 2) for a more complex-shaped obstacle, we can use
of segment obstacles. Another example is to plan the motion ofaaset of small rectangles to approximate it so that the algorithms
circular disk in a 2-D polygonal workspad®:Dunlaing and Yap [10] developed for rectangular obstacles can be carried over to irregular
used the so-called retraction method to design an algorithm whigbstacles. Secondly, we assume that the robot switches from one
solves the problem i)(nlog, n). Some other efficient algorithms speed to another with very little time, so that we can almost view its

Manuscript received February 5, 1993; revised April 7, 1994, February %cmelera.tion as. infinite. Alt_hOUQh an _infinite acceleration will r_‘ev_er
1995, and October 22, 1997. be possible, this assumption will gain more and more practicality

D. Wang is with the Department of Computer Science, Montclaiand give better and better approximation results as manufacturing
State University, Upper Montclair, NJ 07043 USA (e-mail: Wang@echnology develops.

pegasus.montclair.edu). . -
K. Sutner is with the Computer Science Department, Carnegie Mellon We propose two different approaches to solve the reachability

University, Pittsburgh, PA 15213 USA. problem. In the first approach, we construct a directed graph (or
Publisher Item Identifier S 1083-4427(98)04355-0. digraph for short)G = (V. A4) out of the layout of the obstacles.

1083-4427/98%$10.001 1998 IEEE

Authorized licensed use limited to: Rutgers University. Downloaded on May 12, 2009 at 11:42 from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 28, NO. 4, JULY 1998 479

A theorem is given establishing the relationship between the original gpace
reachability problem and the digraph. Using the theorem, we can Y
solve the reachability problem by checking if there exists a directed
path in the digraph that satisfies certain conditions. The construction
of G and the checking of the existence of the directed path both
take O(n?) steps, wheren is the number of atomic obstacles in _
the space—time under consideration. For the purpose of easy analysisq"
and correctness proof, the algorithm is first presented assuming that b;
the robot can move with unlimited velocity. Once the idea of the
algorithm is grasped, it is not a difficult task to adapt it to the case
of noninfinite velocity. The digraph algorithm is straightforward in
concept, uses no complicated techniques and therefore is easy to
implement. t

The second approach proposed is a complex sweep-line algoriti?gln
which uses some earlier results in computational geometry. The totﬁ
running time of the algorithm i€ (n log, n). But to make use of the
results in computational geometry to achieve the better running time,
we have to make one further assumption: the robot in question can
move very fast, so fast that the time it needs to move from the initial
to target position is so little compared to the time-span of the obstacles
that we can approximate the robot's movement in space—time with
a vertical segment. With this approximation, we can not only get a
faster algorithm for the reachability problem, but can also, by adding
some actions into the algorithm, compute a collision-free trajectory
from the initial to the target position, if such trajectories exist.

The rest of the paper is organized as follows. In Section II, @ (b)
we giVe the definitions of the technical terms and then fOfma'Mg_ 2. (a) An approximation of an arbitrary obstacle and (b) a finer
state the problems we will solve. In Section Ill, we present thapproximation of the same obstacle.
digraph algorithm to solve the reachability problem and analyze its

complexity, assuming the infinite velocity of the robot for the time . o b. M1 in 1-D The rob
being. In Section IV, we extend the result of Section Il to the mor&" navigate in intervelD, M] in 1-D space. The robot can assume

practical, noninfinite velocity. In Section V, a sweep-line algorithr'r"i‘rltzItrary \/thOC|ty and the switching from one velocity to another
is proposed to solve the problem and its complexity analyzeE?.leSt no |.mAe. t of ¢ | bstacleB = (b1 b b
In Section VI we modify the sweep-line algorithm to compute a '"Stance: A set ofn rectangular obstacleB = (b bz. - -+ bn)

collision-free trajectory, provided that such trajectories exist. We thdlh Space-time. .The. |n|t!al locatiotw, o) 9f the robot such t.hat
give some concluding remarks in Section VII. zo > 0. A destinationX such thatzy < X < M. The deadline

time T > to.

Problem 1: (Reachability Problem) Can the robot get fram to
X beforeT, avoiding all obstacles?

The time-dependent obstaclean be described in two possible Problem 2: (Trajectory Finding Problem) If the answer to Problem
ways. We could first give the description of the physical shapeis yes, specify one such trajectory.
of the obstacle, and then describe its movement. Alternatively, weA rectangular obstacle, which can be specified by four parameters
can combine the above two pieces and describe the time-dependgnt;, 4, 7,], represents the “blockade” of a portion of the space for
obstacle as a point-set gpace-timgi.e., the robot's workspace plusa certain amount of time. We defirfE(b;) to be projection of the
the time axis. In the study of motion planning with top-speed and/gbstacleb; on the time axis, i.e.7 (b;) = [t;, #;]. See Fig. 1 for the
acceleration constraint, it is found to be extremely convenient ffustration of such an obstacle.
express the movement of both robot and obstacle in space-time. Than arbitrarily shaped obstacle in space—time can be approximated
advantage of this method is that it can even reflect the changesina set of rectangular obstacles, such as shown in Fig. 2. The accu-
shape of the obstacles. We will express the obstacles in space-tifagy of approximation will depend on how many “small rectangles”
Therefore the complexity of obstacles will be measured as thge used to imitate the original obstacle—the smaller and the more

complexity of the corresponding point-set in space-time. Notice thalctangles, the better imitation, but more running time is needed.
if we consider the movement of a robot in space—time, the irreversible

movement along the time axis is always forced. So in our case,
where the robot moves in 1-D space, the problem is quite different lll. THE DIRECTED GRAPH ALGORITHM
from motion planning in 2-D space. A poilt, t) in space—-time is This approach solves problem 1 with a directed graph (digraph for
called alocation We denoteX (x, t) = x, T'(x, t) = t, and call short) constructed out of the layout of the obstacles. Given rectangular
x the robot’sposition at timet. We consider motion planning with obstacle seB = (b4, b2, - - -, b,,) in space—time, construct a digraph
the assumption that the complete information about obstacles—tie= (V, A) with the set of verticed” = {v1, v2, - -+, v, }, Where
shape, the trajectory along which they are moving, etc.—is knowertex v; represents obstacle. The set of edges! is defined as
in advance and stored with some appropriate data structures, i.e.,fllews:
sensing of the environment has been done before the robot starts
navigating. i 10 formall o habil o A ={(vi, v;), (vj, vi)[bi N b; # 0}

We are now ready to formally state the reachability problems we _ - -
consider in this paper. Suppose we are given a point-like robot that @i o)l n by = 0) A (@ < a) Aty <Fi <)}

H---

» time

i
|
|
+

g
-

* 1. An atomic rectangular obstacle in space—time.

Il. TERMINOLOGY

Authorized licensed use limited to: Rutgers University. Downloaded on May 12, 2009 at 11:42 from IEEE Xplore. Restrictions apply.

480 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 28, NO. 4, JULY 1998

v >
b; '
5. Xp-mmmmmmmmmmm e
7
Uj
& __"'J
by l
Vi Z0o{ 1——*
Fig. 3. Three obstacles and the corresponding digraph. to *
z Fig. 5. A safe trajectory satisfying (a), (b), (c), and (d) of Corollary 1.

4
f(t2) With the lemma, Corollary 1 immediately follows.

Corollary 1: If infinite velocity is allowed, and there exists a safe
trajectory at all, then there is a safe trajectory which can be described
as a sequence of segmepts pz, Pz, Ps, - -+, Dr—1, Pr Such that

a) X(p1) = xo, T(p1) = to.

b) X(pr) = X. T(pr) <T.

c) For any segmerfi;, pit1, eitherX (p;+1) = X (p:) (standing

still) or T'(pi+1) = T(p:) (moving with £o0c velocity).

d) The projections of any two horizontal segments on time axis

> are disjoint (no reversal in time).

Fig. 5 shows an example of such a trajectory (bang-bang).
Fig. 4. RegionD. The following theorem establishes the relationship between the safe
trajectory and the directed path .
Fig. 3 gives an example of a set of obstacles and the correspondingheorem 1: There exists a safe trajectory if and only if there does
digraph. not exist a directed pattv;,, vi,, -+, v;,,) in G such that
In the following discussion, we will establish the relationship 1y 4 < ¢,
between two different kinds of paths. One is the physical path in 2) a4, N zo.
space—time from the sourcg to the destination\’ without hitting 3) Either)T, > T, orii) ¢i,, <0, 0rii) ti,, <toAq, < wo.

any obstacle. The other is the combinatorial path in the digraph. TOThe intuitive illustration of the three types of directed paths that

avoid confu3|on, we .W'” call the former safe traj_ectory . ill keep the robot from reaching’ is given in Fig. 6. We provide
We are interested in a special type of safe trajectory, on which the

. .) . . . the proof of Theorem 1 in the Appendix.
robot either stands still, or moves with maximum/minimum velocity.

W I fe traiect f this tvoebmna-b traiect Theorem 1 allows us to transform the motion planning problem
¢ call a safe trajectory ot this typetmng-bang trajectory under consideration into a path existence problem in graph theory.
Lemma 1: If there exists a safe trajectory,, there must exist a

bang-bang trajectoryP,. The digraph algorithm to solve our reachability problem is sketched

X . .. as follows.
Proof: If there exists a safe trajectory, then we can partition it Step 1: Construct the digraphG = (V, A) according to the
into portions such that each portion is monotone. We will only Sho}ﬁ'rrangehent of obstaclds. .- b) A

how to replace a monotonically increasing portion with a bang-bangStep 2: Find an obstaclé; such thay; = min{q;|t; < o Aq; >
. 7 T Jiy =" J =

trajectory. zo}, i.e., the obstacle directly above the robot's initial location. If

Suppose the time projection of a monotonically increasing portiqfe. e js no such an obstacle, the answer to the original question is
is [t1, t2], and call this portionf. Let D be the region bounded by trivially YES

the following three curves:

f(t1)

Step 3: Compute the set; = {vi|there is a directed path from

. v; 10 vy }.
* The vertical line passing throudt . f(t1)]; Step i: Decide if there is some, € V; such thath, satisfies
* The horizontal line passing througty, f(¢2)]. either 3 i) or ii) or iii) in Theorem 1. By Theorem 1, if the answer
See Fig. 4 for the illustration oD. is YES, the answer to the original question is NO; if the answer is
If there exists an obstaclg such thaty; = min{¢|b; " D # }, NO, the answer to the original question is YES.
then we can changg¢ as follows. A simple example illustrating the idea of the algorithm is shown
Starting from[¢1, f(¢1)], go forward with maximum velocityfoc in Fig. 7.
here) until the horizontal line = ¢; is hit. Then stand still untilf We now analyze the algorithm’s running time. To construct digraph

is reached. Notice that we are able to do so becauseq; is the G, we basically have to check every pair of obstacles. Since there
lowest obstacle boundary that intersects withSuppose the time of are O(»*) pairs of obstacles, Step 1 také%r?) operations in the
reachingf is ¢'. For the remaining portion of from [¢', f(¢')] to worst case. Step 2 can be embedded in Step 1. For Step 3, in the
[t=, f(t2)], repeat the preceding procedure until no sughia found. worst case we will traverse all edges@f and the number of edges

If there exists no more such;, then just go forward with full is bounded byO(r”). So Step 3 take€(n?), too. Step 4 can be
velocity until reaching the horizontal line passiftg, f(¢2)]. Then effected asV; is being computed, and each checking takes constant
stand still to reachts, f(t2)]. O For Lemma 1 time. So altogether the complexity of the algorithm(ign?).

Authorized licensed use limited to: Rutgers University. Downloaded on May 12, 2009 at 11:42 from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 28, NO. 4, JULY 1998 481

A
4 L d r's
X ------------ 1 Tt oo TTTT=- 1 1
|] | |
be : 9{, \'R ! :
l: 3! ¥ 11 o | 1
. 1
To¢ bin, b; |t :
1y il [N 1
tO T 't ' 4

Fig. 6. The three types of directed path that will prevent the robot from reacking

S . . v v
X ! I , b;
[™ | ‘ bj
H b : v
| v J
| b4 : @ U4 b
1
1 { k
T : T / v
k
| bs | v3
' —T Fig. 8. Set of obstacles and the corresponding digraph.
Tl TZ

Fig. 7. If the deadline isTy, then there exists a directed path satisfying 1) starting from(zo, ¢o), the robot moving with velocity+c will
conditions of Theorem 1vf — wv2), thereforeX is not reachable before hit »;, at some locatior{x, t), wherex < X andt < T;
Ty . If the deadline ig%, then there is no path satisfying conditions of Theorem 2) obstacles;is positioned in one of the three ways in Fig. 9

1, thereforeX' can be reached befofE,. :) - ' o
Again, notice that wherr — oo, condition 1 above will coincide
with conditions 1 and 2 in Theorem 1, and condition 2 will coincide

IV. THE DIGRAPH ALGORITHM EXTENDED TO NONINFINITE VELOCITY with condition 3 in Theorem 1.

We now present the modified version of the digraph algorithm Having modified the definition of digraplir, we can obtain a
in Section Ill so that it can solve the reachability problem for thaimilar 4-step reachability algorithm as in Section Ill, which is given
case of noninfinite velocity, which is a more practical assumptioR€IOW- . .

The adaptation from infinite velocity to noninfinite velocity is not Step 1: Construct the digrapk = (V, 4) according to the edge
a difficult task. Basically, what we have to do is to change thdefinition. _
way the digraph is constructed. Notice that a full-speed move isSt€P 2: Find an obstaclé; such that starting fronizo. fo), the

now a segment with certain slope, instead of a vertical segmeFﬂPo}VVl'fthhvelo‘?'ty‘*'c W'”hh't bi ;t solme Irc:catlorq:c./ t), Ih< X ar;]d il
in space-time. As soon as the digraph is built accordingly, the< 1 T there Is no such an obstacle, the answer to the reachability

reachability problem again becomes the matter of checking t%(;t;lemalchES.t th V. — (o th . directed path f
existence of a directed path satisfying conditions similar to those " ep : Compute the set; = {us there is a directed path from
of Theorem 1. ve 10 L’“}.' o . i -

Given rectangular obstacle SeB = (b, bs, -+, bn) in Step 4: Decide if there is some;. € V; such that, satisfies one
space—time, we construct a digragh= (V, A) tz;kiﬁ’ intc,) z;ccount of the three conditions in Fig. 9. If the answer is YES, the answer
P Do , g. . SR 9 to the reachability problem is NO; if the answer is NO, the answer
that the point-like robot’s velocity is bounded by a constarstuch

thate < LetV = }, where vertex; represents to the reachability problem is YES.
c 0. /S = U1, V2, -, Uy)i . K . .

oer o o The complexity analysis takes the same line as that of Section lll,
obstacleb;. The set of edgesl is defined as follows: pexty y

‘ resulting in anO(»?) running time.
1) (vs, v5) € A and(v;, v;) € A if b; andb; intersect;

2) (v, v;) € A if the following situation holds: V. THE SWEEPLINE ALGORITHM

The sweep-line method discussed in this section will make use of
the known efficient algorithms [12] that compute #isd@ernal contour
bj of a union of isothetic rectangles and determine the inclusion of a
point in a plane subdivision.

Using the definition in [12], the external contour of a uniBnof
bs isothetic rectangles is the boundary betweérand the unbounded

t region of the plane. Fig. 10 gives an example of external contour of
a union of isothetic rectangles in space—-time. Notice that here the

Fig. 8 gives an example of a set of obstacles and the correspondifigon of isothetic rectangles corresponds to our obstacl@set
digraph. We point out that when — <o, the definition of edge-set The following two theorems are from [12].

A here will reduce to the same edge-set definition in Section Ill. Theorem 2: The total number of edges forming the external con-
The existence of a safe trajectory before deadline is equivalenttéur of a union ofn isothetic rectangles i©(n).

the nonexistence of a directed path,, vi,, -+, v;,,) in G such Theorem 3: The external contour of a union efisothetic rectan-

that gles can be constructed in optimal tifié:log, n).

Authorized licensed use limited to: Rutgers University. Downloaded on May 12, 2009 at 11:42 from IEEE Xplore. Restrictions apply.

482 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 28, NO. 4, JULY 1998

v

Fig. 9. The positioning ob;,, that will prevent the robot from reaching the destination.

I I — el

Fig. 11. After the external contour computation, many “inside” edges dis-
appear. They do not need to be “looked at” any more.

Fig. 10. The external contour of a union of isothetic rectangles. sweep
We call a groupH of isothetic rectanglesonnected blockf for
any two pointsz, b € H there is a curve that entirely lies withil / / I8 /
and connects, b. For example, in Fig. 10 there are two connected
blocks.
According to Theorem 3, we can dividB = (b1, bo, ---, by) I 5L
into several connected blocks @ n log, n) steps. This result helps @) () ©

us develop an efficient [i.eQ(n log, n)] algorithm to solve the
reachability problem. The crucial observation that prevents us frdﬁfe'r
doing lots of unnecessary work is that a connected block actua'lly
plays the role obnegeneral obstacle. The boundary of that general
obstacle is just the external contour of the group of related rectangulaNotice that sweeping from left to right, the sweep-line “sweeps
obstacles—all corners or edges “inside” the block do not have to pro” the block when encountering a left edge, and it “sweeps out
considered when determining the reachability. of’ the block from a right edge. Also notice that the above three

The rest of this section will be devoted to describing the sweep-lipgeces of information can be obtained during the computation of the
method. The data structures used in the algorithm will be presentgdernal contour.

12. (a) The edge entirely lies withify, (b) a portion of the edge
sects with/1, and (c)I; entirely lies within the edge.

at appropriate stages on an as-needed basis. It is not difficult to realize that only at those critical moments does
Preprocessing Step 1First of all, for the given obstacle sé = the reachable space-intervals of the robot change. This is the very
(b1, b2, -+ -, by), compute the external contour. The result will besrycial observation that makes the sweep-line method work.

several disjoint connected blocks. Suppose therenarelocks and preprocessing Step 2Sort all critical moments in nondescending
let B; (1 <i < m) denote the set of obstacles belonging to blockrder, i.e., from left to right. Denote the resulting critical-moment-
i,thenB =B, UB,U---UB,, andB; N B; = O if < # j. Each list (tqw t/Q_/ e t;]) such thattqg < t’] < t’Q <. < t;]. All critical
block is now viewed as one general obstacle. moments less thaty are ignored because the sweep starts, atf
Fig. 11 illustrates the situations before and after the externgl critical moments are greater than, then the robot can trivially
contour computation. See [12] for the details of computing externglach the target by going straight up (with infinite speed).
contour. We need to build a data structure which we aghce—structure
Our algorithm sweeps all blocks from left to right. The timg; s pasically anorderedset of reachable space—intervals at a given
components of allvertical edges of the blocks constitute the set Ofyitical moment. The order can be, say, from top to bottom. The
so calledcritical moments Each critical moment has three tags as sweeping algorithm is nothing more than a process of updating of
follows: the space—structure. To search, add and delete efficiently, we can
1) ¢ 1 block, indicating the block it belongs to; resort to any balanced binary search tree [1], such as AVL tree, to
2) t 1 ends, the two end points of the corresponding vertical edgémplement the space—structure.
3) t 1 lr, whether the corresponding edge ite#t one, by which Step 1: We start the sweep fronmy, at which the only reachable
we mean an edge such that the block is on its right, oglat space—interval is the interval between the obstacles directly above
one, by which we mean an edge such that the block is on @sd belowz,, the robot’s initial position. Clearly, these two special
left. obstacles can be found with one scani®f On completion of this

Authorized licensed use limited to: Rutgers University. Downloaded on May 12, 2009 at 11:42 from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 28, NO. 4, JULY 1998 483

Toe
e [l 1] .
’ 1 4 !y 1 4
b ity 3ty o Ht, Bty
(@ (b)
Fig. 13. (a) The obstacles and initial positiag and (b) the reachable intervals #t, - - -, #f.

initial sweep step, the space-structure contains only one intereahsecutiveportion of the space—structure, by which we mean that

denoted as, sayl;. any interval not belonging to that set is either above or below all the
Step 2: Now consider critical moment;. We modify current intervals in that set.

space-structure according to the valuestpftags. By checking Without loss of generality, suppose the intersecting reachable

t, T ends, we know if the edge intersects with or not. If not, do intervals arel;, I;4+1, ---, Ix, wherel; is abovel,y1, -+, I;_1 is
nothing. If the edge intersects with, our updating action dependsabovel,. Then we havemax {#; T ends} € I;, min{t; T ends} €
on the value oft] 1 Ir. I, and Ij4q, -+, Is—1 C [max{t; | ends}, min{t; 1 ends}].

Case 1: #; T Ir = left. ThenT, is either chopped into two shorter Again, the updating action depends #n7 Ir.
intervals, or cut at one end, resulting one shorter intervall; ois Case 1: t; T Ir = left. The sweep-line sweeps “into” a block.
totally gone. The situation is illustrated in Fig. 12. Intervalsl; 1, -+, Ix—; are all gonel;’s lower-end is updated to be

Case 2: t; T Ir = right. ThenI; gets extended at one end. Tomax{t; 1 ends}. I}’s upper-end is updated to hein{t; | ends}.
update space—structure, we need to know how lbngs extended. Case 2: t; T Ir = right. The sweep-line sweeps “out of”’ a block.
Without loss of generality, supposke should be up-extended, we There are two possibilities.
then want to locate the horizontal edge of some block which is Case 2.1: Either I; gets up-extended af,. gets down-extended.
directly abovel, . Efficiently finding that horizontal edge is not trivial. We need to searcff;,.,; to find either the trapezoid in which the
However, resorting to an algorithm of locating a point iplanar upper-end of ; lies or the trapezoid in which the lower-endflies.
straight-line graph the horizontal edge can be found @log, n) Case 2.2: Some two consecutive intervals merge into one.
with O(nlog, n) preprocessing. A simple example of sweeping process is given in Fig. 13.

A planar straight-line graph is a graph on plane whose verticesTo solve reachability problem, at each critical moment, after
are geometrical points, whose edges are straight lines with npdating space-structure, we search it to find if there is an interval
intersections. It determines in general a polygonal subdivision ofntainingX. If we find such an interval at some critical moment,
the plane. A point-location algorithm is to find the polygon in then the answer is YES. If we cannot find such an interval even after
which a given point lies. An algorithm callettapezoid methad T, the answer will be NO.

due to Preparata [11], can locate the query poiniftog, n) with We now turn to the time analysis of the algorithm. By Theorem
O(nlog, n) preprocessing, whene is the number of vertices of the 3, Preprocessing Step 1 tak€n log, n). Preprocessing Step 2 is
planar straight-line graph. sorting, hence)(n log, n). Step 1 takes constant time. Step 2 can

Theorem 4 (Preparata/Shamosp point can be located in an be done inO(log, n) in the worst case (the interval gets extended)
n-vertex planar subdivision with fewer thahlog, n tests, using with the trapezoid tree, which is built i®)(» log, n) time. For
O(n log, n) preprocessing time. Step 3,---, Stepp, I;, and I, can be found with two searches of

The preprocessing in the theorem corresponds to the buildup oface—structure, therefore neééidog, n) time. The updating of the
balanced binary search tree. Readers who are interested in knowivd. space—structure tree again tak@glog, »). Lastly, at the end
the algorithm in detail are referred to [11] or [12]. of each step, we check the inclusion &f in the space—structure,

Now consider the collection of blocks from Preprocessing Step dnotherO(log, n). So, in summary, we have the following.

It can be seen that those blocks also perfectly determine a subdivisiofheorem 5: The reachability question can be answered in
of the plane. So we can construct a binary search tree out of thei{nlog, n) time using a sweep-line technique, wheseis the
Denote the binary search tr&g..,;. According to Theorem 4[},.,; complexity of measurement of the obstacles.

can be constructed iV(nlog, n). In comparison with the digraph algorithm, this method is much

In Case 2 of Step 2, we want to locate the horizontal edge whifister whenn is large. Besides, it is a reasonable conjecture that
is directly abovel;. For this purpose, we just sear@..,; to find O(nlog, n) is the optimal running time one can possibly get for
the trapezoid in which the upper-end bf lies. Once the trapezoid the reachability problem under consideration. However, an obvious
is found, we up-extend; to its upper-horizontal edge. Again, byadvantage of digraph algorithm over sweep-line algorithm is that
Theorem 4 this can be effected @(log, n). the former is easier to implement. So wheris small, the digraph

The actions in all steps henceforth are alike. Each of them is falgorithm is preferred.
one critical moment. Recall that there agrecritical moments and
p = O(n). VI. COMPUTING A TRAJECTORY

Stepi, i = 3, ---, p: At critical momentt;, we first examine If the answer to the reachability problem is YES, i.e., there exist
t; T ends to decide the set of reachable intervals that intersect th@jectories fromzo (at time ;) to X before T, the next natural
encountered edge. Notice that the set of intersecting intervals igj@estion is how to find such a trajectory.

Authorized licensed use limited to: Rutgers University. Downloaded on May 12, 2009 at 11:42 from IEEE Xplore. Restrictions apply.

484 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 28, NO. 4, JULY 1998

sweep from left to right. This construction is very clear in concept, but
, the total number of vertices may lie(n?), because there may be
O(n) reachable intervals at a stage and there maybe) stages.
To reduce the number of vertices of digraftr, we manage not to
[— retain as many a®(n) vertices at every stage. Observe that at each
l:_ critical momentt;, either one interval is chopped into two, or one
interval is cut/extended at one end, or some interval(s) vanish. One
strategy is then that af, we only add in new vertices that correspond
' to newly generated intervals. Intervals from the previous stage that
don’t change are left alone, with no new vertices created for them.
I Each vertex has a tag afive/deadindicating if the corresponding
l A interval is still active or not. In the beginning, there is only one
I | vertex vy with alive tag. If at the next moment; is chopped into
two partsl> andIs, thenvs, vs are added into the vertex sét and
(a) (b) (v1, v2), (v1, v3) are added into the edge séf. The tags of new
Fig. 14. (a)l; is chopped intok pieces k may equal to 1) and (b; is vertices are alwayalive. When an interval; is to be d(_eleted from
obtained by expendind; . the space—structure, we change the tag;ofo dead Notice that no
edge emanates from a dead vertex.
If a collision free trajectory exists at all, then at some moment
)))] we will detect, in space—structure, an active intetfathat contains
If the trajectory is not unique—one can easily work ouBasuch y \ve then find the vertex,, which must be alive, and start a
that there exists only one trajectory from to X —then there will be 146 pack process from it.
continuously many of them. That fact is easy to seé’ is a known Constructing the digraplé; = (V. As) as described above,
trajectory, then any continuous change in the velocity at any moment s size is drastically reduced because only two vertices at most
will make a different trajectory)). We are interested in finding just 5re to be added td’ for each critical moment. Since there are
one such a trajectory, which in essence represents a family of thqvm(.n,) critical moments, the cardinality df; is linear. The number
For the sake of simplicity, we try to establishstaircasetrajectory ¢ edges ind7 is also of orde(n), because each vertex’s in-degree
on which the robot either stands still (a horizontal line in space-timg) always 1. Since the construction @ can be entirely embedded
or moves with top-speed (going straight up or down). By Lemmaij} the process of making space—structure, no extra work is needed to
of Section Ill, a trajectory of this type must exist if there exists anjing a specific collision-free trajectory. Thus, we have the following.
trajectory at all. Theorem 6: If there exist collision-free trajectories frofo, to)

By embedding some actions in the sweep-line algorithm discuss(@d(X’ t'), somet, < # < T, then one can construct a staircase
in last section, we can find a staircase trajectoryCitwlog, n) collision-free trajectory inO(n log, n) time.

time. The basic idea of the algorithm is to construct a digraph
Gt = (Vr, A7) (with T standing for trajectory) during the sweep-
line process. Each vertex @¢fr represents some reachable interval VI
at a certain critical moment. An edde;, v;) € Ar only if
1) intervalI; is at the moment next té;’s;
2) eitherl; C I, i.e., I; is one of the two pieces derived from

floul

. CONCLUSION

We have proposed two algorithms—the digraph algorithm and the
sweep-line algorithm—to solve a reachability problem in 1-D space.

.)) . The space-time plane was used as a basic tool to solve our problem.
choppmg[;, or Ii C I, which means thal; is obtained by o digraph approach has its appeal due to its simplicity and easy
expending;. implementation. Two versions of the algorithm were presented, for

Fig. 14 illustrates the correspondence between intervals and edggfmited and limited robot velocity, respectively. To adapt from
of digraphGy-. It can be seen from the figure that if there is an edggnlimited to limited velocity, all we have to do is to change the
from v; to v;, then one can find a horizontal segment connectingay the digraph is constructed. As soon as the digraph is adequately

I; andI;. Notice that the digrapki7s is constructed irstagesi.e., constructed, the reachability problem becomes the matter of checking

vertices of the same momefitcan be all drawn in a vertical pattern,the existence of a special directed path. The construction of the

right to vertices of momertt_,, and left to those of;,. Each stage digraph and the checking of the existence of the directed path take
represents distinctcritical moment and may include several critical)(n?) steps, where: is the complexity of obstacles. The sweep-line
moments (recall that critical moments < #; < #, < --- < t,,, algorithm improves the running time of an earlier proposed algorithm
so the number oflistinct critical moments may be less tha). Al for a similar problem [14] in the sense that the algorithm presented
edges emanating from some vertices of a particular stage terminataegte gainsO(nlogn) running time for arbitrary obstacle layout,
some vertices of the next stage. Therefore, in essence, all the edggereas in [14] to havé)(n logn) running time the obstacles have

of G'r direct “from left to right.” to be disjoint. Yet it has to be pointed out again that our sweep-

With the finished=, the construction of a collision-free trajectoryline algorithm assumes very high velocity and acceleration relative
becomes a straightforward process. We just start from vegtesuch to the time-span of obstacles, so that the movement of robot can be
that I contains the targeX” and trace back until we reach the veryapproximately expressed with vertical segments in space-time.

firstintervall, which containseo. The directed path leading from Taking into account the robot’s acceleration constraint turns out to
to v, then perfectly represents a staircase trajectory from the origin® much more challenging than only considering bounded velocity.
location to the target. However, the literature in the past few years has already seen work

The important thing in this approach is to keep the size of ttdone in this direction. One can easily anticipate the intractability of
digraph as small as possible so that thé: log, n) running time acceleration constrained motion planning in general terms. So most
can be achieved. Naively, at each stage, we may retain vertices dontributions have concentrated on solving special case problems,
all intervals of this stage. And the whole digragh, is staged for example in [7], [16].

Authorized licensed use limited to: Rutgers University. Downloaded on May 12, 2009 at 11:42 from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 28, NO. 4, JULY 1998 485

space

bi; 4 bij+1 t

JY0

or
biJ' b,'j
. _ - - Zos
Fig. 15. (7;, < Qi) A (figy, <ti; <Ti;).
» time

APPENDIX

Proof of Theorem 1:We first show that if there exists a safe traFig. 16. There must be at least one obstacle blocking .

jectory, then there does not exist a directed gath, vi,, -, vs,,)
in G such that 1), 2), and 3) in Theorem 1 can hold simultaneously, . .
We then show that if there does not exist a safe trajectory, then thete t
must exist a directed pattv;,, vi,, ---., v;,,) in G such that 1), 2), [l [
and 3) in Theorem 1 are satisfied simultaneously.

Suppose there exists a safe trajectory. Then by Corollary i, [| [
there is a bang-bang trajectory along which the robot either movds
straight up/down or stands still. Without loss of generality, suppose
the trajectory in Fig. 5 is what we have constructed. Observe the —
rectangular region bounded by= t;, t = T, « = 0, andz = X. (@ (b) (©
Denote this region aS. One can see that a safe trajectory partition
S into two parts. Define

I§ig. 17. The trajectory in (b) is a forward-trajectory.

U ={s€ S[F[T(s) € [T(pi), T(pi1)] We now show that if there does not exist a safe trajectory, then

.) there must exist a directed path;,, vi,, - -+, v;,,) in G such that
A X(piv1) < X ()]} 1), 2), and 3) in the theorem are satisfied simultaneously.
and By our assumption, there is no safe trajectory. So the vertical
L=S—-T. segmentzo X must have at least one obstacle intersecting with it.
See Fig. 16.

Intuitively, U is the region “above” the safe trajectory (including L€t 51 be the set of all obstacles intersecting with.X. The
the trajectory itself) whereak the region “below” it. Clearl’nL = following fact is trivially true:
. br. € Si implies thatv; satisfies 1) and 2) in Theorem 1.
Notice that if there exists a safe trajectory satisfying a), b), c), an,

d) in the corollary, then there will be no obstacle intersecting wit there exists &y € 51 suc_h than“ satlsfles 3), then we have
the trajectory, i.e. already constructed the required directed path), and the proof is

complete.
Suppose, however, that i@ € S| satisfies 3., then it is obvious
to see that in the presence §f, we can construct a safe trajectory

. .) somehow. For our purpose, we are particularly interested in one
We are now ready to show that with existence of a safe trajectopy icyar way of constructing the safe trajectory. As has been pointed

satisfying a), b), €), and d) in the corollary, there cannot be a directgl; ihere are only three types of movement of the robot in a bang-
path(viy, vi,. -+, vi,) in G such that 1), 2), and 3) in the theoremy o yraiectory: going up, going down, or going right (standing still).
hold simultaneously. o , , We construct the safe trajectory in such a way that at any location-
For the sake of gontradlctlon, assume there (_3X|sts a directed , going-up movement has the highest priority, going-right has
(viy, vig, -+, vi,,) in G such that 1), 2), and 3) in Theorem 1 holdy, o second, and going-down has the lowest. In other words, the robot
at the same time. Then because of 1) and 2), it must be the cagga s ries to go upward first. It stands still only when it cannot go
thatb;, C U. Considerb;,, now. If b, C U, too, then neither 3() ;5 any more (so it has to “drift’ along the bottom of an obstacle).
nor (ii), nor (iii) can hold. Thereforé;,, C L. So there must exist anq it will go downward only if it cannot even stand still. In Fig. 17,
(vij, vi;y,) € A such that only the trajectory in (b) meets this criterion. We will call this type
; of trajectory aforward-trajectorybecause igoes forward as soon as
(L<j <m)A(bi; CU) A (biyy, € L) it can do so
Now suppose that, in the presence $f, we have constructed
SinceU N L = 0, we haveh;; Nb;,,, = (. So from the definition the forward-trajectoryFy. From the assumption that there exists no

Vi [either b; C U orb; C L].

of & safe trajectory, we know that there must be at least one obstacle
intersecting withF;. Let S be the set of all obstacles intersecting
(qij < qij+1) A [T(blj) n 'T(bij+1) # @] with F;.
Claim 1: For eachb;, € S, there is somé;, € S such that
The corresponding situations are shown in Fig. 15. (vi, viy) € A.

One can immediately see that the situation in Fig. 15 cannot happen Proof: For the sake of contradiction, suppose the claim is not
unless d) is violated, which means “going backward” in time—&ue. Then there will be sonie, € S> such thatvb;, [b;, € S1 —
contradiction. (vig, vi,) & Al

Authorized licensed use limited to: Rutgers University. Downloaded on May 12, 2009 at 11:42 from IEEE Xplore. Restrictions apply.

486 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 28, NO. 4, JULY 1998

M

I

(2

(3

accordingly. The modification will end after certain number of steps
since S, is finite. It is important to notice that

» forward property is preserved in the modification;
 for the modification to be valid, it is necessary thatsatisfy
neither 3 i) nor ii) nor iii).

Repeatedly using the assumption that there does not exist any
safe trajectory, we can inductively discrimingie that blocksF;_1,
and modify F;_; into F;, a safe forward-trajectory that avoids
S1U---US;. To adjust the current forward-trajectofy_;, observe
that an obstacle if; intersects with¥;_, in nine general ways shown
in (1)—(9) of Fig. 18(a). Clearly, these nine types exhalispossible
intersection patterns. The corresponding modification strategies are

4

IFINIRING

5

RIS

(6)
bi,._
A,

)
! [
® l;}- &
(3]

9)
(4]
(@) (b) [5]

Fig. 18. (a) All possible intersection patterns and (b) the corresponding

modification strategies.

(6]

An obstacle inS, can intersect with the current forward-trajectory 7]
F; in four general manners shown in (1), (3), (7) and (8) of Fig. 18(a).
Since (v;,, vi,) € A, according to the definition of7, for each [g]
b;, € 51, eitherb;, is “above” (but doesn't intersect with);, or
T(b;;) NT(b;,) = (. Then it can be seen thdk, constructed in
presence of5;, was not a forward-trajectory. A contradiction.

O For Claim 1

If there is ab;, € S> such thatv;, satisfies 3), then by Claim 1 [10]
we have already found the required directed path, v;,) and the
proof is done. If there is no suchia,, we will show that we can
modify Fi into a new trajectoryf> to avoid obstacles irb2 in a [12]
way such that; remains to be a forward-trajectory. The process of
modification is as follows. (13]

Go along the current forward-trajectofy; until the first blocking 14]
obstacle inS; is encountered. The manners of the intersectiof’of
and an obstacle fall into four general situations as stated in Claifb]
1. We then can modifyF; according to (1), (3), (7) and (8) of
Fig. 18(b), respectively. [16]

With F; partially modified, repeat the preceding procedure so that
all the obstacles irb> are encountered and the trajectory modified

(9

[11]

shown in Fig. 18(b).
By the two facts that
1) the number of obstacles is finite;
2) SinsS; =0if i # j;
we will eventually encounter some such thath;,, € S,, satisfies
3) of the theorem.
The following lemma is just a generalization of Claim 1.
Lemma 2: For eachb;, , € Sat1, 1 < d < m, there exists some
bi, € Sa such that(v;,, vi,,) € A.
The proof of Lemma 2 is similar to that of Claim 1.
Now by Lemma 2, there are somi

mo1 € Sm-1, some
vi,.) € A, (v Vi, _,) €

Ty—29

s € Sm—2 - such that(v;

Ty—19

-+, (viy, viy) € A, hence the required directed path.

O For Theorem 1

REFERENCES

G. M. Adel'son-Vel'skii and Y. M. Landis, “An algorithm for the
organization of information,Soviet Math. Dokl.yol. 3, pp. 1259-1262,
1962.

B. K. Bhattacharya and J. Zorbas, “Solving the two-dimensional findpath
problem using a line-trangle representation of the robot,” Tech. Rep.,
School Comput. Sci., Simon Fraser University, Burnaby, BC, Canada.
K. Kedem and M. Sharir, “An efficient algorithm for planning
collision-free translational motion of a convex polygonal object in
two-dimensional space amidst polygonal obstacl®sgc. ACM Symp.
Comput. Geom.1985, pp. 75-80.

K. Kedem, R. Livne, J. Pach, and M. Sharir, “On the union of
Jordan regions and collision-free translational motion amidst polygonal
obstacles, Discr. Comput. Geom. Ipp. 59-71, 1986.

B. H. Lee and C. S. G. Lee, “Collision-free motion planning of two
robots,”|IEEE Trans. Syst., Man, Cyberngl. SMC-17, no. 1, pp. 21-32,
1987.

D. Leven and M. Sharir, “An efficient and simple motion-planning al-
gorithm for a ladder moving in two-dimensional space amidst polygonal
barriers,”J. Algorithms,vol. 8, pp. 192-215, 1987.

C. ODdnlaing, “Motion planning with inertial constraintsAlgorith-
mica, vol. 2, no. 4, pp. 431-475, 1987.

C. ODunlaing, M. Sharir, and C. Yap, “Generalized Voronoi diagrams
for a ladder: I. Topological analysisCommun. Pure Appl. Mathyol.

39, pp. 423-483, 1986.

___, “Generalized Voronoi diagrams for a ladder: Il. Efficient con-
struction of the diagram,” Tech. Rep. 140, Comput. Sci. Dept., New
York Univ., Nov. 1984.

C. ODinlaing and C. Yap, “A ‘retraction’ method for planning the
motion of a disc,”J. Algorithms,vol. 6, pp. 104-111, 1985.

F. Preparata, “A new approach to planar point locatio8/AM J.
Comput.,vol. 10, no. 3, pp. 473-482, 1981.

F. Preparata and M. Sham@®pmputational Geometry: An Introduction.
Berlin, Germany: Springer-Verlag, 1985.

J. Reif and M. Sharir, “Motion planning in the presence of moving
obstacles,” inProc. 25th IEEE Symp. FOC3985, pp. 144-154.

K. Sutner and W. Maass, “Motion planning among time dependent
obstacles,"Acta Inform.,vol. 26, pp. 93-122, 1988.

S. Sifrony and M. Sharir, “An efficient motion planning algorithm for
a rod moving in two-dimensional polygonal space,” Tech. Rep. 8540,
Eskenasy Inst. Comput. Sci., Tel Aviv Univ., Tel Aviv, Israel, Aug. 1985.
D. Wang, “Finding the safest one-dimensional path among obstacles for
the acceleration constrained robot,” @omputer Science 2: Research
and ApplicationsR. Baeza-Yates, Ed. New York: Plenum, 1994.

Authorized licensed use limited to: Rutgers University. Downloaded on May 12, 2009 at 11:42 from IEEE Xplore. Restrictions apply.

